馮燕萍 董志紅 張穎 程麗佳 唐璐 歸艷華
摘要: 絲素蛋白(SF)以其優(yōu)異的性能,如較好的生物相容性、生物降解性和機械性能等,被廣泛應(yīng)用于生物醫(yī)學(xué)領(lǐng)域。天然的SF需要經(jīng)過脫膠處理(去除蠶絲中的絲膠)方可獲得,不同的脫膠方法和工藝參數(shù)會對SF結(jié)構(gòu)和性能產(chǎn)生不同的影響,選擇合理的高效脫膠工藝方法,為制備生物醫(yī)用材料提供較高性能的SF。本研究從化學(xué)、物理和生物技術(shù)幾方面論述了蠶絲脫膠的方法,包括堿性、酸性、高溫高壓(HTHP)、超聲波、微波和酶處理等,闡述了SF纖維的提取技術(shù),以期獲得高純度、表面光滑、可降解性好和機械性能優(yōu)異的SF,制備出SF新型材料,為SF在生物醫(yī)用材料領(lǐng)域的應(yīng)用提供較好的前期研究基礎(chǔ)。
關(guān)鍵詞: 絲素蛋白纖維;絲膠蛋白;脫膠方法;生物醫(yī)用材料;機械性能
中圖分類號: TS102.33文獻標志碼: A文章編號: 10017003(2022)04000907
引用頁碼: 041102DOI: 10.3969/j.issn.1001-7003.2022.04.002(篇序)
蠶絲是天然的纖維材料。無論何種類別的蠶絲,一般均由質(zhì)量為70%左右的絲素蛋白(SF)和25%左右的絲膠所組成,剩余的5%左右則是一些雜質(zhì)。早期蠶絲常被用在紡織領(lǐng)域上,隨著新材料的開發(fā)和利用,蠶絲在軍工、制藥、生物醫(yī)藥材料領(lǐng)域上也逐漸展現(xiàn)出其優(yōu)異的特性,尤其是蠶絲中的SF,其具有良好的力學(xué)性能、生物相容性、抗菌性等優(yōu)點,同時它的物理和生物學(xué)特性也優(yōu)于絲膠。因此,人們對SF的研究越來越深入,從制備方法到將其復(fù)合制備成新材料,無一不體現(xiàn)出它優(yōu)異的特性,如將SF制成粉末[1]、凝膠[2]、薄膜狀[3],通過靜電紡絲制成SF纖維膜[4],也制備成SF纖維增強復(fù)合材料[5]等。在生物醫(yī)療領(lǐng)域,SF可作為藥物釋放的載體[6]、人工骨組織支架[7]、傷口敷料[8]、人工耳膜[9]及神經(jīng)導(dǎo)管[10]等。脫膠是一種表面改性手段,可通過改變脫膠手段、調(diào)節(jié)脫膠參數(shù)等,利于保存SF完好的結(jié)構(gòu)和性能,開發(fā)出具備獨特的生物降解性、良好的機械性能的新型生物醫(yī)用材料。而如何在無殘留絲膠的同時,不損傷SF本身結(jié)構(gòu)和性能,是蠶絲脫膠的首要問題。脫膠的實驗方法及工藝參數(shù)直接影響SF的特性,如脫膠過程中,脫膠的完整性、均勻性,直接影響脫膠后SF的柔軟性、光滑程度及光澤度等。本文從不同的角度總結(jié)闡述脫膠方案,主要從化學(xué)、物理和生物三方面闡述不同的提取方法,包括用堿、肥皂、尿素、有機酸、離子液體、高溫高壓、超聲波、微波和酶等脫膠方法(圖1)。無論是堿性、酸性還是物理/生物脫膠方法,都是將絲膠蛋白分解,從蠶絲上自行脫落下來,但是不同的脫膠方法對SF的生物醫(yī)用會產(chǎn)生不同的影響。本文在SF制備方法上進行合理闡述,以便在生物醫(yī)用材料領(lǐng)域上,為選取合適地提取方案提供清晰的思路及參考。
1.1堿性處理
堿性脫膠主要包括碳酸鈉(NaCO)、碳酸氫鈉(NaHCO)、強堿性電解水(SAEW)、皂堿和尿素脫膠等,影響其脫膠的工藝參數(shù)主要有時間、溫度和脫膠劑的濃度,它們對SF影響對比如表1所示。
絲膠不溶于冷水,易溶于熱水。然而在水熱堿性條件下,SF會發(fā)生熱降解和水解,所以脫膠溫度不易過高,一般不超過100 ℃(沸水點);且溫度不低于60 ℃,否則脫膠過程無法完成。強堿(NaCO/NaOH)處理對SF腐蝕性很強,不利于獲得較優(yōu)異的SF[11],碳酸鈉的強堿性會破壞SF的分子鏈,導(dǎo)致其分子量降低,SF的分子量和其制備生物材料(如SF纖維膜)的降解率有關(guān),較高的相對分子質(zhì)量顯示出高效的降解行為。采用NaHCO脫膠會保留較高的相對分子質(zhì)量,對SF損傷性更小,雖NaHCO脫膠率高,但仍有一部分SF被絲膠黏接,不利于制備高純度的SF[12-13]。為了保持堿性的恒定性,強堿性電解水(SAEW)脫膠可以穩(wěn)定脫膠過程的pH值。如表1所示,當pH值為11.5時,SF纖維上的絲膠完全脫去。
皂堿法脫膠后的SF纖維很柔軟,具有良好的彈性,但是時間長了容易變色發(fā)黃,因此不利于長時間儲存。肥皂的蠶絲脫膠原理,即肥皂經(jīng)過水解形成堿,再與絲膠蛋白相互作用,生成溶于水的物質(zhì)。當單獨采用帶有一定堿性的肥皂脫膠時,可以較短時間完成脫膠,且對SF的損傷性比碳酸鈉更小[14]。
從NaCO到SAEW再到肥皂脫膠,堿性逐漸減弱,雖然脫膠率隨之下降(NaCO>SAEW>肥皂),但隨之逐漸保持較高SF的相對分子質(zhì)量,且拉伸率上升(NaCO<SAEW<肥皂)[15]。雖然這種肥皂蘇打法可以有效地脫膠,堿性也較弱,但其脫膠周期有限[16]。
尿素作為一種溫和的脫膠劑,有一定的堿性作用,研究人員[17]發(fā)現(xiàn)在相同質(zhì)量濃度下,相比NaCO脫膠,尿素脫膠后的SF溶液黏度更高,即SF相對分子質(zhì)量更高。尿素也分堿性和非堿性,當采用非堿性尿素,得到相對分子質(zhì)量較高的SF,有較好的生物降解性,但對SF有一定的損傷[18]。由表1可見,其脫膠率相對偏高,SF部分被脫掉,可能是由于其水解等因素引起。但當非堿尿素和肥皂脫膠相比,脫膠后SF相對分子質(zhì)量和黏度為非堿尿素>肥皂[19]。
1.2酸性處理
酸性脫膠不亞于堿性脫膠,特別是有機酸(如琥珀酸、檸檬酸、蘋果酸、草酸、酒石酸等),其作用較堿性更溫和。與肥皂堿脫膠法相比,使用檸檬酸在高溫下脫膠得到的SF和肥皂脫膠一樣柔軟,但有機酸得到的SF纖維表面更光滑,穩(wěn)定性更好[24]。然而與大多數(shù)堿處理一樣,隨著酸性強弱變化,SF仍然易受到攻擊,例如琥珀強酸與檸檬弱酸相比,前者對SF的損傷性更大[16]。表2展現(xiàn)不同的有機酸脫膠參數(shù)及對SF產(chǎn)生的影響。相比于堿性脫膠,有機弱酸脫膠對SF纖維造成更小的損傷,在結(jié)構(gòu)和性能上最大程度地保持了SF纖維的完整性,但其脫膠率不夠,在SF纖維上仍殘留不少絲膠蛋白,不利于制備高純度的SF。
在酸性條件下,以離子液體(IL)對蠶絲進行脫膠,可充分發(fā)揮其特殊性能,如熱穩(wěn)定性、高溶解性等。由表2可見,以pH值、溫度和時間為脫膠實驗工藝參數(shù),呈酸性的離子液體進行脫膠處理,使SF纖維表面比堿性處理更加絲滑[25]。雖然酸性離子液體相比堿性脫膠和有機酸更有利于改善SF纖維的拉伸性能,但其脫膠率太低,無法滿足高純度SF提取的要求[14]。
1.3物理/生物脫膠
除上述化學(xué)脫膠,現(xiàn)今主要的脫膠處理還有高溫高壓、超聲波、微波輔助等物理方法和酶等生物方法,其保證了脫膠的高效環(huán)保。
若不添加任何脫膠劑處理,即用常規(guī)物理方法對蠶絲進行脫膠,如高溫高壓(HTHP)脫膠,既可以使絲膠蛋白在高溫下自行解體,又無廢水處理,更加環(huán)保。利用高溫高壓的蒸汽法就是一種有效的脫膠方法,在熱加壓蒸汽中含有大量強滲透性的高能水分子,其可能導(dǎo)致蛋白質(zhì)-蛋白質(zhì)氫鍵的進一步被破壞。因此,絲膠蛋白可以逐漸水解并變得高度溶于水,從而使其與蠶絲蛋白分離。通常,高溫高壓(HTHP)制備的SF纖維膜的拉伸強度和伸長率優(yōu)于常規(guī)化學(xué)脫膠,如肥皂蘇打脫膠法,且在相同的濃度下,SF溶液黏度的順序如下:HTHP脫膠>酸脫膠(檸檬酸)>肥皂/蘇打脫膠[19]。但是溫度和壓力過高會使絲素蛋白中的氫鍵、肽鍵分解,不利于控制[26]。而且天然的蠶絲組織復(fù)雜,若長期暴露在空氣和高溫狀態(tài)下,其微觀組織和結(jié)構(gòu)難免會產(chǎn)生一定的損傷,同時高溫處理時間過長、過短都不利于SF表面的光滑性[20]。
隨著超聲波和微波技術(shù)的成熟,超聲波和微波處理對蠶絲進行脫膠逐漸引起了人們的興趣。超聲波脫膠處理,即在SF和絲膠蛋白之間的交點處發(fā)生聲空化效應(yīng),通過高頻率聲能,將絲膠蛋白團聚體破碎成小顆粒,而無需高溫,避免對SF產(chǎn)生破壞。超聲波頻率、溫度和時間等參數(shù)會影響脫膠效果,但是超聲波脫膠處理脫膠效率不高,無法獲得高純度的SF。
無論是何種脫膠方式,都需要一定的熱量,而微波處理可通過微波能量間接為材料加熱,利用其進行脫膠處理,避免了傳熱問題。其最大的優(yōu)點就是快速升溫,快速為蠶絲脫去絲膠蛋白。常用的微波處理是需要和其他化學(xué)脫膠劑混合使用,無論是堿性還是酸性微波輔助脫膠,都可以在3~5 min完成脫膠,非常高效。其最大的優(yōu)點就是脫膠時間最短,耗能最低。若單獨使用微波處理,雖然能減少絲素纖維強度的損失,但是脫膠率比其輔助脫膠低[32],且微波處理脫膠不能應(yīng)用于工業(yè)規(guī)模。從脫膠率可見,仍會有些許殘留的絲膠蛋白,不利于獲得高純度的SF。
由微生物分泌的蛋白酶也會水解絲膠蛋白,蛋白酶將絲膠蛋白分解成肽,再經(jīng)肽酶水解成氨基酸,使得絲膠蛋白脫落。如絲氨酸蛋白酶常被用作蠶絲脫膠,它將絲膠大分子蛋白質(zhì)中的肽鍵斷裂,使之成為小分子蛋白質(zhì),從蠶絲中脫掉。酶在較溫和的環(huán)境下對蠶絲進行脫膠,在SF水解之前將絲膠蛋白瓦解,具有針對性,其脫膠后的廢水可以回收利用,也在很大程度上避免了絲膠蛋白的浪費,環(huán)保節(jié)約。用蛋白酶脫膠后,SF質(zhì)軟,有光澤,操作溫度低,生產(chǎn)效率高[33-34]。
不同的蛋白酶有不同的脫膠效果。當采用天然的繭酶(蠶蛹在羽化時成蟲分泌的蛋白酶)和枯草桿菌蛋白酶(Alcalase)比較脫膠效果,Alcalase會導(dǎo)致一定SF水解,對其提取不利。繭酶對SF幾乎無影響,但是其脫膠率不高,即需要更多的繭酶(2ISU)和更多時間(48 h),才可完全除去絲膠[35]。而經(jīng)過人工處理的蛋白酶比天然蛋白酶具有更好的脫膠功能,人工處理后的蛋白酶脫膠時間短,脫膠率高,脫膠效果好,如表3所示。圖2是將幾種脫膠方法進行對比,經(jīng)表征可見酶脫膠效果較好。采用芽孢桿菌新分離的C4菌株產(chǎn)生的絲氨酸蛋白酶,脫膠后SF表面無殘留的絲膠蛋白,SF纖維表面光滑細膩??梢娙斯ぬ幚淼牡鞍酌该撃z可解決酶脫膠耗時長的局限性,SF纖維強度可以保持不變,且處理溫度低,降低了SF纖維的軟化程度[36];且相比其他脫膠方法,人工酶脫膠毒理性更小,對于創(chuàng)傷愈合等生物醫(yī)用材料的制備提供了潛在參考價值。
2結(jié)語
本文通過堿性、酸性、物理/生物處理等技術(shù)來對蠶絲進行脫膠,以獲得SF纖維。生物醫(yī)用材料領(lǐng)域?qū)F要求高,而脫膠方法會影響其生物性質(zhì)和理化性能。堿性過強,對SF損傷性過大,雖然可通過減弱堿性來進行調(diào)整,但其脫膠率又無法接近理想值;尿素脫膠后的SF性能較好,但其已損失了部分SF;有機酸和離子液體在酸性脫膠中相對溫和,但是脫膠不完全;高溫高壓及微波脫膠雖然環(huán)保節(jié)約,但超過了正常脫膠溫度(100 ℃以下),加上壓力的作用,影響SF的結(jié)構(gòu)和性能;相比其他脫膠方法,人工酶處理技術(shù)在幾乎完全脫去絲膠的同時,保證了SF的結(jié)構(gòu)完整性,SF纖維表面光滑平整、質(zhì)軟,獲得的SF新型材料可降解、抗氧化性能好。人工酶脫膠為SF在生物醫(yī)用材料領(lǐng)域的使用提供了較好的技術(shù)支撐。
參考文獻:
[1]RANGAMR, LIJING W, JAGAT R K, et al. Molecular weight and secondary structure change in eri silk during alkali degumming and powdering[J]. Journal of Applied Polymer Science, 2011, 119(3): 1339-1347.
[2]李慧君, 馬彥龍, 賈蘭, 等. 絲素蛋白水凝膠作為藥物載體材料的研究進展[J]. 化工新型材料, 2017, 45(3): 230-232.
LI Huijun, MA Yanlong, JIA Lan, et al. Research progress of silk fibroin hydrogel used as drug carrier material[J]. New Chemical Materials, 2017, 45(3): 230-232.
[3]HAO D, BAOQI Z. Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin[J]. The Journal of the Textile Institute, 2015, 106(3): 311-319.
[4]KYUNGHWAN Y, HA NI L, CHANG SEOK K, et al. Effects of degumming conditions on electro-spinning rate of regenerated silk[J]. International Journal of Biological Macromolecules, 2013, 61: 50-57.
[5]MEI-PO H, HAO W, KIN-TAK L. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites[J]. Applied Surface Science, 2012, 258(8): 3948-3955.
[6]KIRA N, OLIVER G. Silk fibroin degumming affects scaffold structure and release of macromolecular drugs[J]. European Journal of Pharmaceutical Sciences, 2017, 106: 254-261.
[7]J M, M R, V NITHYA P, et al. Substantial effect of silk fibroin reinforcement on properties of hydroxyapatite/silk fibroin nanocomposite for bone tissue engineering application[J]. Journal of Molecular Structure, 2020, 1206: 127739.
[8]K MURUGESH B, N S, DV A, et al. Silk fibroin coated antimicrobial textile medical products[J]. Journal of the Textile Institute, 2020(2): 1-9.
[9]REZA G, SHARON R, ZAINUDDIN, et al. Advancing towards a tissue-engineered tympanic membrane: Silk fibroin as a substratum for growing human eardrum keratinocytes[J]. Journal of Biomaterials Applications, 2010, 24(7): 591-606.
[10]XIUFANG L, LUPING W, LIANG L, et al. Water-stable silk fibroin nerve conduits with tunable degradation prepared by a mild freezing-induced assembly[J]. Polymer Degradation and Stability, 2019, 164: 61-68.
[11]LUPING W, ZUWEI L, QIANG Z, et al. Effect of degumming methods on the degradation behavior of silk fibroin biomaterials[J]. Fibers and Polymers, 2019, 20(1): 45-50.
[12]BENJAMIN J A, RANGAM R, RODNEY J D, et al. The impact of degumming conditions on the properties of silk films for biomedical applications[J]. Textile Research Journal, 2016, 86(3): 275-287.
[13]JAE S J, KYUNGHWAN Y, CHANG S K, et al. Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution[J]. International Journal of Biological Macromolecules, 2013, 55(2): 161-168.
[14]NIYAZ MOHAMMAD M, FERESHTEH M, MOKHTAR M, et al. Silk degumming using microwave irradiation as an environmentally friendly surface modification method[J]. Fibers and Polymers, 2010, 11(2): 234-240.
[15]SHIVANI R, BALASUBRAMANIAN K. Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization[J]. Journal of the Textile Institute, 2020, 111(1): 1-17.
[16]ZONGQIA W, HAIWEI Y, WEI L, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. Journal of the Textile Institute, 2019, 110(1): 134-140.
[17]VIKAS P, TANWEER H, ASHOK R, et al. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: Development, characterization, in-vitro studies[J]. International Journal of Biological Macromolecules, 2020, 164: 2018-2027.
[18]HAIWEI Y, ZONGQIA W, MINGRONG W, et al. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process[J]. Polymer, 2020, 192: 122298.
[19]HYUN JU K, MOO KON K, KI HOON L, et al. Effect of degumming methods on structural characteristics and properties of regenerated silk[J]. International Journal of Biological Macromolecules, 2017, 104: 294-302.
[20]KRIA N, LIVIA K B, MURIEL N, et al. Effects of silk degumming process on physicochemical, tensile, and optical properties of regenerated silk fibroin[J]. Macromolecular Materials and Engineering, 2018, 303(12): 1800408.
[21]WUCHAO W, YI P, KANG G, et al. A comparative study of ultrasonic degumming of silk sericin using citric acid, sodium carbonate and papain[J]. Coloration Technology, 2019, 135(3): 195-201.
[22]CAO T T, WANG Y J, ZHANG Y Q. Effect of strongly alkaline electrolyzed water on silk degumming and the physical properties of the fibroin fiber[J]. Plos One, 2013, 8(6): e65654.
[23]DEBASIS C, ARIJIT C, S M C. Studies on degumming of eri silk cocoons[J]. Journal of the Textile Institute, 2017, 108(8): 1327-1339.
[24]VYAS S K, SHUKLA S R. Comparative study of degumming of silk varieties by different techniques[J]. Journal of the Textile Institute, 2016, 107(2): 191-199.
[25]VYAS S K, SHUKLA S R. Degumming of tasar silk using imidazolium-based ionic liquids[J]. Journal of the Textile Institute, 2020, 111(9): 1364-1370.
[26]趙雯, 陳國強. 蠶絲的檸檬酸脫膠[J], 印染助劑, 2012, 29(7): 36-38.ZHAO Wen, CHEN Guoqiang. Degumming raw silk with citric acid[J]. Textile Auxiliaries, 2012, 29(7): 36-38.
[27]林海濤, 封寶山, 陶立全, 等. 蠶絲的蘋果酸脫膠[J]. 絲綢, 2013, 50(10): 1-5.LIN Haitao, FENG Baoshan, TAO Liquan, et al. Degumming of silk with malic acid[J]. Journal of Silk, 2013, 50(10): 1-5.
[28]樂志文, 李鵬飛, 李金環(huán), 等. 生絲的草酸脫膠工藝研究[J]. 紡織高?;A(chǔ)科學(xué)學(xué)報, 2017, 30(4): 445-450.
YUE Zhiwen, LI Pengfei, LI Jinhuan, et al. Research on degumming of raw silk with oxalic acid[J]. Basic Sciences Journal of Textile Universities, 2017, 30(4): 445-450.
[29]李鵬飛, 蔣娟娟, 凌新龍. 生絲的酒石酸脫膠研究[J]. 廣西科技大學(xué)學(xué)報, 2018, 29(1): 94-99.
LI Pengfei, JIANG Juanjuan, LING Xinlong. Degumming of raw silk with tartaric acid[J]. Journal of Guangxi University of Science and Technology, 2018, 29(1): 94-99.
[30]程德紅. 離子液體在桑蠶絲脫膠及染色中的應(yīng)用[J]. 化工學(xué)報, 2011, 62 (S2): 169-172.CHENG Dehong. Application of ionic liquid on degummed and dyeing of silk[J]. CIESC Journal, 2011, 62 (S2): 169-172.
[31]VYAS S K, SHUKLA S R. Degumming of eri silk using ionic liquids and optimization through response surface methodology[J]. Journal of the Textile Institute, 2016, 107(9): 1096-1111.
[32]MD MAJIBUR R, MASUHIRO T, YASUO G, et al. Physical properties and dyeability of silk fibers degummed with citric acid[J]. Bioresource Technology, 2010, 101(21): 8439-8445.
[33]MEI-PO H, HAO W, KIN-TAK L, et al. Interfacial bonding and degumming effects on silk fibre/polymer biocomposites[J]. Composites Part B, 2012, 43(7): 2801-2812.
[34]S V M, H B K, M A J, et al. Enzymatic degumming of silk with microbial proteases[J]. Journal of Natural Fibers, 2013, 10(2): 98-111.
[35]PRANGPRAPAI R, DUMRONGKIET A, UTAI U, et al. Functional expression of a bombyx mori cocoonase: Potential application for silk degumming[J]. Acta Biochim Biophys Sin, 2012, 44(12): 974-983.
[36]SNEHALV M, SAKALYA C, ASMITA A P. Silk degumming and utilization of silk sericin by hydrolysis using alkaline protease from beauveria sp (MTCC 5184): A green approach[J]. Journal of Natural Fibers, 2018, 15(3): 373-383.
[37]PERVIN A, TUBA T, EYUPHAN Y, et al. Investigation of the effects of environmentally friendly degumming methods on silk dyeing performance[J]. Textile Research Journal, 2019, 89(7): 1286-1296.
[38]RUI W, YAOFENG Z, ZHUO S, et al. Degumming of raw silk via steam treatment[J]. Journal of Cleaner Production, 2018, 1216: 492-497.
[39]NIYAZ MOHAMMAD M, MOKHTAR A, FIROOZMEHR M, et al. Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process[J]. Journal of Cleaner Production, 2010, 18(2): 146-151.
[40]XIAO W, YIWEI Q, ANDREW J C, et al. Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming[J]. Biomedical Materials, 2011, 6(3): 035010.
[41]SUNISA S, EKKASIT F, AMORNRAT P, et al. A serine protease from newly isolated Bacillus sp for efficient silk degumming, sericin degrading and colour bleaching activities[J]. International Biodeterioration and Biodegradation, 2017, 117: 141-149.
[42]KAMON Y, SHINJI T, KENSUKE N, et al. Characterization of thermostable alkaline protease from Bacillus halodurans SE5 and its application in degumming coupled with sericin hydrolysate production from yellow cocoon[J]. Process Biochemistry, 2019, 78: 63-70.
Study on extraction of silk fibroin fiberFENG Yanping DONG Zhihong ZHANG Ying CHENG Lijia TANG Lu GUI Yanhua(1a.School of Mechanical Engineering; 1b.School of Preclinical Medicine, Chengdu University, Chengdu 610106, China;
2.Sichuan Industrial Institute of Antibiotics, Chengdu 610051, China; 3.Affiliated Hospital of Chengdu University,
Chengdu 610081, China; 4.Sichuan Innovation Biotechnology Co., Ltd., Chengdu 610213, China)
Abstract: Silk fibroin (SF) is used in various fields, such as air sensing, filtration and biomedical engineering fields, especially in biomedicine. SF has good biocompatibility and low immunogenicity, which prevents rejection and inflammation in human body. At the same time, it exhibits good biodegradability, certain hydrophobicity and permeability, which may improve cell adhesion and proliferation. Besides, it is widely used in wound, nerve, bone and cartilage repair for its good mechanical properties. To obtain the ideal SF, the natural SF containing sericin and a small amount of impurities needs to be degummed. The purpose of this paper is to summarize different extraction methods for degumming treatment. SF with different structures can be obtained by reasonably selecting process parameters, which provides some guidance for the application of SF in biomedical materials.
In this paper, different degumming methods and technological parameters are studied. The degumming methods of silk are discussed from three aspects of chemistry, physics and biotechnology, including alkaline, acidic, HTHP, ultrasonic, microwave and enzyme treatment. Take sodium carbonate in alkali degumming as an example, in the process of degumming, sodium carbonate can react with sericin to dissolve it, so as to obtain SF. However, different degumming methods and degumming parameters, including concentration, temperature, pH, degumming time and pressure value, can destroy SF structure and affect its performance. The selection of relatively good degumming methods and parameters is the key to obtaining high performance. By comparing with other degumming methods, it is found that the artificial enzyme degumming scheme can obtain SF with better structure, smooth surface and better mechanical properties. It provides a good preliminary research foundation for the application of SF in the field of preparation of new biomedical materials.
This article is expected to provide a reasonable comprehensive reference for the selection and optimization of silk degumming processes, as well as the control and improvement of SF structure and performance, so as to better play its SF function in the biomedical field.
Key words: silk fibroin fiber; sericin; degumming method; biomedical materials; mechanical property