于翊鵬 黃興成 李渝 楊勝玲 張艷 劉彥伶 蔣太明 陳興良
摘要:【目的】探究埋藏深度對(duì)茶樹(shù)修剪物腐解特性及養(yǎng)分釋放的影響,為茶樹(shù)修剪物還田方式提供科學(xué)依據(jù)?!痉椒ā吭O(shè)置3個(gè)埋藏深度處理,包括表層覆蓋(T1)、埋藏10 cm(T2)和埋藏20 cm(T3)。采用尼龍網(wǎng)袋法,在盆缽中進(jìn)行周年腐解試驗(yàn),評(píng)估不同埋藏深度對(duì)茶樹(shù)修剪物腐解率及養(yǎng)分歸還特征的影響?!窘Y(jié)果】埋藏20 cm處理下,莖腐解最快,周年腐解率為45.99%;埋藏10 cm處理下,葉和莖葉混合腐解最快,周年腐解率分別為58.79%和51.89%。周年腐解后,莖、葉的養(yǎng)分富集系數(shù)差異明顯,葉與莖葉混合的養(yǎng)分富集系數(shù)則表現(xiàn)出相同的變化規(guī)律。表層覆蓋處理下,莖中氮和磷的富集系數(shù)分別增至1.46和1.36,葉中鉀的富集系數(shù)降至0.64;埋藏10 cm處理下,莖中鉀的富集系數(shù)降至0.23,葉中磷的富集系數(shù)增至1.41,碳和氮的富集系數(shù)下降為0.81和0.80,鉀僅為0.22;埋藏20 cm處理下,莖中氮的富集系數(shù)增至1.30,鉀降至0.27,葉中碳、氮和鉀的富集系數(shù)分別降為0.77、0.88和0.24。養(yǎng)分釋放率方面,埋藏10 cm處理下,碳和氮養(yǎng)分釋放較快,葉的碳、氮釋放率分別為66.7%和67.1%,顯著高于莖的碳、氮釋放率(P<0.05,下同);埋藏20 cm處理下,莖的磷釋放率為50.7%,高于葉的磷釋放率(48.6%);鉀的養(yǎng)分釋放率受還田方式影響較大,葉在埋藏10 cm處理下鉀的養(yǎng)分釋放率為90.6%,顯著高于表層覆蓋處理(62.5%)?!窘Y(jié)論】深埋會(huì)促進(jìn)茶樹(shù)修剪物莖葉的腐解,葉的腐解速率更高;深埋可提高修剪物碳氮磷鉀養(yǎng)分釋放,其中鉀元素釋放最快,氮和磷較緩慢。在實(shí)際生產(chǎn)中可將茶樹(shù)修剪物莖葉混合后深埋至10~20 cm耕層進(jìn)行還田,以改良茶園土壤。
關(guān)鍵詞: 茶樹(shù)修剪物;埋藏深度;腐解率;養(yǎng)分釋放
中圖分類號(hào): S571.1;S141.4? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)02-0356-08
Effect of burial depth on decomposition characteristics
of sheared tea tree parts
YU Yi-peng HUANG Xing-cheng LI Yu YANG Sheng-ling ZHANG Yan LIU Yan-ling JIANG Tai-ming CHEN Xing-liang
(1College of Agriculture, Guizhou University, Guiyang? 550025, China; 2Institute of Soil and Fertilizer, Guizhou Academy of Agriculture Science, Guiyang? 550006, China; 3Scientific Observing and Experimental Station of Arable Land Conservation and Agricultural Environment(Guizhou), Ministry of Agriculture and Rural Affairs, Guiyang? 550006, China;? 4Guizhou Academy of Agricultural Science, Guiyang? 550006, China; 5Agricultural Integrated
Service Center of Xinglong Town, Meitan County, Zunyi, Guizhou? 564100,China)
Abstract:【Objective】To explore the effect of burial depth on the decomposition and nutrient release of the sheared tea tree parts,so as to provide scientific basis for turning the sheared tea tree parts tofertilizer. 【Method】Three burial depths were set,including: surface cover(T1),burial 10 cm(T2) and burial 20 cm(T3). By using nylon mesh bags method in the basin,a decomposing test was conducted to evaluate different buried depth on the decomposing rate of the sheared tea tree parts and nutrient return characteristics annually. 【Result】When buried at 20 cm,stem rot the fastest,and the annual rot rate was 45.99%. When buried at 10 cm,leaf and stem decomposed the fastest,and the annual decomposition rates were 58.79% and 51.89%,respectively. After the annual decomposition,the nutrient enrichment coefficient of stem and leaf was significantly different,and the nutrient enrichment coefficient of leaf mixed with stem and leaf showed the same trend of change. Under surface cover treatment,the enrichment coefficient of nitrogen and phosphorus in stem increased to 1.46 and 1.36,respectively,and the enrichment coefficient of potassium in leaf decreased to 0.64. When buried at 10 cm,the enrichment coefficient of potassiumin stem decreased to 0.23,that of phosphorusin leaf increased to 1.41,that of carbon and nitrogen decreased to 0.81 and 0.80,and that of kalium was only 0.22. When buried at 20 cm burial,the enrichment coefficient of nitrogen in stem increased to 1.30,potassium decreased to 0.27,and the enrichment coefficient of carbon,nitrogen and potassium in leaves decreased to 0.77,0.88 and 0.24,respectively. In terms of nutrient release rates,the carbon and nitrogen release rates of leaves were 66.7% and 67.1%,respectively,significantly higher than those of stems when buried at 10 cm(P<0.05,the same below). When buried at 20 cm,the phosphorus release rate of stem was 50.7%,which was higher than that of leaf (48.6%). The nutrient release rate of potassium was greatly affected by the returning method. The potassium release rate of leaves buried 10 cm was 90.6%,which was significantly higher than 62.5% under surface mulching. 【Conclusion】Deep burial can promote the decomposition of prunedstems and leaves of tea tree,and the decomposition rate of leaves is higher. Deeper burial could increase the release of carbon,nitrogen,phosphorus and potassium,among which there lease of potassium was the fastest and the release of nitrogen and phosphorus was slow. In the process of production,prunedstems and leaves of tea tree can be mixed and buried as deep as 10-20 cm for? improving the soil quality of tea garden.
Key words:? the sheared tea tree parts; burial depth; decomposition rate; nutrient release
Foundation items: Science and Technology Support Program of Guizhou Province(QKHZC〔2020〕1Y119,QKHZC〔2019〕2266);Guizhou Science and Technology Platform and Talent Team Plan(QKHPTRC〔2018〕5604)
0 引言
【研究意義】我國(guó)是世界最大的茶葉生產(chǎn)國(guó),據(jù)統(tǒng)計(jì),截至2020年,我國(guó)茶園面積達(dá)316.51萬(wàn)公頃,年產(chǎn)量298.60萬(wàn)t(梁曉,2021)。茶樹(shù)修剪是茶葉生產(chǎn)中至關(guān)重要的環(huán)節(jié),修剪能培養(yǎng)幼齡茶樹(shù)樹(shù)冠定型、促進(jìn)側(cè)芽萌發(fā)、保證壯齡茶樹(shù)高產(chǎn)優(yōu)產(chǎn)以及促進(jìn)衰老茶樹(shù)復(fù)壯更新,對(duì)于茶葉的高產(chǎn)穩(wěn)產(chǎn)具有重要作用(劉慶,2019)。然而,茶葉修剪會(huì)產(chǎn)生大量的莖葉修剪物,如何有效利用其中的養(yǎng)分資源,促進(jìn)養(yǎng)分循環(huán)利用具有重要意義。茶樹(shù)修剪物無(wú)疑成為目前最具潛力、最省工、最節(jié)約成本,且來(lái)源最方便的茶園有機(jī)肥源(鄭生宏等,2012)。茶樹(shù)修剪物作為一種茶葉生產(chǎn)過(guò)程中必然產(chǎn)生的副產(chǎn)物,本質(zhì)上是一種特殊的秸稈。茶樹(shù)修剪物還田后,其腐解過(guò)程將會(huì)釋放出大量養(yǎng)分,對(duì)改善茶園土壤的理化性質(zhì)有積極正面的影響。但在實(shí)際生產(chǎn)中,茶樹(shù)修剪物腐解時(shí)間較長(zhǎng),養(yǎng)分難以及時(shí)得到利用,因此,尋找一種縮短茶樹(shù)修剪物腐解時(shí)間的還田方式十分有必要?!厩叭搜芯窟M(jìn)展】影響秸稈腐解的因子眾多,目前的研究表明主要分為3類,包括氣候因子、秸稈自身性質(zhì)和環(huán)境生物因子(梁東等,2019)。有學(xué)者指出,可通過(guò)人工調(diào)節(jié)3類因子實(shí)現(xiàn)秸稈快速腐解,促進(jìn)秸稈養(yǎng)分歸還(馬淑敏等,2019)。已有研究表明,人為加快秸稈腐解的主要手段包括添加外源氮素以調(diào)節(jié)碳氮比,添加外源微生物改變秸稈所處的微生物環(huán)境,以及通過(guò)改變秸稈還田的耕作措施即對(duì)秸稈進(jìn)行旋耕或深埋等處理(楊麗麗等,2016;郭騰飛,2019)。向秸稈中添加氮素以改變秸稈的碳氮比是通過(guò)改變秸稈自身性質(zhì)以加快秸稈腐解及養(yǎng)分釋放速率(曾莉等,2020;鄭文魁等,2020;石琳等,2021)。人為添加腐解劑改變環(huán)境微生物群落,即改變環(huán)境生物因子也可加速秸稈腐解(楊麗麗等,2016;董鵬等,2020;姚云柯等,2020)。在土壤中添加具有降解纖維素功能的真菌可提高茶樹(shù)修剪物的分解速率,加快茶樹(shù)修剪物的養(yǎng)分釋放(胡雲(yún)飛等,2015)。部分學(xué)者認(rèn)為相比添加外源物料,通過(guò)改變秸稈還田時(shí)的耕作措施,即對(duì)秸稈進(jìn)行深埋或旋耕還田更能促進(jìn)秸稈腐解及養(yǎng)分釋放(賈丙瑞,2019;夏東,2019)。劉單卿等(2018)、王娜等(2020)研究發(fā)現(xiàn),將秸稈翻耕還田較覆蓋還田更利于秸稈的組成成分降解和養(yǎng)分釋放。蔡麗君等(2019)研究表明,在不同還田方式、不同秸稈長(zhǎng)度中,最利于秸稈腐解的是小秸稈深埋。王宇先等(2020)研究表明,在深埋條件下,玉米秸稈腐解速率最快的耕層為10~20 cm?!颈狙芯壳腥朦c(diǎn)】目前,對(duì)于如何促進(jìn)大田作物秸稈腐解的研究已有不少,但在經(jīng)濟(jì)作物上,尤其是茶樹(shù)修剪物的腐解研究鮮見(jiàn)相關(guān)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】探究埋藏深度對(duì)茶樹(shù)修剪物腐解特性及養(yǎng)分釋放的影響,以期解決茶樹(shù)修剪物腐解較慢,釋放養(yǎng)分規(guī)律不明的問(wèn)題,從而為實(shí)際生產(chǎn)過(guò)程中高效利用茶樹(shù)修剪物提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
試驗(yàn)于2018—2019年在貴州省農(nóng)業(yè)科學(xué)院內(nèi)試驗(yàn)基地進(jìn)行。試驗(yàn)場(chǎng)地處于黔中黃壤丘陵區(qū),年平均氣溫15.3 ℃,年降水量1100~1200 mm。土壤類型為黃壤,供試土壤基本性質(zhì):pH 5.22、有機(jī)質(zhì)36.8 g/kg、全氮2.75 g/kg、全磷0.89 g/kg、全鉀16.4 g/kg、堿解氮236 mg/kg、有效磷37.2 mg/kg、速效鉀284 mg/kg。
供試茶樹(shù)修剪物采自當(dāng)?shù)夭铇?shù),品種為群體種。莖的基本性質(zhì):干物質(zhì)率40.40%、碳46.93%、氮1.756%、磷1.015 g/kg、鉀6.644 g/kg、碳氮比26.73;葉的基本性質(zhì):干物質(zhì)率40.55%、碳46.58%、氮3.185%、磷1.591 g/kg、鉀13.705 g/kg、碳氮比14.62;莖葉混合的基本性質(zhì):干物質(zhì)率40.50%、碳46.692%、氮2.7277%、磷1.4067 g/kg、鉀11.445 g/kg、碳氮比17.12。
1. 2 試驗(yàn)設(shè)計(jì)
試驗(yàn)設(shè)3個(gè)處理,分別為表層覆蓋(T1)、埋藏10 cm(T2)和埋藏20 cm(T3)。采用尼龍網(wǎng)袋法,尼龍網(wǎng)袋(15 cm×20 cm)孔徑為80目,2018年11月快速將采集的新鮮茶樹(shù)修剪物(含葉和莖,修剪長(zhǎng)度15~20 cm)放入尼龍網(wǎng)袋稱重,每袋鮮重150 g,用線縫好袋口。采用盆栽試驗(yàn)設(shè)計(jì),盆缽為直徑25 cm、深度30 cm的底部帶孔圓形盆缽,盆缽裝土25 cm深,按照處理埋藏茶樹(shù)修剪物,每處理4次重復(fù)。
1. 3 樣品采集及各指標(biāo)測(cè)定
培養(yǎng)前同時(shí)采集新鮮茶樹(shù)修剪物帶回室內(nèi),將150 g茶樹(shù)修剪物莖和葉分開(kāi),稱量莖和葉的鮮重,殺青烘干得到莖和葉干重。2019年11月,對(duì)已培養(yǎng)1年的茶樹(shù)修剪物進(jìn)行取樣。將進(jìn)入網(wǎng)袋的根系和土粒等雜質(zhì)挑凈后取回修剪物網(wǎng)袋,稱量鮮重,105 ℃烘干至恒重后稱量記錄干重。
測(cè)定各處理腐解前后修剪物樣品的總碳、全氮、全磷和全鉀?;瘜W(xué)計(jì)量及養(yǎng)分富集系數(shù)由腐解前后的養(yǎng)分殘留率計(jì)算獲得。各指標(biāo)測(cè)定方法依次為:用重鉻酸鉀容量法—外加熱法測(cè)定總碳含量;經(jīng)濃硫酸—過(guò)氧化氫消煮后全自動(dòng)凱氏定氮儀(FOSS)測(cè)定全氮含量;鉬銻抗比色法測(cè)定全磷含量;火焰光度計(jì)法測(cè)定全鉀含量(鮑士旦,2000)。
1. 4 數(shù)據(jù)處理
茶樹(shù)修剪物的腐解率、養(yǎng)分釋放率分別根據(jù)公式(1)和公式(2)計(jì)算(Bardgett,2010):
腐解率(%)=(M0-M1)/M0×100(1)
養(yǎng)分釋放率(%)=(M0×C0-M1×C1)/(M0×C0)×100(2)
養(yǎng)分富集系數(shù)=腐解后養(yǎng)分殘留量/腐解前養(yǎng)分殘留量(3)
式中,M0為腐解前莖、葉或修剪物的干物質(zhì)量(g),M1為腐解后莖、葉或修剪物的干物質(zhì)量(g),C0為腐解前莖、葉或修剪物的養(yǎng)分含量,C1為腐解后莖、葉或修剪物的養(yǎng)分含量。
采用Excel 2016和SPSS 17.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析和作圖。
2 結(jié)果與分析
2. 1 埋藏深度對(duì)茶樹(shù)修剪物腐解率的影響
不同埋藏深度對(duì)茶樹(shù)修剪物腐解率的影響特征見(jiàn)圖1。茶樹(shù)修剪物不同部位的腐解率差異明顯,在各個(gè)處理下均表現(xiàn)為葉片腐解率最高、莖葉混合次之、莖最低的規(guī)律。表層覆蓋(T1)處理下,葉的腐解率較莖葉混合及莖的腐解率分別提高2.27%和7.10%;埋藏10 cm(T2)處理下,葉的腐解率較莖葉混合及莖的腐解率分別提高6.90%和21.55%;埋藏20 cm(T3)處理下,葉的腐解率較莖葉混合及莖的腐解率分別提高2.08%和6.50%。
埋藏深度對(duì)茶樹(shù)修剪物的腐解率影響較大(圖1)。不同埋藏深度下茶樹(shù)修剪物莖的腐解速率從大到小依次為:埋藏20 cm>埋藏10 cm>表層覆蓋。其中埋藏20 cm處理下茶樹(shù)修剪物莖的周年腐解率為45.99%,分別較埋藏10 cm和表層覆蓋處理顯著提高8.75%和12.22%(P<0.05,下同)。埋藏10 cm處理下,葉和莖葉混合腐解最快,周年腐解率分別為58.79%和51.89%。埋藏10 cm和埋藏20 cm處理的葉腐解率顯著高于表層覆蓋處理,分別提高17.92%和11.62%。茶樹(shù)修剪物莖葉混合的腐解率以表層覆蓋處理最低,周年腐解率僅38.60%;埋藏10 cm和埋藏20 cm處理分別較表層覆蓋處理顯著提高13.29%和11.81%。
2. 2 不同埋藏深度對(duì)茶樹(shù)修剪物不同部位養(yǎng)分化學(xué)計(jì)量的影響
不同埋藏深度下茶樹(shù)不同修剪物部位養(yǎng)分釋放的化學(xué)計(jì)量見(jiàn)表1,富集系數(shù)見(jiàn)圖2。比較同一處理下不同修剪物部位的養(yǎng)分化學(xué)計(jì)量和養(yǎng)分富集度,發(fā)現(xiàn)莖與葉的差異較明顯,但葉與莖葉混合表現(xiàn)則相對(duì)一致。
表層覆蓋處理下,莖的碳和鉀化學(xué)計(jì)量并未發(fā)生明顯變化,富集系數(shù)分別為1.00和0.96,氮和磷的富集系數(shù)則分別增加至1.46和1.36。葉與莖葉混合的碳化學(xué)計(jì)量同樣未發(fā)生明顯變化,富集系數(shù)分別為0.95和0.97;葉中氮和磷的化學(xué)計(jì)量較腐解前有所增加,富集系數(shù)分別為1.37和1.67,鉀的化學(xué)計(jì)量相對(duì)降低較多,富集系數(shù)僅為0.64。莖葉混合的化學(xué)計(jì)量變化規(guī)律與葉相同,腐解后的氮、磷、鉀富集系數(shù)分別為1.37、1.57和0.69。說(shuō)明腐解過(guò)程中,葉及莖葉混合中的鉀消耗較快,碳其次,氮和磷最慢。
埋藏10 cm處理下,莖中碳和磷的化學(xué)計(jì)量未發(fā)生明顯變化,富集系數(shù)分別為0.96和1.09,氮的富集系數(shù)增加至1.29,鉀的化學(xué)計(jì)量則下降較多,富集系數(shù)僅為0.23,即鉀的釋放量加大,消耗較其他元素更快。葉中除磷的化學(xué)計(jì)量有所增加,富集系數(shù)達(dá)1.41之外,其余元素的化學(xué)計(jì)量均有所下降,其中碳和氮的富集系數(shù)分別為0.81和0.80,鉀的富集系數(shù)僅為0.22。莖葉混合的化學(xué)計(jì)量變化規(guī)律與葉相同,周年腐解后磷的富集系數(shù)提高至1.25,碳和氮的富集系數(shù)分別為0.88和0.89,鉀的富集系數(shù)最低,僅為0.21。說(shuō)明埋藏10 cm處理下,腐解周年后葉及莖葉混合中鉀釋放最快,碳和氮其次,磷釋放最慢。
埋藏20 cm處理下,莖中氮的化學(xué)計(jì)量增加,富集系數(shù)達(dá)1.30。碳、磷、鉀的化學(xué)計(jì)量則降低,富集系數(shù)分別為0.93、0.92和0.27。葉中碳、氮、鉀的化學(xué)計(jì)量有所下降,富集系數(shù)分別為0.77、0.88和0.24;磷的化學(xué)計(jì)量并未發(fā)現(xiàn)明顯變化,富集系數(shù)為1.07。莖葉混合的化學(xué)計(jì)量變化規(guī)律與葉相同,磷未發(fā)生明顯變化,富集系數(shù)為1.02,碳和氮的化學(xué)計(jì)量略微下降,富集系數(shù)分別為0.82和0.97,鉀的化學(xué)計(jì)量明顯下降,富集系數(shù)僅為0.24。
比較同一部位下,不同處理間的養(yǎng)分化學(xué)計(jì)量和養(yǎng)分富集系數(shù)發(fā)現(xiàn),不同修剪物部位中養(yǎng)分的富集系數(shù)均以表層覆蓋處理最高。說(shuō)明表層覆蓋處理下,養(yǎng)分消耗較慢,即腐解過(guò)程中釋放養(yǎng)分的速度最慢。不同養(yǎng)分元素在不同深埋處理下釋放速度不盡相同,其中,碳和磷在各修剪物部位中均以深埋20 cm處理下養(yǎng)分釋放最快,氮和鉀則在深埋10 cm處理下養(yǎng)分釋放得更快。
2. 3 不同埋藏深度對(duì)茶樹(shù)修剪物養(yǎng)分釋放的影響
不同埋藏深度處理下茶樹(shù)修剪物養(yǎng)分釋放特征見(jiàn)圖3。由圖可知,埋藏深度會(huì)影響茶樹(shù)修剪物的養(yǎng)分釋放速率,葉的碳、氮養(yǎng)分釋放率顯著高于莖。
深埋對(duì)碳釋放率有顯著影響。莖的碳釋放率在埋藏20 cm處理下表現(xiàn)最佳(50.0%),較表層覆蓋處理提高15.9%。葉則以埋藏10 cm處理下的表現(xiàn)最佳(66.7%),較表層覆蓋處理提高22.8%。莖葉混合在埋藏20 cm和埋藏10 cm處理下的碳釋放率分別為59.1%和58.0%,表層覆蓋處理的碳釋放率則較低,僅為40.8%。
深埋對(duì)氮釋放率的影響顯著。莖整體上比葉及莖葉混合的氮釋放率低。表層覆蓋處理下莖的氮釋放率僅為4.0%,埋藏10 cm和埋藏20 cm處理分別為18.7%和30.0%。葉的氮釋放率以埋藏10 cm處理為最高(67.1%),較埋藏20 cm和表層覆蓋處理分別提高9.3%和47.6%。莖葉混合的氮釋放率同樣以埋藏10 cm處理為最佳(57.1%),較埋藏20 cm和表層覆蓋處理分別提高5.0%和40.8%。
深埋會(huì)加快磷養(yǎng)分釋放,但整體相對(duì)其他養(yǎng)分元素提升較小,各部位的磷釋放率均以埋藏20 cm處理為最佳,埋藏10 cm處理其次,表層覆蓋處理效果最差。埋藏20 cm處理下,莖的磷釋放率為50.7%,較埋藏10 cm和表層覆蓋處理分別提高19.0%和40.5%,葉的磷釋放率為48.6%,較埋藏10 cm和表層覆蓋處理分別提高5.9%和46.3%,莖葉混合的磷釋放率為49.1%,較埋藏10 cm和表層覆蓋處理分別提高8.9%和45.0%。
深埋會(huì)加快鉀養(yǎng)分釋放,且各養(yǎng)分元素中,鉀的養(yǎng)分釋放率最高。各部位的鉀釋放率均以埋藏10 cm處理為最佳,埋藏20 cm處理其次,表層覆蓋處理效果最差。莖在埋藏10 cm處理下鉀的養(yǎng)分釋放率為85.7%,顯著高于表層覆蓋處理(36.1%)。葉在埋藏10 cm處理下鉀的養(yǎng)分釋放率為90.6%,顯著高于表層覆蓋處理(62.5%)。莖葉混合在埋藏10 cm處理下鉀的養(yǎng)分釋放率為89.7%,也顯著高于表層覆蓋處理(57.6%)。各部位在埋藏10 cm和埋藏20 cm處理下的鉀釋放率差異較小,其中,莖相差0.6%,葉相差2.1%,莖葉混合相差1.8%。
3 討論
研究表明對(duì)秸稈腐解造成影響的因素有氣候因子、秸稈自身性質(zhì)和環(huán)境生物因子3類(梁東等,2019)。許多學(xué)者對(duì)這3類因素對(duì)秸稈腐解貢獻(xiàn)的大小存在爭(zhēng)議(王雅婷和盧劍波,2017;杜忠,2018;裴蓓和高國(guó)榮,2018;韓中海等,2020)。在本研究中,茶樹(shù)修剪物的不同部位會(huì)造成秸稈自身性質(zhì)的差異,即茶樹(shù)修剪莖、葉養(yǎng)分儲(chǔ)量不同;埋藏深度即是對(duì)環(huán)境氣候因子的控制;環(huán)境生物因子在人工不施加額外干預(yù)下,視作條件一致。
本研究結(jié)果顯示,深埋10和20 cm處理相較表層覆蓋處理均能加速茶樹(shù)修剪物的腐解,與許多學(xué)者在其他作物上開(kāi)展加快秸稈腐解的研究結(jié)果(劉單卿等,2018;曲曉晶等,2020)相似。深埋秸稈會(huì)加快秸稈腐解速率的原因有許多,有研究表明,深埋秸稈會(huì)改良土壤質(zhì)地、提高土壤持水性、增加土壤保水保肥能力、促進(jìn)土壤微生物群落演變(朱留剛等,2017;張玥等,2018;張奇等,2020)。在本研究中,對(duì)于深埋使得秸稈腐解加速的機(jī)理尚未能給出合理解釋,但部分學(xué)者在此領(lǐng)域已開(kāi)展了相關(guān)研究,認(rèn)為土壤持水提高是加快秸稈腐解的重要因素(黃乙瓊等,2020)。除了土壤含水量的提高外,土壤的通氣性也會(huì)對(duì)茶樹(shù)修剪物的腐解有所影響,即秸稈腐解速率受到土壤水分與土壤通氣度的共同影響(Malhi et al.,2011;Yu et al.,2016)。
本研究結(jié)果還表明,葉的腐解速率較莖更快,莖葉混合后的腐解速率也較莖的腐解速率有明顯提升,推測(cè)其原因在于:腐解前莖、葉以及莖葉混合的碳含量均比較接近,均為46.00%左右,但氮含量以葉最高,莖葉混合次之,莖最低,因此三者碳氮比的大小為莖最高,莖葉混合次之,葉最低,茶樹(shù)修剪物的碳氮比會(huì)影響其腐解速率。這一研究結(jié)果與郭騰飛(2019)、田奧等(2020)的結(jié)論一致,即在秸稈量恒定時(shí),秸稈腐解率會(huì)隨著氮含量增大而增快。
綜上所述,深埋茶樹(shù)修剪物會(huì)加快茶樹(shù)修剪物的腐解速率是土壤含水量提高、土壤通氣度改變以及土壤微生物群落改變等多種因素的綜合影響。除此之外,茶樹(shù)修剪物本身碳氮比的改變也會(huì)起到重要的加速作用。
本研究還發(fā)現(xiàn),深埋會(huì)顯著提升茶樹(shù)修剪物分解過(guò)程中碳、氮、磷、鉀的養(yǎng)分釋放,不管是深埋10 cm還是深埋20 cm養(yǎng)分釋放率均較表層覆蓋處理明顯提高;但不同養(yǎng)分元素達(dá)到最快釋放速度的埋藏深度有所不同,碳和氮在埋藏10 cm處理下釋放速度達(dá)最大,磷和鉀則在埋藏20 cm處理下釋放速度達(dá)最大。該研究結(jié)果與王宇先等(2020)研究發(fā)現(xiàn)玉米秸稈在10~20 cm耕層處養(yǎng)分釋放最快的結(jié)果類似。整體來(lái)說(shuō),鉀釋放最快,周年后殘留率低于20%,其余元素的釋放率接近,碳略快,氮和磷較慢且接近。這一研究成果與其他研究者在大田作物方面開(kāi)展的研究結(jié)果(何川等,2020)一致。這主要是由于碳、氮、磷在茶樹(shù)修剪物中主要以有機(jī)形式存在,腐解過(guò)程較復(fù)雜,所需時(shí)間也較長(zhǎng)。鉀元素則以離子態(tài)形式存在,易于流出,故而其釋放最快,殘留最低。
4 結(jié)論
深埋會(huì)加速茶樹(shù)修剪物的腐解和養(yǎng)分釋放,不同部位茶樹(shù)修剪物的腐解速率和養(yǎng)分釋放率有所不同,葉片較莖干的腐解及養(yǎng)分釋放更快。各營(yíng)養(yǎng)元素中,鉀元素釋放最快,碳其次,氮和磷釋放則較緩慢。在實(shí)際生產(chǎn)中,將茶樹(shù)修剪物深埋還田對(duì)于提高茶園土壤的保水保肥能力,提升土壤肥力和改良茶園土壤可提供正向的幫助。建議將茶樹(shù)修剪物莖葉混合后深埋至10~20 cm耕層進(jìn)行還田。
參考文獻(xiàn):
鮑士旦. 2000. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社. [Bao S D. 2000. Agrochemical analysis of soil[M]. Beijing:China Agriculture Press.]
蔡麗君,趙桂范,劉婧琦,蓋志佳,杜佳興,郭震華,張敬濤. 2019. 玉米不同部位秸稈腐解特征及其影響因素研究[J]. 玉米科學(xué),27(2):113-119. [Cai L J,Zhao G F,Liu J Q,Gai Z J,Du J X,Guo Z H,Zhang J T. 2019. Study on maize straw decomposition characteristics and influen-cing factors[J]. Journal of Maize Science,27(2):113-119.] doi:10.13597/j.cnki.maize.science.20190216.
董鵬,潘琪,張健,劉慶華,袁嘉瑋. 2020. 有機(jī)物料腐熟劑對(duì)小麥秸稈腐解動(dòng)態(tài)變化特征的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,(22):144-145. [Dong P,Pan Q,Zhang J,Liu Q H,Yuan J W. 2020. Effect of organic materials decomposition agent on dynamic change characteristics of wheat straw decomposition[J]. Modern Agricultural Science and Technology,(22):144-145.] doi:10.3969/j.issn.1007-5739. 2020.22.060.
杜忠. 2018. 陸地生態(tài)系統(tǒng)凋落物分解和非加和性效應(yīng)研究進(jìn)展[J]. 安徽農(nóng)學(xué)通報(bào),24(21):156-160. [Du Z. 2018. Review on litter decomposition and nonadditive effects in terrestrial ecosystems[J]. Anhui Agricultural Science Bulletin,24(21):156-160.] doi:10.16377/j.cnki.issn1007-7731.2018.21.060.
郭騰飛. 2019. 稻田秸稈分解的碳氮互作機(jī)理[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院. [Guo T F. 2019. The interaction mechanism of carbon and nitrogen during rice straw decomposition[D]. Beijing:Chinese Academy of Agricultural Scien-ces.]
韓中海,李會(huì)平,趙利新,王天平,史貝貝,許乾增,王璐,吳明作. 2020. 不同凋落物輸入處理對(duì)暖溫帶森林表層土壤有效磷含量的影響[J]. 河南農(nóng)業(yè)科學(xué),49(9):72-80. [Han Z H,Li H P,Zhao L X,Wang T P,Shi B B,Xu Q Z,Wang L,Wu M Z. 2020. Effect of different litter input treatment on available phosphorus content of forest ground soil in warm temperate zone[J]. Journal of Henan Agricultural Sciences,49(9):72-80.] doi:10.15933/j.cnki. 1004-3268.2020.09.009.
何川,楊勤,蒲全波,陳巖,楊云,王鵬,金容,鄭祖平,夏清清. 2020. 油菜秸稈還田養(yǎng)分釋放率及對(duì)玉米產(chǎn)量的影響[J]. 耕作與栽培,40(6):18-21. [He C,Yang Q,Pu Q B,Chen Y,Yang Y,Wang P,Jin R,Zheng Z P,Xia Q Q. 2020. Effect of straw return on nutrient release rate and maize yield with rotation of rape-maize[J]. Tillage and Cultivation,40(6):18-21.] doi:10.13605/j.cnki.52-1065/s.2020.06.006.
胡雲(yún)飛,李榮林,楊亦揚(yáng),張玥,黎星輝. 2015. 內(nèi)生真菌短密木霉對(duì)茶樹(shù)修剪葉降解及土壤真菌的影響[J]. 生態(tài)學(xué)雜志,34(3):820-825. [Hu Y F,Li R L,Yang Y Y,Zhang Y,Li X H. 2015. Effects of endophytic fungus (Trichoderma brevicompactum) on the decomposition of pruned tea leaves and soil fungi[J]. Chinese Journal of Ecology,34(3):820-825.] doi:10.13292/j.1000-4890. 2015.0111.
黃乙瓊,劉蓉,趙長(zhǎng)坤,施良,楊國(guó)濤,王學(xué)春,胡運(yùn)高. 2020. 油菜秸稈還田對(duì)土壤養(yǎng)分供應(yīng)的影響[J]. 湖北農(nóng)業(yè)科學(xué),59(20):51-55. [Huang Y Q,Liu R,Zhao C K,Shi L,Yang G T,Wang X C,Hu Y G. 2020. Effect of returning rape straw to the field on soil nutrient supply[J]. Hubei Agricultural Sciences, 59(20):51-55.] doi:10.14088/j.cnki.issn0439-8114.2020.20.011.
賈丙瑞. 2019. 凋落物分解及其影響機(jī)制[J]. 植物生態(tài)學(xué)報(bào),43(8):648-657. [Jia B R. 2019. Litter decomposition and its underlying mechanisms[J]. Chinese Journal of Plant Ecology,43(8):648-657] doi:10.17521/cjpe.2019. 0097.
梁東,王一新,馬強(qiáng),董慧,鞏佳琦,孫運(yùn). 2019. 植物凋落物分解研究進(jìn)展[J]. 吉林林業(yè)科技,48(4):37-40. [Liang D,Wang Y X,Ma Q,Dong H,Gong J Q,Sun Y. 2019. Research progress on decomposition of plant litter[J]. Journal of Jilin Forestry Science and Technology,48(4):37-40.] doi:10.16115/j.cnki.issn.1005-7129.2019.04.012.
梁曉. 2021. 2021中國(guó)春茶產(chǎn)銷形勢(shì)報(bào)告[R]. 北京:中國(guó)茶葉流通協(xié)會(huì). [Liang X. 2021. Report on the production and marketing situation of tea in Spring in China in 2021[R]. Beijing:China Tea Circulation Association.]
劉單卿,李順義,郭夏麗. 2018. 不同還田方式下小麥秸稈的腐解特征及養(yǎng)分釋放規(guī)律[J]. 河南農(nóng)業(yè)科學(xué),47(4):49-53. [Liu D Q,Li S Y,Guo X L. 2018. Characteristics of decomposition and nutrients release of wheat straw under different returning methods[J]. Journal of Henan Agricultural Sciences,47(4):49-53.] doi:10.15933/j.cnki.1004-3268.2018.04.009.
劉慶. 2019. 淺談茶樹(shù)樹(shù)冠培育和修剪技術(shù)[J]. 南方農(nóng)業(yè),13(17):10-11. [Liu Q. 2019. Discussion on the cultivation and pruning technology of tea tree crown[J]. South China Agriculture,13(17):10-11.] doi:10.19415/j.cnki.1673-890x.2019.17.006.
馬淑敏,辛學(xué)兵,裴順祥,王海霞,法蕾. 2019. 森林凋落物生產(chǎn)及分解研究進(jìn)展[J]. 陜西林業(yè)科技,47(1):104-108. [Ma S M,Xin X B,Pei S X,Wang H X,F(xiàn)a L. 2019. Research progress on forest litter production and decomposition[J]. Shaanxi Forestry Science and Technology,47(1):104-108.] doi:10.3969/j.issn.1001-2117.2019.01.024.
裴蓓,高國(guó)榮. 2018. 凋落物分解對(duì)森林土壤碳庫(kù)影響的研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),34(26):58-64. [Pei B,Gao G R. 2018. Impact of forest litter decomposition on soil carbon pool:A review[J]. Chinese Agricultural Science Bulletin,34(26):58-64.]
曲曉晶,孫大雁,吳南,張沖,張小峰. 2020. 添加劑對(duì)不同還田深度秸稈腐解及周際土壤環(huán)境的影響[J]. 水土保持學(xué)報(bào),34(2):261-268. [Qu X J,Sun D Y,Wu N,Zhang C,Zhang X F. 2020. Effects of additives on straw decomposition and its surrounding soil environment under different returning depths[J]. Journal of Soil and Water Conservation,34(2):261-268.] doi:10.13870/j.cnki.stbcxb.2020.02.037.
石琳,金夢(mèng)燦,單旭東,高敏,陳曦,郜紅建. 2021. 不同形態(tài)氮素對(duì)玉米秸稈腐解與養(yǎng)分釋放的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),38(2):277-285. [Shi L,Jin M C,Shan X D,Gao M,Chen X,Gao H J. 2021. Influences of different forms of nitrogen fertilizer on the decomposition and release of nutrients from corn straw residue[J]. Journal of Agricultural Resources and Environment,38(2):277-285.] doi:10.13254/j.jare.2020.0086.
田奧,王加國(guó),韓振誠(chéng),吳佳偉,李葦潔. 2020. 百里杜鵑林區(qū)馬纓杜鵑凋落物花葉混合比例對(duì)分解的影響[J]. 林業(yè)科學(xué),56(8):1-10. [Tian A,Wang J G,Han Z C,Wu J W,Li W J. 2020. Impacts on decomposition of flower to leaf ration in the litter of Rhododendron delavayi in Baili Azalea Forest Area of Guizhou Province[J]. Scientia Silvae Sinicae,56(8):1-10.] doi:10.11707/j.1001-7488. 20200801.
王娜,李萍,宗毓錚,張東升,郝興宇. 2020. 不同還田方式下北方旱作小麥秸稈腐解規(guī)律研究[J]. 核農(nóng)學(xué)報(bào),34(7):1613-1619. [Wang N,Li P,Zong Y Z,Zhang D S,Hao X Y. 2020. Study on the decomposition mechanism of wheat straw on rain-fed croplands in Northern China under different patterns of straw returning practice[J]. Journal of Nuclear Agricultural Sciences,34(7):1613-1619.] doi:10.11869/j.issn.100-8551.2020.07.1613.
王雅婷,盧劍波. 2017. 陸地生態(tài)系統(tǒng)凋落物分解及影響因子的研究進(jìn)展[J]. 科技通報(bào),33(10):1-10. [Wang Y T,Lu J B. 2017. A review on litter decomposition and its impact factor in terrestrial ecosystems[J]. Science and Technology Bulletin,33(10):1-10.] doi:10.13774/j.cnki.kjtb.2017.10.001.
王宇先,孫士明,徐瑩瑩,劉玉濤,楊慧瑩,高盼,趙蕾. 2020. 黑龍江省半干旱地區(qū)生長(zhǎng)季玉米秸稈腐解特征研究[J]. 黑龍江農(nóng)業(yè)科學(xué),(9):46-48. [Wang Y X,Sun S M,Xu Y Y,Liu Y T,Yang H Y,Gao P,Zhao L. 2020. Study on decomposition characteristic of maize straw in semi-arid region of Heilongjiang Province during growing season[J]. Heilongjiang Agricultural Sciences,(9):46-48.] doi:10.11942/j.issn1002-2767.2020.09.0046.
夏東. 2019. 不同有機(jī)物料還田的腐解特征及對(duì)黃壤養(yǎng)分的影響[D]. 貴陽(yáng):貴州大學(xué). [Xia D. 2019. Decomposition characteristics of different organic materials returning to field and their effects on nutrients in yellow soil[D]. Guiyang:Guizhou University.]
楊麗麗,周米良,鄧小華,田峰,張明發(fā),陳治鋒,張黎明. 2016. 不同腐熟劑對(duì)玉米秸稈腐解及養(yǎng)分釋放動(dòng)態(tài)的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),32(30):32-37. [Yang L L,Zhou M L,Deng X H,Tian F,Zhang M F,Chen Z F,Zhang L M. 2016. Decomposition rate and nutrient release of corn stalk treated with different decomposition maturing agents[J]. Chinese Agricultural Science Bulletin,32(30):32-37.]
姚云柯,周衛(wèi),孫建光,梁國(guó)慶,劉光榮,孫剛,袁福生. 2020. 田間條件下不同促腐菌對(duì)水稻秸稈腐解及胞外酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),26(11):2070-2080. [Yao Y K,Zhou W,Sun J G,Liang G Q,Liu G R,Sun G,Yuan F S. 2020. Effects of different straw-decomposition inoculants on increasing the activities of extracellular enzymes and decomposition of rice straw buried into soil[J]. Plant Nutrition and Fertilizer Science,26(11):2070-2080.] doi:10.11674/zwyf.20264.
曾莉,張?chǎng)?,張水清,王秀斌,梁?guó)慶,周衛(wèi),艾超,張躍強(qiáng). 2020. 不同施氮量下潮土中小麥秸稈腐解特性及其養(yǎng)分釋放和結(jié)構(gòu)變化特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),26(9):1565-1577. [Zeng L,Zhang X,Zhang S Q,Wang X B,Liang G Q,Zhou W,Ai C,Zhang Y Q. 2020. Characteri-stics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under diffe-rent nitrogen application rates[J]. Plant Nutrition and Fertilizer Science,26(9):1565-1577.] doi:10.11674/zwyf. 20181.
張奇,陳粲,陳效民,張志龍,劉巍,任曉明. 2020. 不同秸稈還田深度對(duì)黃棕壤土壤物理性質(zhì)及其剖面變化的影響[J]. 土壤通報(bào),51(2):308-314. [Zhang Q,Chen C,Chen X M,Zhang Z L,Liu W,Ren X M. 2020. Effects of diffe-rent depths of straw returning to field on soil physical properties and profile changes of yellow brown soil[J]. Chinese Journal of Soil Science,51(2):308-314.] doi:10.19336/j.cnki.trtb.2020.02.07.
張玥,胡雲(yún)飛,高水練,魯靜,林金科. 2018. 茶樹(shù)修剪物還田方式對(duì)茶園土壤性質(zhì)及細(xì)菌群落結(jié)構(gòu)的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(8):1596-1602. [Zhang Y,Hu Y F,Gao S L,Lu J,Lin J K. 2018. Effects of different returning modes of tea plant pruning materials to field on soil properties and bacteria community in tea plantation[J]. Journal of Southern Agriculture,49(8):1596-1602.] doi:10.3969/j.issn.2095-1191.2018.08.19.
鄭生宏,柴紅玲,李陽(yáng). 2012. 茶樹(shù)修剪作用與修剪枝的再利用[J]. 茶葉科學(xué)技術(shù),(3):34-36. [Zheng S H,Chai H L,Li Y. 2012. Effect of tea pruning and reutilizations of pruned branches[J]. Tea Science and Technology,(3):34-36.]
鄭文魁,盧永健,鄧曉陽(yáng),齊范,畢小媛,劉艷麗. 2020. 控釋氮肥對(duì)玉米秸稈腐解及潮土有機(jī)碳組分的影響[J]. 水土保持學(xué)報(bào),34(5):292-298. [Zheng W K,Lu Y J,Deng X Y,Qi F,Bi X Y,Liu Y L. 2020. Effects of controlled-release nitrogen fertilizer on decomposition of maize straw and organic carbon fractions in fluvo-aquic soil[J]. Journal of Soil and Water Conservation,34(5):292-298.] doi:10.13870/j.cnki.stbcxb.2020.05.040.
朱留剛,孫君,張文錦,陳芝芝. 2017. 修剪對(duì)茶樹(shù)修剪凋落物水文特性的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(10):1795-1801. [Zhu L G,Sun J,Zhang W J,Chen Z Z. 2017. Effects of pruning on hydrological characteristics of tea tree litter[J]. Journal of Southern Agriculture,48(10):1795-1801.] doi:10.3969/j.issn.2095-1191.2017.10.11.
Bardgett R D. 2010. The biology of soil:A community and ecosystem approach[M]. New York:Oxford University Press. doi:10.1093/acprof:oso/9780198525035.001.0001.
Malhi S S,Nyborg M,Goddard T,Puurveen D. 2011. Long-term tillage,straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil[J]. Nutrient Cycling in Agroecosystems,90(1):21-22. doi:10.1007/s10705-011-9427-3.
Yu C R,Wang X J,Hu B,Yang C Q,Sui N,Liu R X,Meng Y L,Zhou Z G. 2016. Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton[J]. Field Crops Research,197:39-51. doi:10.1016/j.fcr.2016.08.003.
(責(zé)任編輯 羅 麗)
南方農(nóng)業(yè)學(xué)報(bào)2022年2期