陳琦 朱永博
摘 要:目的與方法:對近年來國外有關(guān)膳食硝酸鹽改善運動表現(xiàn)及可能生理機制的相關(guān)研究進展進行綜述。結(jié)果與結(jié)論:大部分研究認為,補充膳食硝酸鹽可以顯著提高運動能力,膳食硝酸鹽作為運動補劑的應(yīng)用前景廣闊。
關(guān)鍵詞:膳食硝酸鹽;一氧化氮;運動健康
一直以來,飲食中的硝酸鹽對人體健康的影響具有較大爭議,但是近幾年,大量國外臨床實驗研究證實,從飲食中攝取適宜膳食硝酸鹽對人體運動健康有益。因此,本研究綜述國外關(guān)于膳食硝酸鹽提升人體運動健康的生理機制,為膳食硝酸鹽作為一種營養(yǎng)補劑的可能性提供科學(xué)依據(jù)。
1 膳食硝酸鹽概況
20世紀50—60年代,人們發(fā)現(xiàn)(亞)硝酸鈉可形成致癌化合物二甲基亞硝胺[1-3],自此腌肉中使用(亞)硝酸鹽是否安全開始成為有爭議的話題[4-6]。對膳食硝酸鹽的改觀始于20世紀80年代末,科研人員首次發(fā)現(xiàn)一氧化氮是人體內(nèi)一種重要的生物活性信號分子,參與調(diào)節(jié)大量的人體生理過程[7-10]。研究表明,除了L-精氨酸途徑以外,硝酸鹽也是人體合成一氧化氮的重要途徑[11-12]。人體吸收硝酸鹽后,在口腔中,舌表面兼性厭氧細菌將其還原為亞硝酸鹽[11,13],進而在胃中轉(zhuǎn)化為一氧化氮[14],在人體生理上有重要意義[12,15-16]。大量臨床研究也證實,從飲食中攝取硝酸鹽對人體有益。
1.1 膳食硝酸鹽的來源
人體硝酸鹽的主要來源仍然是飲食,因此近年來硝酸鹽的飲食來源及其對健康的影響越來越受到關(guān)注[17-20]。調(diào)查顯示,膳食硝酸鹽是蔬菜中的一種天然無機鹽成分,在綠葉蔬菜和根莖類蔬菜中含量尤其豐富,通常蔬菜中硝酸鹽含量為2 000~3 000 mg/kg[21]。大多數(shù)常見的蔬菜其硝酸鹽含量在中間范圍(100~1 000 mg/kg),含硝酸鹽較高(>1 000 mg/kg)的蔬菜多為十字花科(芝麻菜)、藜科(甜菜根、菠菜)、菊科(生菜)、傘形科(芹菜)等,而洋蔥和西紅柿中硝酸鹽含量卻非常低(<100 mg/kg)[22-23]。研究顯示[24],成人每天的硝酸鹽攝入量為93 mg,通常是通過土豆(33%)、綠色蔬菜(21%)、其他蔬菜(15%)、飲料(8.5%)、肉制品(4.2%)、新鮮水果(3.5%)、乳制品(3.1%)、牛奶(2.9%)、雜糧(2.1%)、面包(1.6%)和其他食物(5.1%)攝入的。對553名荷蘭運動員的調(diào)查顯示,運動員膳食硝酸鹽攝入量略高于普通人,平均為106 mg/d,其中來源主要是蔬菜、土豆和水果攝入,占總量的74%,生菜和菠菜比例最大,女性運動員膳食硝酸鹽攝入量顯著高于男性運動員[25]。
1.2 膳食硝酸鹽的代謝途徑
研究表明,當(dāng)膳食硝酸鹽被攝入時,上消化道迅速將其吸收,吸收率幾乎達100%[11]。有證據(jù)表明,在補充硝酸鹽后30 min內(nèi),血漿硝酸鹽水平迅速上升,在1.5 h時達到峰值,半衰期約為5 h[26-27]。大多數(shù)被吸收的硝酸鹽最終通過尿液排泄出去,但血漿中仍有25%的硝酸鹽由唾液腺吸收,經(jīng)唾液腺分泌至唾液中,被口腔中的兼性厭氧菌還原為亞硝酸鹽[11,13]。通過這一途徑,人體內(nèi)亞硝酸鹽含量顯著升高[11,27]。研究表明,當(dāng)人體攝入富含硝酸鹽的飲料后3 h內(nèi)不吞咽唾液,這一循環(huán)被打斷,血漿中亞硝酸鹽含量不升高[27]。亞硝酸鹽在適當(dāng)生理條件下,可以在胃中轉(zhuǎn)化為一氧化氮和其他氮氧化物[12,14]。所以這種硝酸鹽—亞硝酸鹽—一氧化氮通路與經(jīng)典的L-精氨酸—一氧化氮通路分別是人體產(chǎn)生一氧化氮的不同調(diào)控系統(tǒng),與L-精氨酸途徑不同的是,硝酸鹽轉(zhuǎn)化為一氧化氮的機制會在組織缺氧[28]及酸中毒(低pH值)[29-30]條件下增強,而L-精氨酸途徑這種條件下形成一氧化氮的能力反而受損[11]。所以由于硝酸鹽途徑的存在,膳食硝酸鹽成為機體組織缺氧狀態(tài)下一氧化氮的重要來源,可以調(diào)節(jié)機體在低氧狀態(tài)下的血管舒張及細胞對低氧和缺血的恢復(fù)能力,從而調(diào)節(jié)心血管功能及其他機體恢復(fù)能力。
2 補充膳食硝酸鹽對運動表現(xiàn)的生理機制
2.1 補充膳食硝酸鹽可以降低運動過程中機體的耗氧量
在運動過程中,缺氧對骨骼肌能量代謝以及疲勞發(fā)生影響非常大,運動性缺氧比環(huán)境性缺氧更影響人體機體功能,會導(dǎo)致肌肉中磷酸肌酸以及糖原的加速消耗,并快速積累與疲勞相關(guān)的代謝物(如ADP、Pi、H+),這些代謝物會導(dǎo)致運動耐受性變差[31-32],同時當(dāng)缺氧嚴重或訓(xùn)練量加大時,在停止運動后機體磷酸肌酸恢復(fù)速度也會減慢[33-35]。因此如果能有效降低在運動過程中機體的耗氧量對改善人體運動性缺氧有非常重要的意義。根據(jù)經(jīng)典的運動生理學(xué)理論,機體在一定的運動量下,無論是訓(xùn)練情況、年齡、體質(zhì)、飲食還是藥物干預(yù),每個人的耗氧量波動都不會太大[36-37]??墒橇钊梭@訝的是,近年來多項研究證明,飲食中添加硝酸鹽,會有效降低機體運動過程中的耗氧量[18,26,38-43]。Larsen等[39]對9名健康男性的飲食中添加硝酸鈉(0.1 mmol/kg),并讓他們進行一定強度的運動,試驗進行了3 d,結(jié)果表明,與對照組相比,攝入硝酸鈉的試驗組耗氧量顯著降低,而兩組人員其血乳酸濃度、肺通氣量卻沒有顯著差異,說明同樣的運動量,試驗組攝入硝酸鹽會有效降低機體耗氧量,提高機體氧氣的利用率,有氧代謝能力加強,一定程度提高了試驗組的有氧運動能力。Bailey等[18]在膳食中添加甜菜根汁也達到了同樣的效果,試驗組攝入含5.5 mmol/d膳食硝酸鹽的甜菜根汁連續(xù)6 d,可以降低耗氧量達20%,其他研究也證實了這一點[38,42,44]。以上研究均表明,同樣的運動量,攝入硝酸鹽可以使機體肌肉活動耗氧量更少,有氧代謝率有所提升,能量生成更加有效。
目前有幾種假說試圖解釋膳食硝酸鹽如何降低機體運動中的耗氧量。有研究認為,攝入的硝酸鹽在缺氧環(huán)境下轉(zhuǎn)化為一氧化氮,直接作用于線粒體。研究人員通過骨骼肌活檢的方法,檢測到肌肉細胞線粒體P/O比值升高(線粒體測定氧化磷酸化效率的經(jīng)典方法,即每產(chǎn)生1 mol的ATP消耗的氧氣量)[45],線粒體呼吸明顯改善[46],因此運動過程中耗氧量的降低可能與攝入硝酸鹽后氧氣消耗成本的降低有直接關(guān)系。還有研究認為,一氧化氮可能會增強機體對氧氣利用的有效性,同時增加氧氣與肌肉代謝的局部匹配作用[47-49],這些作用均使肌肉更加有效利用氧氣,從而降低運動過程中的耗氧量。
2.2 補充膳食硝酸鹽對心肺功能的作用
研究表明,在低氧環(huán)境下,硝酸鹽補充也能提升血氧飽和度。研究人員通過使用近紅外光譜法監(jiān)測15名健康男性肌肉組織氧合指數(shù),證明無論在休息還是最大運動量條件下,口服硝酸鹽補充劑可以增加動脈和肌肉中血氧飽和度[50]。同樣,研究人員在低氧環(huán)境中(氧氣含量為14.5%,約為海拔4 000 m),讓受試者24 h內(nèi)攝入750 mL甜菜根汁(約含9.3 mmol硝酸鈉),能夠減少肌肉代謝紊亂,顯著恢復(fù)運動耐受性,機能狀態(tài)與常氧下基本一致[51]。膳食硝酸鹽的補充還可以在不影響心率的基礎(chǔ)上,有效延長潛水運動員呼吸暫停時間[52]。研究顯示,高原常駐人群體內(nèi)亞硝酸鹽水平更高,是平原地區(qū)人群的好幾倍[53],而且有研究表明,體內(nèi)亞硝酸鹽水平越低或呼氣一氧化氮含量越低,高原地區(qū)人群高原疾病發(fā)生率越高[54-55]。因此有研究人員建議,膳食硝酸鹽可以作為一種平原人群進入高原的飲食策略,以確保高原反應(yīng)的減緩[56]。以上這些均表明,膳食硝酸鹽以及其代謝物質(zhì),是低氧運動及其恢復(fù)過程中肌肉中氧氣輸送的重要調(diào)節(jié)因子。
膳食硝酸鹽還能影響人體的心肺功能。研究證明,攝入膳食硝酸鹽可以影響鈣處理蛋白在心臟細胞中的表達,導(dǎo)致心肌細胞鈣信號通路增加,從而進一步改善左心室的收縮功能[57],增加心血管病人運動時心血管舒張和心輸出量儲備,減少動脈波的反射,重構(gòu)有功能障礙的左心室的舒張功能[58]。研究認為,這些機制不僅與一氧化氮有關(guān),還可能與膳食硝酸鹽轉(zhuǎn)化通路中的亞硝酸鹽及其他氮氧化物有關(guān)[58-59]。由于一氧化氮是一種強效的血管擴張劑,近年來,膳食硝酸鹽多次被科研人員提出可以作為一種輔助治療高血壓的營養(yǎng)補充劑[19-20,27,60-61],有數(shù)據(jù)表明,在正常的飲食中添加富含硝酸鹽的蔬菜汁可以顯著降低血壓,擴張血管,且效果能維持15 d以上,具有重要的臨床學(xué)意義[17,27,63-66],對肺功能影響也是通過擴張肺動脈,降低肺動脈壓[67-68],從而可能提高肺動脈中血氧含量。因此,膳食硝酸鹽的攝入能夠有效提高人體心肺功能。
2.3 補充膳食硝酸鹽對肌肉功能的作用
補充膳食硝酸鹽還可以提高運動員或普通人的肌肉力量表現(xiàn)。研究人員讓受試者攝入膳食硝酸鹽,結(jié)果顯示,試驗組膝關(guān)節(jié)最大伸展速度提高11%,最大伸肌力量增加6%,說明膳食硝酸鹽可以提高健康人群的肌肉速度和力量[69]。因此采用濃縮甜菜根汁補充膳食硝酸鹽,可顯著提高運動員多關(guān)節(jié)向心運動的最大力量和收縮速度。膳食硝酸鹽對高強度間歇運動表現(xiàn)也有提升,補充富含硝酸鹽的甜菜根汁后,專業(yè)賽艇運動員在運動后期最大力量的槳頻增加[60]。對小鼠的研究同樣證明,連續(xù)7 d在飲水中加入1 mmol硝酸鈉,小鼠快速收縮肌的收縮能力增強[75]。其他研究也有類似結(jié)果[71-74]。雖然膳食硝酸鹽對人體肌肉力量影響的確切生理機制尚不清楚,但不同證據(jù)顯示有以下幾種可能:其一,膳食硝酸鹽轉(zhuǎn)化產(chǎn)物——一氧化氮的生理靶點主要為線粒體,攝入足夠的硝酸鹽能夠提高骨骼肌線粒體的氧化效率,減少運動時肌肉的耗氧量,在一定程度上提高肌肉細胞中ATP合成效率[45,50]。其二,有研究表明,膳食硝酸鹽的攝入可能會減少機體ATP維持肌漿鈣離子穩(wěn)定的支出量[9,75],從而可以降低收縮肌纖維所需要的ATP成本[38],增加ATP的使用效率。其三,在低氧狀態(tài)下膳食硝酸鹽的補充可以降低磷酸肌酸的降解速度,減少代謝物的積累,從而減緩肌肉疲勞,增加肌肉耐受性,然而在常氧狀態(tài)下補充膳食硝酸鹽并不會加速磷酸肌酸的恢復(fù)速率,說明在肌肉氧氣輸送功能減弱的情況下,補充膳食硝酸鹽才可以有助于改善肌肉功能[76-77]。其四,還有人提出,膳食硝酸鹽的補充可能通過促進運動過程中的肌肉血流量來刺激運動表現(xiàn)[78],有研究證明,健康人群在補充硝酸鹽后,使用近紅外光譜法可以檢測到其骨骼肌血容量明顯增加,改善健康人體肌肉微血管功能,從而加快肌肉組織氧循環(huán),提高肌肉有氧能力[50,79-80]。最后,研究人員對大鼠進行研究顯示,膳食硝酸鹽的攝入,由于一氧化氮的作用,直接加強了乙酰膽堿在肌肉神經(jīng)處的作用,提高神經(jīng)興奮性,提高了肌肉最大收縮速度[81]。總而言之,適量補充膳食硝酸鹽可以改善人體肌肉功能,增加運動過程中的肌肉能力表現(xiàn)。
Breese等[82]研究認為,膳食硝酸鹽對肌肉的作用主要是針對Ⅱ型肌纖維的靶向作用。相比Ⅰ型肌纖維,Ⅱ型肌纖維有不同的肌纖維蛋白以及肌漿鈣離子處理方式,并且其中細胞線粒體和毛細血管密度較低,因此Ⅱ型肌纖維更加依賴以ATP為基礎(chǔ)的能量消耗方式[83]。從運動生理上看,高強度間歇運動需要動用大量的Ⅱ型肌纖維,因此,膳食硝酸鹽的攝入對運動員肌肉能力提升作用較明顯。
2.4 補充膳食硝酸鹽對認知功能的作用
膳食硝酸鹽的攝入還可能會增加機體腦血流量,提升認知功能。研究表明,一氧化氮在腦血管舒張、腦血流量、神經(jīng)傳遞以及神經(jīng)活動與局部腦血流的耦合中起關(guān)鍵作用[84]。Presley等[85]研究了富含硝酸鹽的飲食對75歲左右老年人腦灌注的影響,結(jié)果顯示,這些老年人額葉白質(zhì)區(qū)域腦灌注增強,提示膳食硝酸鹽可能具有增強執(zhí)行功能和對抗認知衰退的潛力。在針對運動員的研究中也有同樣的結(jié)果,16名男性集體項目的運動員在補充膳食硝酸鹽后,可以提高重復(fù)短跑的運動表現(xiàn),并且減緩長時間間歇運動中運動員可能出現(xiàn)的認知功能(特別是反應(yīng)時間)下降[86]。因此,膳食硝酸鹽的補充有可能改善普通人甚至運動員腦血管生理機能,增強認知功能。
3 膳食硝酸鹽在運動營養(yǎng)中的應(yīng)用
除了對普通人運動能力有提升作用外,越來越多的研究證明,膳食硝酸鹽的補充可以在耐力項目中延長運動員的疲勞時間,提高運動員的計時賽成績[18,42,44,87-89]。最近一項雙盲試驗發(fā)現(xiàn),與服用安慰劑相比,連續(xù)6 d補充富含硝酸鹽的甜菜根汁(約8 mmol/d)后,自行車運動員完成10 km的騎行時間縮短12 s[90]。對賽艇運動員的研究中也顯示,在訓(xùn)練前2 h攝入較高劑量(8.4 mmol),可以有效提高其2 km的賽艇比賽成績[91]。對于肌肉力量及高強度間歇運動,攝入膳食硝酸鹽也對運動員運動表現(xiàn)有明顯提升[72-74]。研究表明,膳食硝酸鹽的攝入還能增加普通自行車運動員在多次沖刺時的輸出功率[92]。研究人員連續(xù)3 d對運動員補充富含硝酸鹽的甜菜根汁后,運動員高強度間歇運動能力提升170%,并且間歇跑的重復(fù)次數(shù)明顯高于安慰劑組[71]。而36名運動員在攝入甜菜根汁(含6.4 mmol硝酸鹽)5 d后,提高了20 m沖刺的能力以及YO-YO測試成績,提高集體項目優(yōu)秀運動員短跑和高強度間歇跑的成績[93]。
雖然大部分研究均認為,運動員在補充膳食硝酸鹽后運動表現(xiàn)有所提高[44,74,87,94,96],但有部分研究認為,與一般運動員相比,優(yōu)秀運動員攝入膳食硝酸鹽后運動能力的提升并不顯著[62,95]。有兩項研究表明,自行車、越野滑雪運動員在補充硝酸鹽后,肌肉耗氧量及其運動表現(xiàn)沒有顯著變化[62,95]。而另一項研究認為,甜菜根汁的補充顯著提高了中長跑運動員在1 500 m項目中的成績,但其10 000 m的成績卻沒有顯著提升[97]。究其原因,可能是研究方法不同,研究方案并不完善,優(yōu)秀運動員營養(yǎng)攝入量比普通人大,營養(yǎng)比例更均衡,而試驗中對這些優(yōu)秀運動員膳食硝酸鹽的補充可能不足,運動能力提升效果不明顯。而且優(yōu)秀運動員多年從事高強度運動訓(xùn)練,心血管功能、骨骼肌利用率甚至線粒體產(chǎn)能效率具備更高的能力[98],從而使膳食硝酸鹽的對優(yōu)秀運動員的補充效果并不明顯,關(guān)于這點還需要進一步研究。雖然補充硝酸鹽可能對優(yōu)秀運動員的運動表現(xiàn)提升并不明顯,但是對于速度、力量或耐力方面的能力極小的提升都會使優(yōu)秀運動員在重要比賽中起到非常重要的作用,不能忽視膳食硝酸鹽補充可能帶來的影響。
4 結(jié)論
膳食硝酸鹽作為一種運動補劑已經(jīng)被體育界關(guān)注,如今許多國外運動員在訓(xùn)練及比賽前已經(jīng)開始使用含膳食硝酸鹽較高的甜菜根汁作為營養(yǎng)補劑,以期提升其在訓(xùn)練或比賽期間的運動表現(xiàn)。因此應(yīng)進一步研究膳食硝酸鹽作為運動補劑的可能性。
參考文獻
[1]Ender F,Havre G,Helgebostad A,et al.Nitrites,nitrosamines,and cancer[J].The Lancet,1968(7551):1071-1072.
[2]Magee P N,Barnes J M.The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine[J].British Journal of Cancer,1956,10(1):114.
[3]Sakshaug J,et al. Dimethylnitrosamine:its hepatotoxic effect in sheep and its occurrence in toxic batches of herring meal[J].Nature,1965,206(4990):1261-1262.
[4]Spiegelhalder B,Eisenbrand G,Preussmann R.Influence of dietary nitrate on nitrite content of human saliva:possible relevance to in vivo formation of N-nitroso compounds[J].Food and Cosmetics Toxicology,1976,14(6):545-548.
[5]Tannenbaum S R,Weisman M,F(xiàn)ett D.The effect of nitrate intake on nitrite formation in human saliva[J].Food and Cosmetics Toxicology,1976,14(6):549-552.
[6]Sindelar J J,Milkowski A L.Human safety controversies surrounding nitrate and nitrite in the diet[J].Nitric Oxide,2012,26(4):259-266.
[7]Bryan N S.Nitrite in nitric oxide biology:cause or consequence? A systems-based review[J].Free Radical Biology and Medicine,2006,41(5):691-701.
[8]Dejam A,Hunter C J,Schechter A N,et al.Emerging role of nitrite in human biology[J].Blood Cells,Molecules,and Diseases,2004,32(3):423-429.
[9]Stamler J S,Meissner G.Physiology of nitric oxide in skeletal muscle[J].Physiological Reviews,2001,81(1):209-237.
[10]Ignarro L J,Buga G M,Wood K S,et al.Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide[J].Proceedings of the National Academy of Sciences,1987,84(24):9265-9269.
[11]Lundberg J O,Govoni M.Inorganic nitrate is a possible source for systemic generation of nitric oxide[J].Free Radical Biology and Medicine,2004,37(3):395-400.
[12]Lundberg J O,Weitzberg E,Gladwin M T.The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics[J].Nature Reviews Drug Discovery,2008,7(2):156-167.
[13]Duncan C,et al.Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate[J].Nature Medicine,1995,1(6):546-551.
[14]McKnight G M,Smith L M,Drummond R S,et al. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans[J].Gut,1997,40(2):211-214.
[15]Gladwin M T,et al. The emerging biology of the nitrite anion[J].Nature Chemical Biology,2005,1(6):308-314.
[16]Van Faassen E E,Bahrami S,F(xiàn)eelisch M,et al.Nitrite as regulator of hypoxic signaling in mammalian physiology[J].Medicinal Research Reviews,2009,29(5):683-741.
[17]Sobko T,Marcus C,Govoni M,et al.Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers[J].Nitric Oxide,2010,22(2):136-140.
[18]Bailey S J,et al.Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans[J].Journal of Applied Physiology,2009,107(4):1144-1155.
[19]Larsen F,Ekblom B,Sahlin K,et al.Effects of dietary nitrate on blood pressure in healthy volunteers[J].New England Journal of Medicine,2006,355(26):2792-2973.
[20]Liu A H,Bondonno C P,Croft K D,et al.Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers[J].Nitric Oxide,2013(35):123-130.
[21]Dich J,et al.Dietary intakes of nitrate,nitrite and NDMA in the Finnish Mobile Clinic Health Examination Survey[J].Food Additives & Contaminants,1996,13(5):541-552.
[22]Tamme T,Reinik M,Roasto M,et al.Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population[J].Food Additives and Contaminants,2006,23(4):355-361.
[23]Santamaria P,Elia A,Serio F,et al.A survey of nitrate and oxalate content in fresh vegetables[J].Journal of the Science of Food and Agriculture,1999,79(13):1882-1888.
[24]Ysart G,et al.Dietary exposures to nitrate in the UK[J].Food Additives & Contaminants,1999,16(12):521-532.
[25]Jonvik K L,et al.Habitual dietary nitrate intake in highly trained athletes[J].International Journal of Sport Nutrition and Exercise Metabolism,2017,27(2):148-157.
[26]Larsen F J,Weitzberg E,Lundberg J O,et al.Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise[J].Free Radical Biology and Medicine,2010,48(2):342-347.
[27]Webb A J,et al.Acute blood pressure lowering,vasoprotective and antiplatelet properties of dietary nitrate via bioconversion to nitrite[J].Hypertension,2008,51(3):784-790.
[28]Nohl H,Staniek K,Sobhian B,et al.Mitochondria recycle nitrite back to the bioregulator nitric monoxide[J].Acta Biochimica Polonica,2000,47(4):913-921.
[29]Modin A,et al.Nitrite‐derived nitric oxide:a possible mediator of ‘a(chǎn)cidic-metabolic’vasodilation[J].Acta physiologica scandinavica,2001,171(1):9-16.
[30]Zweier J L,Wang P,Samouilov A,et al.Enzyme-independent formation of nitric oxide in biological tissues[J].Nature medicine,1995,1(8):804-809.
[31]Hogan M C,Richardson R S,Haseler L J.Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions:a31P-MRS study[J].Journal of Applied Physiology,1999,86(4):1367-1373.
[32]Allen D G,Lamb G D,Westerblad H.Skeletal muscle fatigue:cellular mechanisms[J].Physiological Reviews,2008,88(1):287-332.
[33]Blei M L,Conley K E,Kushmerick M J.Separate measures of ATP utilization and recovery in human skeletal muscle[J].The Journal of Physiology,1993,465(1):203-222.
[34]Paganini A T,F(xiàn)oley J M,Meyer R A.Linear dependence of muscle phosphocreatine kinetics on oxidative capacity[J].American Journal of Physiology-Cell Physiology,1997,272(2):C501-C510.
[35]Haseler L J,Hogan M C,Richardson R S.Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability[J].Journal of Applied Physiology,1999,86(6):2013-2018.
[36]Poole D C,Richardson R S.Determinants of oxygen uptake:implications for exercise testing[J].Occupational Health and Industrial Medicine,1998,2(38):97.
[37]Moseley L,et al.No differences in cycling efficiency between world-class and recreational cyclists[J].International Journal of Sports Medicine,2004,25(5):374-379.
[38]Bailey S J,F(xiàn)ulford J,Vanhatalo A,et al.Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans[J].Journal of Applied Physiology,2010,109(1):135-148.
[39]Larsen F J,et al.Effects of dietary nitrate on oxygen cost during exercise[J].Acta Physiologica,2007,191(1):59-66.
[40]Lansley K E,et al.Dietary nitrate supplementation reduces the O2 cost of walking and running:a placebo-controlled study[J].Journal of Applied Physiology,2011,110(3):591-600.
[41]Larsen F J,Weitzberg E,Lundberg J O,et al.Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise[J].Free Radical Biology and Medicine,2010,48(2):342-347.
[42]Vanhatalo A,et al.Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2010,299(4):1121-1131.
[43]Bescós R,Rodríguez F A,Iglesias X,et al.Acute administration of inorganic nitrate reduces VO(2peak)in endurance athletes[J].Med Sci Sports Exerc,2011,43(10):1979-1786.
[44]Cermak N M,Gibala M J,Van Loon L J C.Nitrate supp-lementations improvement of 10-km time-trial performance in trained cyclists[J].International Journal of Sport Nutrition and Exercise Metabolism,2012,22(1):64-71.
[45]Larsen F J,Schiffer T A,Borniquel S,et al.Dietary inorganic nitrate improves mitochondrial efficiency in humans[J].Cell Metabolism,2011,13(2):149-159.
[46]Schweizer M,Richter C.Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension[J].Biochemical and Biophysical Research Communications,1994,204(1):169-175.
[47]Hagen T,Taylor C T,Lam F,et al.Redistribution of intracellular oxygen in hypoxia by nitric oxide:effect on HIF1α[J].Science,2003,302(5652):1975-1978.
[48]Thomas D D,Liu X,Kantrow S P,et al.The biological lifetime of nitric oxide:implications for the perivascular dynamics of NO and O2[J].Proceedings of the National Academy of Sciences,2001,98(1):355-360.
[49]Umbrello M,Dyson A,F(xiàn)eelisch M,et al.The key role of nitric oxide in hypoxia:hypoxic vasodilation and energy supply-demand matching[J].Antioxidants & Redox Signaling,2013,19(14):1690-1710.
[50]Masschelein E,et al.Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia[J].Journal of Applied Physiology,2012,113(5):736-745.
[51]Vanhatalo A,et al.Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia[J].The Journal of Physiology,2011,589(22):5517-5528.
[52]Engan H K,et al.Acute dietary nitrate supplementation improves dry static apnea performance[J].Respiratory Physiology & Neurobiology,2012,182(2-3):53-59.
[53]Erzurum S C,Ghosh S,Janocha A J,et al.Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans[J].Proceedings of the National Academy of Sciences,2007,104(45):17593-17598.
[54]Droma Y,et al.Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema[J].Circulation,2002,106(7):826-830.
[55]Duplain H,Sartori C,Lepori M,et al.Exhaled nitric oxide in high-altitude pulmonary edema:role in the regulation of pulmonary vascular tone and evidence for a role against inflammation[J].American Journal of Respiratory and Critical Care Medicine,2000,162(1):221-224.
[56]Bakker E,Engan H,Patrician A,et al.Acute dietary nitrate supplementation improves arterial endothelial function at high altitude:a double-blinded randomized controlled cross over study[J].Nitric Oxide,2015(50):58-64.
[57]Pironti G,et al.Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling[J].Basic Research in Cardiology,2016,111(3):1-13.
[58]Omar S A,et al.Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures[J].Circulation,2015,131(4):381-389.
[59]Affourtit C,Bailey S J,Jones A M,et al.On the mechanism by which dietary nitrate improves human skeletal muscle function[J].Frontiers in Physiology,2015(6):211.
[60]Gilchrist M,Winyard P G,Benjamin N.Dietary nitrate-good or bad?[J].Nitric Oxide,2010,22(2):104-109.
[61]d’El-Rei J,et al.Beneficial effects of dietary nitrate on endothelial function and blood pressure levels[J].International Journal of Hypertension,2016(2016):6791519.
[62]Peacock O,Tjnna A E,James P,et al.Dietary nitrate does not enhance running performance in elite cross-country skiers[J].Med Sci Sports Exerc,2012,44(11):2213-2219.
[63]Aamand R,Dalsgaard T,Ho Y C L,et al.A no way to BOLD:dietary nitrate alters the hemodynamic response to visual stimulation[J].Neuroimage,2013(83):397-407.
[64]Vanhatalo A,et al.Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2010,299(4):1121-1131.
[65]Siervo M,Lara J,Ogbonmwan I,et al.Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults:a systematic review and meta-analysis[J].The Journal of Nutrition,2013,143(6):818-826.
[66]Hobbs D A,George T W,Lovegrove J A.The effects of dietary nitrate on blood pressure and endothelial function:a review of human intervention studies[J].Nutrition Research Reviews,2013,26(2):210-222.
[67]Hunter C J,et al.Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator[J].Nature Medicine,2004,10(10):1122-1127.
[68]Dias-Junior C A C,Gladwin M T,Tanus-Santos J E.Low-dose intravenous nitrite improves hemodynamics in a canine model of acute pulmonary thromboembolism[J].Free Radical Biology and Medicine,2006,41(12):1764-1770.
[69]Coggan A R,et al.Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women[J].Nitric Oxide,2015,48:16-21.
[70]Bond H,Morton L,Braakhuis A J.Dietary nitrate supplementation improves rowing performance in well-trained rowers[J].International Journal of Sport Nutrition and Exercise Metabolism,2012,22(4):251-256.
[71]Aucouturier J,et al. Effect of dietary nitrate supplementation on tolerance to supramaximal intensity intermittent exercise[J].Nitric Oxide,2015(49):16-25.
[72]Thompson C,Wylie L J,F(xiàn)ulford J,et al.Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise[J].European Journal of Applied Physiology,2015,115(9):1825-1834.
[73]Wylie L J,et al.Influence of beetroot juice supplementation on intermittent exercise performance[J].European Journal of Applied Physiology,2016,116(2):415-425.
[74]Wylie L J,Mohr M,Krustrup P,et al.Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance[J].European Journal of Applied Physiology,2013,113(7):1673-1684.
[75]Hernández A,et al.Dietary nitrate increases tetanic Ca2+ i and contractile force in mouse fast‐twitch muscle[J].The Journal of physiology,2012,590(15):3575-3583.
[76]Vanhatalo A,et al.Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia[J].Journal of Applied Physiology,2014,117(12):1460-1470.
[77]Fulford J,et al.Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions[J].Pflügers Archiv-European Journal of Physiology,2013,465(4):517-528.
[78]Green D J,O’Driscoll G,Blanksby B A,et al.Control of skeletal muscle blood flow during dynamic exercise[J].Sports Medicine,1996,21(2):119-146.
[79]Cosby K,et al.Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation[J].Nature Medicine,2003,9(12):1498-1505.
[80]Keen J T,Levitt E L,Hodges G J,et al.Short-term dietary nitrate supplementation augments cutaneous vasodilatation and reduces mean arterial pressure in healthy humans[J].Microvascular Research,2015(98):48-53.
[81]Maréchal G,Beckers-Bleukx G.Effect of nitric oxide on the maximal velocity of shortening of a mouse skeletal muscle[J].Pflügers Archiv,1998,436(6):906-913.
[82]Breese B C,McNarry M A,Marwood S,et al.Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2013,305(12):R1441-R1450.
[83]Bottinelli R,Reggiani C.Human skeletal muscle fibres:molecular and functional diversity[J].Progress in Biophysics and Molecular Biology,2000,73(2-4):195-262.
[84]Piknova B,et al.The role of nitrite in neurovascular coupling[J].Brain Research,2011(1407):62-68.
[85]Presley T D,Morgan A R,Bechtold E,et al.Acute effect of a high nitrate diet on brain perfusion in older adults[J].Nitric Oxide,2011,24(1):34-42.
[86]Thompson C,Wylie L J,F(xiàn)ulford J,et al.Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise[J].European Journal of Applied Physiology,2015,115(9):1825-1834.
[87]Bond H,Morton L,Braakhuis A J.Dietary nitrate supplementation improves rowing performance in well-trained rowers[J].International Journal of Sport Nutrition and Exercise Metabolism,2012,22(4):251-256.
[88]Kelly J,et al.Effects of nitrate on the power-duration relationship for severe-intensity exercise[J].Med Sci Sports Exerc,2013,45(9):1798-806.
[89]Muggeridge D J,et al.The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers[J].International Journal of Sport Nutrition and Exercise Metabolism,2013,23(5):498-506.
[90]Cermak N M,Gibala M J,Van Loon L J C.Nitrate supple-mentations improvement of 10-km time-trial performance in trained cyclists[J].International Journal of Sport Nutrition and Exercise Metabolism,2012,22(1):64-71.
[91]Hoon M W,et al.The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes[J].International Journal of Sports Physiology and Performance,2014,9(4):615-620.
[92]Rimer E G,Peterson L R,Coggan A R,et al.Acute dietary nitrate supplementation increases maximal cycling power in athletes[J].International Journal of Sports Physiology and Performance,2016,11(6):715-720.
[93]Thompson C,et al.Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance[J].Nitric Oxide,2016(61):55-61.
[94]Lansley K E,Winyard P G,Bailey S J,et al.Acute dietary nitrate supplementation improves cycling time trial performance[J].Med Sci Sports Exerc,2011,43(6):1125-1131.
[95]Boorsma R K,Whitfield J,Spriet L L.Beetroot juice supplementation does not improve performance of elite 1500-m runners[J].Med Sci Sports Exerc,2014,46(12):2326-2334.
[96]Peeling P,Cox G R,Bullock N,et al.Beetroot juice improves on-water 500 m time-trial performance,and laboratory-based paddling economy in national and international-level kayak athletes[J].International Journal of Sport Nutrition and Exercise Metabolism,2015,25(3):278-284.
[97]Shannon O M,Barlow M J,Duckworth L,et al.Dietary nitrate supplementation enhances short but not longer duration running time-trial performance[J].European Journal of Applied Physiology,2017,117(4):775-785.
[98]Jensen L,Bangsbo J,Hellsten Y.Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle[J].The Journal of Physiology,2004,557(2):571-582.
Influence of Dietary Nitrate Supplementation on Human Exercise Health
CHEN Qi,ZHU Yong-bo
(Gansu Research Institute of Sports Science,Lanzhou 730000,China)
Abstract:Objective and Method The paper reviewed research advancements on dietary nitrate how improve the ability of human exercise.Result and Conclusion Most research showed that dietary supplementation with nitrate resulted in significant enhance exercise performance,and dietary nitrate would become a popular sports supplement in the future.
Keywords:dietary nitrate;NO;exercise health
(責(zé)任編輯 李婷婷)