蒙舒祺 胡藝嵩 阮天鳴
鎳鐵對(duì)壓水堆鋯合金表面污垢形成及硼析出的影響研究
蒙舒祺 胡藝嵩 阮天鳴
(中廣核研究院有限公司 深圳 518000)
壓水堆(Pressurized Water Reactor,PWR)腐蝕產(chǎn)物會(huì)在鋯合金表面形成污垢(Chalk Rivers Unidentified Deposit,CRUD),冷卻劑中硼在CRUD中的析出會(huì)造成軸向功率分布異常,影響堆芯安全性。鎳鐵作為CRUD的主要成份,對(duì)CRUD形成及硼析出具有較大影響。在高溫高壓動(dòng)水循環(huán)實(shí)驗(yàn)回路中模擬了PWR鋯合金表面CRUD的形成過(guò)程,采用X射線光電子能譜儀(X-ray Photoelectric Spectroscopy,XPS)和掃描電子顯微鏡(Scanning Electric Microscope,SEM)等方法研究了鎳鐵對(duì)CRUD形成及硼析出的作用機(jī)理。調(diào)整鎳鐵注入順序和溶解氫(Dissolved Hydrogen,DH)濃度的檢測(cè)結(jié)果顯示:DH濃度分別為40 cm3·kg-1和0 cm3·kg-1,對(duì)應(yīng)的CRUD最大厚度為5 μm和15 μm;鎳鐵比分別為1.06、0.48和0.11時(shí),對(duì)應(yīng)的CRUD中硼摩爾百分?jǐn)?shù)為19.8%、4.5%和0.3%。研究結(jié)果表明:鐵比鎳更容易在干凈的鋯合金表面沉積,形成的CRUD為尖晶石結(jié)構(gòu),CRUD中的鐵對(duì)鎳沉積具有促進(jìn)作用;當(dāng)鎳發(fā)生沉積后,CRUD逐漸從尖晶石結(jié)構(gòu)轉(zhuǎn)變?yōu)槭杷啥嗫仔蚊玻籆RUD中鎳鐵比升高會(huì)造成硼析出,而鎳鐵比較低的區(qū)域幾乎沒(méi)有硼析出。本文研究成果揭示了燃料表面污垢形成過(guò)程及其對(duì)硼析出的影響機(jī)理。
壓水堆,鋯合金,污垢,硼析出,鎳鐵比
壓水堆(Pressurized Water Reactor,PWR)一回路腐蝕產(chǎn)物在鋯合金表面形成污垢(Chalk Rivers Unidentified Deposit,CRUD)后會(huì)造成冷卻劑中硼的析出,引起軸向功率分布異常,嚴(yán)重時(shí)誘發(fā)軸向功率偏移[1?2]。PWR運(yùn)行經(jīng)驗(yàn)表明,CRUD主要由鎳鐵氧化物組成[3],當(dāng)硼大量析出時(shí),CRUD與鋯合金交界面處會(huì)生成鎳鐵硼絡(luò)合物,并出現(xiàn)明顯的ZrO2分層[4],說(shuō)明鎳鐵對(duì)CRUD生成及硼析出具有較大影響。Doncel等[5?6]在模擬PWR運(yùn)行環(huán)境的回路中研究了CRUD中鎳含量和水化學(xué)參數(shù)對(duì)硼析出的影響,結(jié)果表明:鎳含量和主流體硼濃度增加均會(huì)促進(jìn)硼在CRUD中的析出;Sawicki[7]對(duì)美國(guó)某PWR燃料棒CRUD樣品進(jìn)行檢測(cè),結(jié)果表明:鎳鐵比低于0.5時(shí)硼析出量極少,鎳鐵比在0.7~1.0時(shí),硼析出量明顯增多;Kim等[8]對(duì)比了注鋅前后人造CRUD形貌及沉積量的變化情況,結(jié)果表明:注鋅后CRUD會(huì)變致密,但注鋅濃度過(guò)高會(huì)導(dǎo)致CRUD大量脫落;Yeon等[9]對(duì)韓國(guó)某PWR燃料棒CRUD樣品進(jìn)行檢測(cè),結(jié)果表明:鎳鐵比接近2.0時(shí),CRUD為疏松多孔結(jié)構(gòu),而鎳鐵比低于0.5時(shí)CRUD為不規(guī)則分布的尖晶石結(jié)構(gòu);Kawamura[10]模擬了溶解氫(Dissolved Hydrogen,DH)濃度對(duì)CRUD形成的影響,結(jié)果表明:DH濃度對(duì)CRUD總沉積量影響很小,但DH濃度降低會(huì)導(dǎo)致CRUD中沉積的鎳從單質(zhì)態(tài)向氧化鎳轉(zhuǎn)變;Solomon和Roesmer[11]對(duì)PWR燃料棒不同位置的CRUD成分進(jìn)行了分析,結(jié)果表明:過(guò)冷沸騰程度較大區(qū)域的CRUD具有高鎳鐵比,而過(guò)冷沸騰程度較低和未發(fā)生過(guò)冷沸騰區(qū)域的CRUD鎳鐵比相對(duì)較低;Byers等[12]在不同的鎳鐵比工況下模擬了人造CRUD厚度、多孔結(jié)構(gòu)分布和沉積物固相,并與PWR真實(shí)的CRUD進(jìn)行了對(duì)比驗(yàn)證。
參考國(guó)際上關(guān)于PWR鋯合金表面CRUD研究成果,本文在高溫高壓動(dòng)水循環(huán)回路中開(kāi)展了3組實(shí)驗(yàn),研究鎳鐵對(duì)CRUD形成的作用機(jī)理及其對(duì)硼析出的貢獻(xiàn),為PWR燃料污垢行為分析研究提供理論依據(jù)及數(shù)據(jù)支撐。
實(shí)驗(yàn)裝置由循環(huán)水回路、高壓釜、控制系統(tǒng)等組成,可模擬功率運(yùn)行期間PWR一回路的熱工和化學(xué)環(huán)境,結(jié)構(gòu)如圖1所示。其中水循環(huán)系統(tǒng)控制實(shí)驗(yàn)回路中的水質(zhì)、流量及系統(tǒng)壓力,管道材質(zhì)為不銹鋼;各種熱交換器、閥門(mén)及高壓釜保證實(shí)驗(yàn)回路中的溫度、介質(zhì)環(huán)境及密封,材質(zhì)為316L不銹鋼;控制系統(tǒng)調(diào)整整個(gè)實(shí)驗(yàn)回路系統(tǒng)的溫度、壓力和密封性能,保證設(shè)備穩(wěn)定運(yùn)行;水泵為整個(gè)回路提供動(dòng)力和壓力;回路末端的背壓閥調(diào)節(jié)壓力。
實(shí)驗(yàn)時(shí),通過(guò)預(yù)熱器對(duì)溶液預(yù)加熱后泵入鋯管沉積裝置中,鋯管內(nèi)采用加熱棒加熱;控制系統(tǒng)在線監(jiān)測(cè)溶液溫度,并將監(jiān)測(cè)結(jié)果傳遞給溫度控制器進(jìn)行實(shí)時(shí)溫度控制;溶液流出高壓釜后經(jīng)過(guò)熱交換器變?yōu)槌馗邏旱囊后w,最終流經(jīng)背壓閥和流量計(jì)回到儲(chǔ)水罐中。高壓泵出口設(shè)有壓力表和卸壓閥等安全保護(hù)裝置。
表1給出了3組實(shí)驗(yàn)的條件。參考國(guó)內(nèi)外PWR服役工況參數(shù)[13?15],溫度、壓力、硼濃度和pH(pH對(duì)應(yīng)330 ℃)在3組實(shí)驗(yàn)中均保持不變,通過(guò)調(diào)整鎳鐵注入順序和DH濃度開(kāi)展相關(guān)研究。
圖1 實(shí)驗(yàn)裝置示意圖
表1 實(shí)驗(yàn)條件
采用線切割將鋯合金管切成小段并進(jìn)行焊接,焊接完成后用酒精清洗樣品表面,吹干備用。實(shí)驗(yàn)開(kāi)始前將焊接好的樣品與高壓釜連接并進(jìn)行密封,開(kāi)啟高壓泵、循環(huán)泵,待釜內(nèi)溶液充滿后開(kāi)始升溫升壓,系統(tǒng)達(dá)到設(shè)定溫度后開(kāi)啟加熱棒并記錄實(shí)驗(yàn)開(kāi)始時(shí)間,此后按照設(shè)定的時(shí)間節(jié)點(diǎn)進(jìn)行實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)束后進(jìn)行降溫,打開(kāi)閥門(mén)將釜內(nèi)溶液排空,采用線切割對(duì)取出的樣品進(jìn)行分解,進(jìn)行表面、截面分析,獲得相關(guān)檢測(cè)數(shù)據(jù)。
為研究鎳鐵對(duì)CRUD形成及硼析出的作用機(jī)理,3組實(shí)驗(yàn)的步驟存在差異:
1)第1組:維持DH濃度模擬PWR一回路還原性環(huán)境,待加熱棒開(kāi)啟后同時(shí)注入鎳鐵,運(yùn)行4周;
2)第2組:維持DH濃度模擬PWR一回路還原性環(huán)境,待加熱棒開(kāi)啟后先注入鐵運(yùn)行1周,然后再注入鎳運(yùn)行1周;
3)第3組:去除DH,不控制實(shí)驗(yàn)回路的還原性環(huán)境,待加熱棒開(kāi)啟后先注入鐵運(yùn)行1周,然后再注入鎳運(yùn)行1周。
PWR功率運(yùn)行期間的一回路水質(zhì)檢測(cè)數(shù)據(jù)表明,鎳鐵是冷卻劑中主要的腐蝕產(chǎn)物[16]。第1組實(shí)驗(yàn)參數(shù)的取值與PWR運(yùn)行工況接近,在連續(xù)進(jìn)行4周實(shí)驗(yàn)后取出樣品并用掃描電子顯微鏡(Scanning Electric Microscope,SEM)進(jìn)行表面形貌觀察(圖2)。宏觀形貌上,經(jīng)過(guò)4周的沉積,鋯合金管表面形成少量CRUD,SEM下的局部放大結(jié)果表明CRUD沉積量很少,形貌為尖晶石顆粒物[4]。
圖2 第1組實(shí)驗(yàn)的CRUD形貌 (a) 干凈的鋯合金管,(b) 積垢的鋯合金管,(c) SEM形貌(10 μm),(d) SEM形貌(2 μm)
美國(guó)Callaway電廠經(jīng)過(guò)一個(gè)循環(huán)(約48周)的運(yùn)行,其CRUD最大厚度超過(guò)100 μm[13,17],假設(shè)CRUD增長(zhǎng)速度不變,運(yùn)行4周后Callaway電廠的CRUD厚度約8 μm,而第1組實(shí)驗(yàn)的CRUD厚度不到2 μm,說(shuō)明模擬CRUD的增長(zhǎng)速度低于PWR真實(shí)水平。Yeon等[18]的實(shí)驗(yàn)結(jié)果表明,鐵比鎳在干凈鋯合金管上的結(jié)合能更低,更容易沉積;Doncel等[6]采用了先注入鐵后注入鎳的實(shí)驗(yàn)方法制備人造CRUD,并基于此樣品研究了CRUD中鎳含量對(duì)硼析出的影響。參考PWR實(shí)際檢測(cè)的CRUD數(shù)據(jù)和國(guó)際上相關(guān)實(shí)驗(yàn),維持溫度、壓力、硼濃度和pH等參數(shù)不變,重新焊接干凈的鋯合金管,開(kāi)啟加熱棒后向循環(huán)回路注入鐵運(yùn)行1周,然后在線注入鎳?yán)^續(xù)運(yùn)行1周。第2組實(shí)驗(yàn)完成后取出樣品并用SEM進(jìn)行表面形貌觀察(圖3)。SEM下的局部放大結(jié)果表明,采用先注入鐵后注入鎳的方法可加速CRUD沉積量,相比第1組實(shí)驗(yàn),第2組實(shí)驗(yàn)CRUD最大厚度約5 μm,同時(shí)可觀察到尖晶石結(jié)構(gòu)逐漸堆積,在中心區(qū)域形成蒸汽通道,與PWR檢測(cè)的CRUD形貌相近[16]。
圖3 第2組實(shí)驗(yàn)的CRUD形貌 (a) 積垢的鋯合金管,(b) SEM形貌(20 μm),(c) SEM形貌(10 μm),(d) SEM形貌(2 μm)
CRUD內(nèi)部的毛細(xì)沸騰和水的輻照分解會(huì)導(dǎo)致燃料包殼表面局部出現(xiàn)富氧環(huán)境[16],為研究富氧環(huán)境對(duì)CRUD生長(zhǎng)及硼沉積的影響,第3組實(shí)驗(yàn)中未注入DH,此時(shí)實(shí)驗(yàn)回路的環(huán)境為氧化環(huán)境。同樣地,維持溫度、壓力、硼濃度和pH等參數(shù)不變,重新焊接干凈的鋯合金管,開(kāi)啟加熱棒后向循環(huán)回路注入鐵運(yùn)行1周,然后在線注入鎳?yán)^續(xù)運(yùn)行1周。第3組實(shí)驗(yàn)完成后取出樣品并用SEM進(jìn)行表面形貌觀察(圖4)。SEM下的局部放大結(jié)果表明,當(dāng)還原性環(huán)境無(wú)法維持時(shí),相比第2組實(shí)驗(yàn),第3組實(shí)驗(yàn)CRUD最大厚度從5 μm增加至約15 μm(厚度測(cè)量結(jié)果在圖5示出),同時(shí)CRUD形貌從尖晶石向疏松多孔轉(zhuǎn)變的趨勢(shì)更加明顯。
圖4 第3組實(shí)驗(yàn)的CRUD形貌 (a) 積垢的鋯合金管,(b) SEM形貌(20 μm),(c) SEM形貌(10 μm),(d) SEM形貌(2 μm)
圖5 CRUD厚度檢測(cè)結(jié)果 (a) 第2組,(b) 第3組
國(guó)際上因?yàn)榕鹞龀龆斐奢S向功率偏移的PWR,其CRUD厚度通常在25 μm以上[16?17];韓國(guó)蔚珍(Ulchin)核電站作為發(fā)生過(guò)軸向功率偏移的PWR中的特例,其CRUD最大厚度也達(dá)到了10 μm[19]。參考PWR實(shí)際的CRUD厚度情況,對(duì)第3組實(shí)驗(yàn)樣品進(jìn)行XPS和SEM分析,取樣區(qū)域如圖6所示。特別說(shuō)明,相對(duì)實(shí)驗(yàn)樣品,XPS離子束濺射的斑點(diǎn)直徑尺寸較大,為分析不同區(qū)域的CRUD成分,共進(jìn)行了三組平行實(shí)驗(yàn)且結(jié)果相近,故本文以其中一組的實(shí)驗(yàn)結(jié)果作為取樣區(qū)域示意圖。
圖6 硼析出分析的取樣區(qū)域示意圖
對(duì)第3組實(shí)驗(yàn)取樣區(qū)域的XPS分析結(jié)果如表2所示??梢钥闯?,鐵中以二價(jià)和三價(jià)態(tài)存在,參考PWR實(shí)際的CRUD檢測(cè)結(jié)果,鐵的化合物主要是三氧化二鐵和鐵酸鹽[3];鎳在CRUD較厚區(qū)域以二價(jià)態(tài)存在、在CRUD較薄區(qū)域以零價(jià)和二價(jià)態(tài)存在,參考實(shí)驗(yàn)數(shù)據(jù)及PWR真實(shí)的CRUD檢測(cè)結(jié)果,CRUD較厚區(qū)域的鎳絕大部分為氧化鎳[3,6],較薄區(qū)域的鎳為鐵酸鎳和單質(zhì)鎳的絡(luò)合物[16,20]。通常認(rèn)為氧化鎳在CRUD較厚區(qū)域的沉積會(huì)顯著促進(jìn)硼析出[5?6],第3組實(shí)驗(yàn)的XPS分析結(jié)果也支撐了這一觀點(diǎn)。
表2 第3組實(shí)驗(yàn)不同區(qū)域的鎳鐵價(jià)態(tài)
進(jìn)一步對(duì)第3組實(shí)驗(yàn)取樣區(qū)域進(jìn)行XPS能譜分析,不考慮鋯在CRUD中的占比,得到不同區(qū)域鎳、鐵和硼的摩爾百分?jǐn)?shù),如表3所示。定義鎳鐵比為CRUD中鎳的摩爾分?jǐn)?shù)除以鐵的摩爾分?jǐn)?shù),結(jié)果表明:
表3 第3組實(shí)驗(yàn)不同區(qū)域鎳、鐵和硼的摩爾百分?jǐn)?shù)
1)CRUD較厚區(qū)域的鎳鐵比也較大,硼析出量增加;
2)鎳鐵比對(duì)硼析出的影響較大,鎳鐵比下降時(shí)硼析出量明顯減少。
在高溫高壓循環(huán)水回路中,通過(guò)調(diào)整鎳鐵注入順序及DH濃度,模擬了服役環(huán)境下鎳鐵對(duì)PWR鋯合金燃料包殼表面CRUD形成及硼析出的影響,得到如下結(jié)論:
1)鐵對(duì)CRUD在干凈鋯合金表面的初期增長(zhǎng)有較大貢獻(xiàn),當(dāng)CRUD增長(zhǎng)到一定厚度時(shí),鎳將在其內(nèi)部沉積;
2)鐵在鋯合金表面形成的CRUD為尖晶石結(jié)構(gòu),當(dāng)鎳發(fā)生沉積后,尖晶石結(jié)構(gòu)的沉積物累積后會(huì)在中心區(qū)域形成蒸汽通道;
3)CRUD中鎳鐵比升高會(huì)造成硼析出,而鎳鐵比較低的區(qū)域幾乎沒(méi)有硼析出。
作者貢獻(xiàn)聲明 蒙舒祺:負(fù)責(zé)醞釀和設(shè)計(jì)實(shí)驗(yàn)、分析/解釋數(shù)據(jù)、起草文章;胡藝嵩:負(fù)責(zé)對(duì)文章的知識(shí)性內(nèi)容作批評(píng)性審閱、指導(dǎo)、獲取研究經(jīng)費(fèi)、行政、技術(shù)或材料支持、支持性貢獻(xiàn);阮天鳴:負(fù)責(zé)實(shí)施研究、采集數(shù)據(jù)、統(tǒng)計(jì)分析等。
1 Yoo J, Lee S W, Park Y J,. Implementation of the crud layer model into the space code[C]//Transactions of the Korean Nuclear Society Virtual Spring Meeting. South Korea, 2020.
2 楊萍, 湯春桃. AP1000核電廠首循環(huán)CIPS風(fēng)險(xiǎn)評(píng)價(jià)[J]. 核科學(xué)與工程, 2012, 32(3): 284–288. DOI: 10.3969/j.issn.0258-0918.2012.03.017.
YANG Ping, TANG Chuntao. CIPS risk analysis for AP1000 PWR first cycle[J]. Nuclear Science and Engineering, 2012, 32(3): 284–288. DOI: 10.3969/j.issn.0258-0918.2012.03.017.
3 Riess R. Chemistry experience in the primary heat transport circuits of kraftwerk union pressurized water reactors[J]. Nuclear Technology, 1976, 29(2): 153–159. DOI: 10.13182/nt76-a31574.
4 Sawicki J A. Evidence of Ni2FeBO5and m-ZrO2precipitates in fuel rod deposits in AOA-affected high boiling duty PWR core[J]. Journal of Nuclear Materials, 2008, 374(1–2): 248–269. DOI: 10.1016/j.jnucmat.2007.08.014.
5 Doncel N, Chen J X, Deshon J. Water chemistry influence on AOA, phase 3 of the Spanish experiment at STUDSVIK[C]//Proceedings of the 2007 International LWR Fuel Performance Meeting. San Francisco, USA, 2007.
6 Doncel N, Chen J, Gillén P,. On the role of nickel deposition in a CIPS occurrence in PWR[C]//Proceedings of the International Conference "Water Chemistry of Nuclear Reactor Systems". Berlin, Germany, 2008.
7 Sawicki J A. Analyses of crud deposits on fuel rods in PWRs using M?ssbauer spectroscopy[J]. Journal of Nuclear Materials, 2010, 402(2–3): 124–129. DOI: 10.1016/j.jnucmat.2010.05.007.
8 Kim K S, Shim H S, Baek S H,. Characterization of fuel crud deposited in simulated PWR primary coolant with different zinc addition[C]//Transactions of the Korean Nuclear Society Autumn Meeting. Goyang, South Korea, 2019.
9 Yeon J W, Choi I K, Park K K,. Chemical analysis of fuel crud obtained from Korean nuclear power plants[J]. Journal of Nuclear Materials, 2010, 404(2): 160–164. DOI: 10.1016/j.jnucmat.2010.07.024.
10 Kawamura H. Effect of DH concentration on crud deposition on heated zircaloy-4 in simulated PWR primary water[C]//15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors. Berlin, Germany, 2011.
11 Solomon Y, Roesmer J. Measurement of fuel element crud deposits in pressurized water reactors[J]. Nuclear Technology, 1976, 29(2): 166–173. DOI: 10.13182/NT76-A31576.
12 Byers W A, Wang G, Young M Y,. Simulation of PWR crud[C]//Proceedings of 2014 22nd International Conference on Nuclear Engineering. Prague, Czech Republic, July 7-11, 2014. DOI: 10.1115/ICONE22-31265.
13 Millett P. PWR primary water chemistry guidelines, volume 1, revision 4[R]. TR-105714-V1R4, USA: Electric Power Research Institute, 1999.
14 Lynch N, Gregorich C, Mcelrath J. PWR fleet chemistry performance: EPRI PWR chemistry monitoring and assessment status[C]//21st International Conference on Water Chemistry in Nuclear Reactor Systems. San Francisco, USA, 2018.
15 Fruzzetti K, Choi S, Haas C,. PWR water chemistry controls: a perspective on industry initiatives and trends relative to operating experience and the EPRI PWR water chemistry guidelines[C]//International Conference on Water Chemistry in Nuclear Reactor Systems. Quebec City, Canada, 2010.
16 Deshon J. PWR axial offset anomaly (AOA) guidelines[R]. 1008102, USA: Electric Power Research Institute, 2004.
17 Zhou D W, Jones B G. Boron concentration model and effects of boron holdup on axial offset anomaly (AOA) in PWRs[C]//Proceedings of 10th International Conference on Nuclear Engineering. April 14-18, 2002, Arlington, Virginia, USA. 2009: 829–834. DOI: 10.1115/ICONE10-22636.
18 Yeon J W, Jung Y, Pyun S I. Deposition behaviour of corrosion products on the Zircaloy heat transfer surface[J]. Journal of Nuclear Materials, 2006, 354(1–3): 163–170. DOI: 10.1016/j.jnucmat.2006.03.017.
19 Maeng W Y, Choi B S, Min D K,. The status of AOA in Korean PWR and a study on the CRUD deposition on cladding surface[C]//2009 Spring Meeting of the KNS. South Korea, 2009.
20 Deshon J. Modeling PWR fuel corrosion product deposition and growth process[R]. 1011743, USA: Electric Power Research Institute, 2005.
Impact of nickel and iron on PWR zirconium alloy surface CRUD formation and boron precipitation
MENG Shuqi HU Yisong RUAN Tianming
()
Corrosion products will deposit on the surfaces of PWR (pressurized water reactor) zirconium alloy to form CRUD (chalk rivers unidentified deposit), the precipitated boron will cause axial power distribution anomaly and affect the core safety.This study aims to investigate the impact of nickel and iron on PWR zirconium alloy surface CRUD formation and boron precipitation using an artificial CRUD experiment setup. [Method] The experimental loop of high temperature and high pressure hydrodynamic circulation was utilized to carry out simulation study of CRUD formation and boron precipitation. The impact mechanism of nickel and iron on CRUD formation and boron was analyzed by X-ray photoelectric spectroscopy (XPS) and scanning electric microscope (SEM) methods. The measurement data were obtained by adjusting the injection sequence of nickel-iron and DH (dissolved hydrogen) concentrations.Experimental results show that maximum CRUD thickness are 5 μm and 15 μm, respectively, under 40 cm3·kg-1and 0 cm3·kg-1DH concentrations; boron mole fraction inside CRUD are 19.8%, 4.5% and 0.3%, respectively, corresponding to 1.06, 0.48 and 0.11 of nickel-iron ratios. The morphology of deposited iron is spinel whilst the morphology of the mixed nickel-iron deposit is porous.These results indicate that iron is easier to deposit on the clean zirconium alloy surface, and the iron can enhance the deposition of nickel. Elevating the CRUD nickel-iron ratio could cause the boron precipitation while the relatively low nickel-iron ratio has little impact on boron precipitation.
PWR, Zirconium alloy, CRUD, Boron precipitation, Nickel-iron ratios
Supported by National Natural Science Foundation of China (No.U20B2011, No.52171085)
MENG Shuqi, male, born in 1992, graduated from Shandong University with a master's degree in 2018, focusing on reactors CRUD behavior
HU Yisong, E-mail: huyisong@cgnpc.com.cn
2022-02-15,
2022-03-26
TL341
10.11889/j.0253-3219.2022.hjs.45.060602
國(guó)家自然科學(xué)基金(No.U20B2011、No.52171085)資助
蒙舒祺,男,1992年出生,2018年于山東大學(xué)獲碩士學(xué)位,研究領(lǐng)域?yàn)榉磻?yīng)堆污垢行為
胡藝嵩,E-mail:huyisong@cgnpc.com.cn
2022-02-15,
2022-03-26