国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

白堊紀(jì)以來(lái)東亞地貌演化與構(gòu)造驅(qū)動(dòng): 來(lái)自沉積盆地與構(gòu)造變形的記錄

2022-07-08 07:11田云濤秦詠輝張貴洪劉一珉潘黎黎顏照坤張?jiān)鼋?/span>孫習(xí)林張培震
大地構(gòu)造與成礦學(xué) 2022年3期
關(guān)鍵詞:白堊紀(jì)物源碎屑

田云濤, 秦詠輝, 胡 杰, 張貴洪, 劉一珉, 潘黎黎,顏照坤, 張?jiān)鼋? 孫習(xí)林, 張培震

白堊紀(jì)以來(lái)東亞地貌演化與構(gòu)造驅(qū)動(dòng): 來(lái)自沉積盆地與構(gòu)造變形的記錄

田云濤1, 2, 秦詠輝1, 胡 杰3, 張貴洪1, 劉一珉1, 潘黎黎1,顏照坤4, 張?jiān)鼋?, 孫習(xí)林1, 張培震1, 2

(1. 中山大學(xué) 地球科學(xué)與工程學(xué)院, 廣東省地球動(dòng)力作用與地質(zhì)災(zāi)害重點(diǎn)實(shí)驗(yàn)室, 廣東 珠海 519082; 2. 南方海洋科學(xué)與工程廣東省實(shí)驗(yàn)室(珠海), 廣東 珠海 519082; 3. 成都理工大學(xué), 油氣藏地質(zhì)及開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 四川 成都 610059; 4. 東華理工大學(xué), 核資源與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室, 江西 南昌 330013)

白堊紀(jì)以來(lái), 東亞大陸構(gòu)造的演變受東緣太平洋板塊西向俯沖及南海打開與西緣新特提斯洋閉合及隨后印度?歐亞板塊碰撞的雙重控制, 東亞大陸地形經(jīng)歷了“蹺蹺板”式的演變: 白堊紀(jì)?早新生代地形東高西低, 與現(xiàn)今東傾地形相反; 晚漸新世以來(lái)東傾的一級(jí)地貌格局逐漸形成。為了進(jìn)一步完善該模型, 本文報(bào)道了西江中?上游流域內(nèi)玉林、十萬(wàn)大山、南寧和百色盆地白堊紀(jì)?新生代古流向研究結(jié)果, 并綜合了珠江口盆地碎屑物源和青藏高原東南緣構(gòu)造、古高程與水系演化研究進(jìn)展, 獲得以下認(rèn)識(shí): ①白堊紀(jì), 西江中?上游地區(qū)盆地物源主要源自盆地東側(cè)(可能是云開大山), 反映了東側(cè)地形相對(duì)較高, 與“蹺蹺板”模式所指出的中生代東高西低的地形一致。②古近紀(jì), 珠江口盆地沉積物主要源自沿?;◢弾r體, 西江中?上游玉林與十萬(wàn)大山盆地物源仍然主要源自東側(cè), 指示西江水系尚未貫通, 東部沿海高地形仍然存在; 結(jié)合該時(shí)期南寧和百色盆地物源來(lái)自東西兩側(cè), 青藏高原東南緣強(qiáng)烈壓扭性變形和古高程研究所指示的地表抬升, 認(rèn)為古近紀(jì)東亞地形應(yīng)是兩側(cè)高、中部低的“V”字型樣式。③晚漸新世以來(lái), 珠江口盆地物源信號(hào)逐漸與現(xiàn)代珠江一致; 在南寧盆地發(fā)現(xiàn)的新近紀(jì)河流相砂礫巖所指示的古流向與現(xiàn)今河流基本一致。這些證據(jù)說(shuō)明珠江水系在晚漸新世以來(lái)逐漸形成, 反映了沿海地區(qū)地形已被夷平。隨著青藏高原東南緣的持續(xù)抬升, 現(xiàn)今西高東低的東亞地形逐漸成型。我們發(fā)現(xiàn)東亞地形“蹺蹺板”式的演變過(guò)程中, 在古近紀(jì)經(jīng)歷了“V”字型的過(guò)渡狀態(tài), 為進(jìn)一步刻畫東亞地形演變歷史提供了新證據(jù)。

東亞; 青藏高原; 構(gòu)造地貌; 沉積盆地; 古水系演化; 古地形重建

0 引 言

現(xiàn)代東亞地貌西高東低: 西部為高聳的青藏高原, 東部為丘陵與平原, 東緣為邊緣海盆地, 這一格局主要受控于板塊邊界的構(gòu)造作用, 包括西部晚中生代?新生代新特提斯洋的消亡、隨后印度?歐亞板塊間的陸陸碰撞及東部太平洋板塊的俯沖(Yin and Harrison, 2000; 舒良樹和王德滋, 2006; Wang et al., 2013; Ye et al., 2018)。

伴隨著中?新生代東亞周緣動(dòng)態(tài)、活躍的構(gòu)造作用, 東亞的地形也經(jīng)歷了多次重大轉(zhuǎn)變。中?新生代地形“蹺蹺板”式的演化模型被廣為接受, 該模型認(rèn)為, 與現(xiàn)今東傾地形相反, 中生代和古近紀(jì)東亞地形呈現(xiàn)出東部發(fā)育沿海山脈, 而西部地勢(shì)較低的格局(陳丕基, 1979, 1997; 汪品先, 1998, 2005), 其地形發(fā)育主要受控于當(dāng)時(shí)太平洋板塊向西俯沖, 東亞?wèn)|緣為安第斯型活動(dòng)大陸邊緣, 火山島弧位于現(xiàn)今南海北部洋陸過(guò)渡帶的位置(Xu et al., 2017; Cui et al., 2021)。隨著新近紀(jì)青藏高原的抬升和東亞邊緣海的拉開, 這一西傾的地形發(fā)生倒轉(zhuǎn), 最終形成現(xiàn)今西高東低的特征(陳丕基, 1979, 1997; 汪品先, 1998, 2005)。該地形演化模型的重要證據(jù)是: 新近紀(jì)之前東亞缺乏大型的東流水系(如黃河和長(zhǎng)江)(李吉均等, 1996; 汪品先, 1998, 2005); 以及晚中生代?古近紀(jì)東亞陸緣沿海山脈的屏障作用和熱效應(yīng), 使同時(shí)期華南內(nèi)陸處于干旱?半干旱氣候并廣泛發(fā)育沙漠?鹽湖相沉積(陳丕基, 1979, 1997)。

對(duì)東亞地形演變的探究, 可具體歸結(jié)至對(duì)沿海山脈是否存在和其時(shí)限, 以及青藏高原抬升歷史的研究。關(guān)于沿海山脈, 其范圍大致位于南海北部洋陸過(guò)渡帶至沿海地區(qū)(圖1a), 因此內(nèi)陸地區(qū)白堊紀(jì)?新生代沉積盆地的水系演化或可為探究沿海山脈的范圍與演化提供依據(jù)。近年來(lái)國(guó)內(nèi)外學(xué)者通過(guò)古水系、古高程、沉積盆地、構(gòu)造分析和地表剝蝕等研究, 在珠江口盆地物源演變、珠江水系演化、云貴高原構(gòu)造與古高程重建等領(lǐng)域取得了新的進(jìn)展。本文通過(guò)對(duì)前人工作的整理與歸納, 并結(jié)合本次對(duì)西江中?上游盆地水系演化方面的研究(圖1b), 試圖進(jìn)一步完善對(duì)東亞地形演化的認(rèn)識(shí)。

圖a虛線范圍內(nèi)為白堊紀(jì)?早新生代東亞?wèn)|部沿海山脈可能的分布范圍。

1 沿海山脈的分布與時(shí)限

1.1 珠江口盆地物源演變及古地形意義

本文總結(jié)了珠江口盆地鉆孔和珠江水系的碎屑鋯石數(shù)據(jù)(Shao et al., 2016, 2017; Xu et al., 2016b; Zhong et al., 2017; Cao et al., 2018; Wang et al., 2019), 并繪制了始新統(tǒng)以來(lái)的碎屑鋯石年齡譜綜合圖。結(jié)果顯示, 始新統(tǒng)碎屑鋯石年齡譜存在一個(gè)~115 Ma的主峰; 下漸新統(tǒng)的年齡譜主峰為~150 Ma, 次峰為~450 Ma, 另有少量~1000 Ma、~1800 Ma、~2500 Ma的鋯石年齡; 上漸新統(tǒng)年齡譜與下漸新統(tǒng)特征類似, 但是~1000 Ma、~1800 Ma、~2500 Ma的鋯石年齡比例有一定程度增加, 但仍為次峰; 下、中中新統(tǒng)與現(xiàn)代珠江的沉積物具有類似的碎屑鋯石年齡分布特征, 主要包括~145 Ma、~450 Ma、~1000 Ma、~1800 Ma、~2500 Ma的主峰(圖2)。碎屑鋯石年齡譜揭示漸新世以來(lái)2500~1000 Ma碎屑鋯石逐漸增多。結(jié)合珠江水系基巖特征: 沿海地區(qū)主要為中生代的花崗巖基, 向西為加里東期中?高級(jí)變質(zhì)的云開大山, 再往西為揚(yáng)子地塊; 推測(cè)珠江口盆地始新世?中新世沉積物碎屑鋯石年齡譜的變化, 反映了珠江水系逐漸向西拓展。漸新統(tǒng)以來(lái), 2500~1000 Ma的碎屑鋯石逐漸增多的現(xiàn)象, 反映了現(xiàn)代珠江可能形成于這一時(shí)期。

地層與沉積相改自: Cao et al., 2018; 米立軍等, 2019。珠江口盆地εNd值來(lái)源: BY7-1-1據(jù)Yan et al., 2018; ODP1148據(jù)Li et al., 2003。碎屑鋯石年齡數(shù)據(jù)來(lái)源: S2-5(Zhong et al., 2017); C345(Xu et al., 2016b); H9-(1, 2)、X28-(4, 5, 6, 7)、X28-(8, 9)(Cao et al., 2018); L21-(1, 2)、L21-3、L21-(4, 5, 6)、L13-1、L13-(2, 3)、L18-1、L18-2、X28-1和X28-2(Shao et al., 2016); P27和P33-2(Wang et al., 2019); HZ-1、L21-(3, 4, 5, 6)和U1435-(1~9)(Shao et al., 2017)。

珠江口盆地沉積物全巖地球化學(xué)、Nd和Sr同位素等結(jié)果也支持碎屑鋯石U-Pb年齡反映的古水系演變過(guò)程。例如, 珠江口盆地BY7-1-1與ODP1148鉆孔Nd同位素曲線均呈現(xiàn)出兩個(gè)顯著的變化特征, 即27~25 MaNd值突降, 并在11 Ma左右出現(xiàn)陡增。這兩次Nd值變化反映了珠江水系的形成和調(diào)整: 27~25 MaNd值突降并在后期持續(xù)降低, 反映了珠江水系不斷向西江上游擴(kuò)展, 因?yàn)樵摿饔驇r石Nd值較低, 約為?15~?7(Yan et al., 2018); 而11 Ma左右Nd值陡增, 可能反映了柳江和桂江支流的匯入, 由于這兩個(gè)流域內(nèi)巖石Nd值較高(約為?7~?5; Yan et al., 2018)。

珠江水系自古近紀(jì)向西不斷的拓展, 反映了現(xiàn)今地形形成的過(guò)程。在沿海山脈假說(shuō)的框架下, 指示受沿海山脈高地形阻擋(當(dāng)時(shí)可能是分水嶺), 古近紀(jì)珠江口盆地碎屑供給主要源自沿海山脈東側(cè); 晚漸新世以后, 珠江口盆地逐漸接受源自現(xiàn)今珠江中?上游的碎屑供給, 揭示了沿海山脈逐漸被剝蝕夷平, 珠江水系逐漸向西拓展, 并襲奪了沿海山脈以西水系。

1.2 西江中?上游盆地水系演化

本文選擇西江中?上游中?新生代盆地(玉林盆地、十萬(wàn)大山盆地、南寧盆地和百色盆地)(圖1), 利用野外古水流測(cè)量手段, 重建白堊紀(jì)以來(lái)西江中?上游的水系格局, 為珠江水系及流域內(nèi)地形的演變提供沉積學(xué)方面的約束。古水流方向主要依據(jù)礫巖中疊瓦狀排列的礫石與斜層理(圖3c~e): 地層校正水平后, 疊瓦狀排列的礫石最大扁平面傾向即為古水流的上游方向, 而斜層理紋層傾斜的方向則指示古水流的下游方向(Potter and Pettijohn, 1977)。經(jīng)野外多點(diǎn)位的觀測(cè), 獲得白堊系、古近系和新近系古水流數(shù)據(jù), 并繪制了古水流玫瑰花圖(圖3)。

(a) 玉林、十萬(wàn)大山、南寧、百色盆地分布與古水流測(cè)試結(jié)果; (b) 白堊紀(jì)、古近紀(jì)和新近紀(jì)古流向玫瑰花圖, 其中白堊紀(jì)玉林盆地古流向圖中黑色部分采自盆地東?中部, 而灰色部分采自盆地西側(cè); (c) 十萬(wàn)大山盆地白堊系中的斜層理; (d~e) 南寧盆地新近系礫石層與疊瓦狀排列的礫石。

西江中?上游地區(qū)白堊紀(jì)的古水流記錄主要分布在玉林盆地和十萬(wàn)大山盆地中(圖3a)。玉林盆地白堊系中同時(shí)獲得東南向和西北向的古水流信息, 其中東南向古水流僅分布在盆地西側(cè), 而西北向的古水流則廣泛分布于盆地東側(cè)與中部, 指示西北向水流和沉積物供給多于東南向水流。玉林盆地西北側(cè)的十萬(wàn)大山盆地白堊系中, 同樣發(fā)育以北向?西北向?yàn)橹鞯墓潘? 揭示華南南部西江中段在白堊紀(jì)主體上受西北流向水系的控制, 指示這些盆地東側(cè)地區(qū)地形相對(duì)較高, 與沿海山脈模型一致。

古近紀(jì), 隨著百色盆地和南寧盆地的形成, 四個(gè)研究盆地均記錄了該區(qū)域的水系格局(圖3b)。其中, 玉林盆地和十萬(wàn)大山盆地古近系中古水流為自東南向西北, 指示這些盆地東側(cè)地區(qū)地形仍相對(duì)較高。前人研究表明, 南寧盆地和百色盆地古近紀(jì)時(shí)期為一連通的大型湖泊(國(guó)家地質(zhì)總局宜昌地質(zhì)礦產(chǎn)研究所, 1979), 此時(shí)該湖盆為來(lái)自盆地周邊(包括東、西側(cè))的物源供應(yīng)(陳元壯等, 2004)。這也反映了西江中游地區(qū)古近紀(jì)時(shí)發(fā)育雙向水系, 自東向西和自西向東的水流在廣西百色?南寧湖盆匯集, 指示南寧和百色盆地所在區(qū)域地勢(shì)相對(duì)較低, 東西兩側(cè)地形相對(duì)較高。

新近紀(jì), 西江中?上游水系格局可在南寧盆地中找到記錄。在南寧盆地右江?邕江附近多個(gè)點(diǎn)位發(fā)現(xiàn)一套新近紀(jì)礫石層(圖3a), 該礫石層由黃色礫石組成, 夾砂巖透鏡體(圖3d), 層厚大于5 m, 最厚處大于20 m, 其角度不整合覆蓋于灰白色漸新統(tǒng)粉砂巖?泥巖之上。野外可見(jiàn)層中礫石磨圓度較好, 主要成分為石英巖(>90%), 指示沉積物搬運(yùn)距離較遠(yuǎn)、水動(dòng)力較強(qiáng), 推測(cè)其可能為大型河流(古右江)的河道沉積。礫石層古水流測(cè)量結(jié)果顯示(圖3b), 西江中?上游新近紀(jì)發(fā)育自西向東的大型河流, 與現(xiàn)今南寧盆地的水系格局相似, 指示此時(shí)現(xiàn)今地形雛形已基本形成。遺憾的是, 由于該套礫石層尚無(wú)定量的年齡限定, 其在珠江水系及沿海地形演化方面的意義尚待進(jìn)一步挖掘。

綜上, 西江中?上游地區(qū)白堊紀(jì)?古近紀(jì)發(fā)育自東向西的古水系, 流入玉林盆地和十萬(wàn)大山盆地。始新世, 珠江口盆地接受來(lái)自盆地西側(cè)近緣水系的碎屑物質(zhì)供給, 指示兩個(gè)盆地之間存在分水嶺, 因此沿海山脈可能持續(xù)到了始新世。新近紀(jì), 珠江口盆地碎屑物源信息和南寧盆地礫石層所揭示古水流信息, 均說(shuō)明與現(xiàn)代類似的珠江水系已經(jīng)形成, 指示沿海山脈逐漸被剝蝕夷平。

另外, 古近紀(jì)之后百色?南寧湖盆發(fā)育, 并接受東、西兩側(cè)匯入的水系與碎屑物質(zhì)供給, 可能指示盆地西側(cè)的青藏高原東南緣逐漸形成。

2 青藏高原東南緣構(gòu)造與地形演化

現(xiàn)今青藏高原東南緣地貌特征明顯不同于喜馬拉雅式和龍門山式的陡變地貌, 其在~1500 km水平距離內(nèi), 平均海拔從青藏高原內(nèi)部的~5 km向東南逐漸緩慢降低至~1 km(Clark et al., 2006; Liu-Zeng et al., 2008), 該向東下傾的地形可能在漸新世前后形成。

青藏高原東南緣被NW-SE走向哀牢山?紅河走滑斷裂、NE-SW走向雅礱?玉龍逆沖斷裂和金河?箐河逆沖斷裂, 以及SN走向鮮水河?小江走滑斷裂所圍限, 這些大型斷裂晚始新世?早中新世(主要集中在漸新世)時(shí)期經(jīng)歷了強(qiáng)烈的轉(zhuǎn)換擠壓和縮短作用變形(圖4)。①哀牢山?紅河斷裂在34~28 Ma以來(lái)經(jīng)歷了約700±200 km大規(guī)模的左旋走滑剪切作用(Leloup et al., 1995, 2001; Searle et al., 2010; Liu et al., 2019), 并隨之于30~17 Ma 斷裂上盤經(jīng)歷快速剝蝕(Leloup et al., 2001; Cao et al., 2011), 剝蝕量約為15~10 km(Wang et al., 2020c)。②雅礱?玉龍斷裂和金河?箐河斷裂表現(xiàn)為由北西向南東逆沖的推覆構(gòu)造, 其逆沖變形導(dǎo)致了這兩條斷裂上盤分別于35~25 Ma和20~17 Ma遭受快速剝蝕過(guò)程(Zhang et al., 2016a; Cao et al., 2019; Zhu et al., 2021)(圖4)。③漸新世, 鮮水河?小江走滑斷裂系受強(qiáng)烈擠壓變形的影響, 于32~27 Ma發(fā)生了混合巖化作用, 安寧河斷裂(鮮水河斷裂向南的連續(xù)段)上盤在24~18 Ma發(fā)生了快速剝蝕過(guò)程(Wang et al., 2020a)(圖4)。值得一提的是, 這些斷裂在晚中新世也遭受了顯著的構(gòu)造變形(Wang et al., 2012a, 2020c; Tian et al., 2013; Zhang et al., 2017)。因此, 青藏高原東南緣大型走滑兼/或逆沖斷裂發(fā)育時(shí)間大致在晚始新世?漸新世。

青藏高原東南緣新生代盆地沉積物的古海拔重建結(jié)果指示, 晚始新世?漸新世青藏高原東南緣抬升顯著(圖4)。始新世, 雅礱?玉龍逆沖斷裂以北始新世盆地(黎明盆地、蘭坪盆地和劍川盆地)古海拔已達(dá)到2.7±0.3 km~3.3±0.5 km(Hoke et al., 2014; Li et al., 2015); 青藏高原東南緣的呂合盆地和岔科盆地整體古海拔比現(xiàn)今海拔低約1 km, 并呈現(xiàn)向東南方向逐漸降低的趨勢(shì)(Hoke et al., 2014; Li et al., 2015; 唐茂云等, 2021)。這些結(jié)果表明, 青藏高原東南緣晚始新世時(shí)期地形整體表現(xiàn)為向東南傾斜的特征。但晚中新世, 青藏高原東南緣小龍?zhí)杜璧毓藕0我堰_(dá)到現(xiàn)今的高度(Li et al., 2015)。

數(shù)據(jù)來(lái)源: (1) Leloup et al., 1995, 2001; (2) Li et al., 2020; (3) Shen et al., 2016; Cao et al., 2019; (4) Cao et al., 2020; (5) Liu-Zeng et al., 2018; (6) Wang et al., 2012a; (7) Li and Zhang, 2013; (8) Zhang et al., 2016a; (9) Wang et al., 2012b; (10) Zhu et al., 2021; (11) Wang et al., 2020a; (12) Li et al., 2015; (13) Hoke et al., 2014; (14) 唐茂云等, 2021; (15) Gourbet et al., 2017; (16) Su et al., 2019; (17) Xiong et al., 2020。

Gourbet et al. (2017)基于大陸效應(yīng)(降雨的同位素組成隨著遠(yuǎn)離海岸線而逐漸降低), 對(duì)劍川盆地的古海拔數(shù)據(jù)進(jìn)行重新研究, 認(rèn)為早期重建的盆地古海拔偏高了約1.5 km。但也有研究者認(rèn)為青藏高原東南緣?南海北緣地區(qū)當(dāng)時(shí)處于熱帶, 僅存在弱的(甚至是不存在)大陸效應(yīng)(Hoke, 2018)。還有研究者認(rèn)為, Gourbet et al. (2017)重新分析所使用的基準(zhǔn)值不能代表海平面(Ingalls et al., 2018)。盡管研究者對(duì)于本地區(qū)古海拔重建的具體結(jié)果還存在爭(zhēng)議, 但他們都一致認(rèn)為始新世以來(lái), 青藏高原東南緣?南海北緣地形始終保持向東南逐漸降低的趨勢(shì)。

古水流重建結(jié)果也支持青藏高原東南緣地區(qū)大河?xùn)|南流的格局在晚始新世已經(jīng)形成, 并指示此時(shí)青藏高原東南緣的高海拔地貌已有雛形。劍川盆地沉積學(xué)和碎屑鋯石U-Pb年代學(xué)等研究也顯示, 該盆地始新世沉積物主要源自金沙江流域, 晚始新世長(zhǎng)江石鼓第一灣形成, 隨后金沙江不再流經(jīng)劍川盆地(Zheng et al., 2020; Zhang et al., 2021b)。然而, 關(guān)于金沙江何時(shí)切穿三峽仍存在較大爭(zhēng)議。長(zhǎng)江下游南京地區(qū)晚新生代砂礫層碎屑鋯石U-Pb年齡研究表明, 漸新世?中新世之交一條發(fā)源于青藏高原的長(zhǎng)江已經(jīng)東流入海(Zheng et al., 2013); 但是, 碎屑白云母和鉀長(zhǎng)石Ar-Ar定年與Pb同位素物源研究卻認(rèn)為, 這套地層主要由近源的長(zhǎng)江下游地區(qū)供給(Sun et al., 2021; Zhang et al., 2021a), 表明當(dāng)時(shí)古長(zhǎng)江流域范圍與現(xiàn)代長(zhǎng)江有很大區(qū)別。另有研究認(rèn)為, 漸新世?早中新世長(zhǎng)江中?上游水系可能匯入鶯歌海盆地(Clift et al., 2006, 2020)。然而, 碎屑鉀長(zhǎng)石Pb同位素物源示蹤顯示, 晚始新世以來(lái), 鶯歌海盆地最主要的物源來(lái)自紅河(Zhang et al., 2021b), 并且鶯歌海盆地沉積物與青藏東南緣其他主要大河(如怒江、瀾滄江、金沙江、雅礱江和岷江等)的物源信號(hào)差異較大, 表明這些河流晚始新世以來(lái)并未匯入此盆地。另一種可能, 長(zhǎng)江中?上游水系曾在始新世?早中新世南流, 經(jīng)思茅盆地, 最后匯入東南亞的呵叻盆地(Chen et al., 2017; Wang et al., 2020b)。雖然目前呵叻盆地已有少量沉積學(xué)和碎屑鋯石U-Pb年齡物源示蹤研究的報(bào)道(Cater, 1999; Wang et al., 2020b), 但詳細(xì)的水系重組過(guò)程仍需進(jìn)一步深入研究。

3 東亞南部構(gòu)造與地貌演化及動(dòng)力學(xué)機(jī)制

綜合前述關(guān)于沿海山脈和青藏高原東南部的地形演化, 顯示白堊紀(jì)東亞南部地形東高西低, 東部發(fā)育沿海山脈, 西部青藏高原東南緣尚未抬升(圖5a; 古新世?早漸新世東側(cè)沿海山脈尚存, 西部青藏高原東南緣已經(jīng)抬升(圖5b), 區(qū)域上呈“V”字型地形特征; 晚漸新世以后, 東側(cè)沿海山脈逐漸消失, 青藏高原東南緣持續(xù)抬升, 逐漸形成現(xiàn)今西高東低的地形(圖5c)。

東亞?wèn)|部一級(jí)地形的演變, 與東亞?wèn)|、西陸緣主要構(gòu)造事件在時(shí)間和動(dòng)力學(xué)機(jī)制上相對(duì)應(yīng)。白堊紀(jì)之前, 太平洋板塊前進(jìn)式俯沖導(dǎo)致東亞陸源發(fā)生強(qiáng)烈的擠壓、地殼縮短、大量巖漿作用和地表的抬升, 形成安第斯型大陸邊緣(Li and Li, 2007; Suo et al., 2019)。此后, 太平洋板塊俯沖后撤使得東亞南部發(fā)生廣泛的地殼伸展作用, 期間伴隨著短暫的地殼縮短(Wang and Shu, 2012; Li et al., 2014), 在華南板塊之上形成了一系列NE向的盆地和山嶺, 類似于北美的盆嶺省構(gòu)造(Gilder et al., 1991; Wang and Shu, 2012)。與北美的情況相似, 沿海地區(qū)向內(nèi)陸傾斜的地形在伸展背景下仍然得以保留, 并延續(xù)到古近紀(jì)(圖5a)。因此, 晚漸新世之前, 沿海地區(qū)高地形與太平洋板塊的俯沖以及晚中生代由前進(jìn)式俯沖轉(zhuǎn)為后撤撕裂(Zhou and Li, 2000; Dong et al., 2018; Guo et al., 2021)有關(guān)。

白堊紀(jì), 青藏高原地區(qū)地殼縮短和地表隆升主要集中于羌塘和拉薩地塊(Kapp and DeCelles, 2019)。新生代早期, 印度?亞洲板塊間的陸陸碰撞及隨后的匯聚最終使得青藏高原及其鄰近地區(qū)發(fā)生強(qiáng)烈的隆升(Kapp and DeCelles, 2019)。始新世以來(lái), 青藏高原東南緣地殼縮短、側(cè)向擠出導(dǎo)致地表持續(xù)抬升, 并形成了向東南方向逐漸降低的地勢(shì)(Hoke et al., 2014; Li et al., 2015; Xiong et al., 2020), 構(gòu)成了本研究所重建的古近紀(jì)“V”字形過(guò)渡地形的西支(圖5b)。

圖5 東亞一級(jí)地貌演化

晚新生代, 青藏高原東南緣持續(xù)發(fā)生垂向和側(cè)向生長(zhǎng)(Tapponnier, 2001; Clark et al., 2005; Tian et al., 2014); 而且受西太平洋俯沖后撤及其他動(dòng)力機(jī)制影響, 日本海和南海等東亞邊緣海在晚漸新世和中中新世拉開(Taylor and Hayes, 1983; Jolivet et al., 1994; Xu et al., 2016a)。東南沿海的地形隨著地殼減薄與侵蝕基準(zhǔn)面的降低逐漸下降。另外, 同期東亞季風(fēng)的形成(Guo et al., 2002; Zhang et al., 2018), 導(dǎo)致沿海地區(qū)降雨量增大, 剝蝕加速, 地形降低。這些因素共同作用導(dǎo)致了沿海山脈的夷平, 進(jìn)而形成了現(xiàn)今東傾的一級(jí)地形(圖5c)。

4 結(jié)論與展望

通過(guò)對(duì)西江中?上游玉林、十萬(wàn)大山、南寧和百色等白堊紀(jì)?新生代盆地沉積學(xué)的研究, 以及對(duì)前人關(guān)于珠江口盆地沉積物物源與青藏高原東南緣構(gòu)造與地形演化研究的綜合, 支持并豐富了東亞大陸地形演變的“蹺蹺板”模型: 即中生代地形東高西低, 與現(xiàn)今東傾地形相反; 古近紀(jì)地形呈兩側(cè)高、中部低的“V”字型樣式; 晚漸新世以來(lái), 現(xiàn)今東傾的地形逐漸形成。該地形演變過(guò)程受控于東亞?wèn)|、西陸緣的構(gòu)造事件, 包括東緣太平洋板塊西向俯沖及邊緣海的打開, 西緣新特提斯洋閉合及隨后印度?歐亞板塊陸陸碰撞和匯聚?,F(xiàn)今對(duì)東亞?wèn)|緣地形演化的研究多為定性的推測(cè), 少有定量的古高程重建(Zhang et al., 2016b)。由于沿海山脈走向與東亞夏季風(fēng)的風(fēng)向(即水汽來(lái)源方向)近垂直, 其存在與否及時(shí)限對(duì)于東亞夏季風(fēng)的形成可能具有較為重要的意義, 因此也值得關(guān)注。

致謝:感謝長(zhǎng)沙市地震局陳東旭、田野、唐苑、屠艷艷、周啟明在野外工作中提供的幫助, 以及中國(guó)科學(xué)院廣州地球化學(xué)研究所郭鋒研究員和兩位匿名審稿專家提出的寶貴建議。

陳丕基. 1979. 中國(guó)侏羅、白堊紀(jì)古地理輪廓——兼論長(zhǎng)江起源. 北京大學(xué)學(xué)報(bào)(自然科學(xué)), 15(3): 90–108.

陳丕基. 1997. 晚白堊世中國(guó)東南沿岸山系與中南地區(qū)的沙漠和鹽湖化. 地層學(xué)雜志, 21(3): 203–213.

陳元壯, 吳明榮, 劉洛夫, 雷聲剛. 2004. 廣西百色盆地古近系始新統(tǒng)沉積相特征及演化. 古地理學(xué)報(bào), 6(4): 419–433.

國(guó)家地質(zhì)總局宜昌地質(zhì)礦產(chǎn)研究所. 1979. 中南地區(qū)白堊紀(jì)?第三紀(jì)巖相古地理. 北京: 地質(zhì)出版社.

李吉均, 方小敏, 馬海洲, 朱俊杰, 潘保田, 陳懷錄. 1996. 晚新生代黃河上游地貌演化與青藏高原隆起. 中國(guó)科學(xué)(D輯), 26(4): 316–322.

米立軍, 張向濤, 龐雄, 鄭金云, 張麗麗. 2019. 珠江口盆地形成機(jī)制與油氣地質(zhì). 石油學(xué)報(bào), 40(S1): 1–10.

舒良樹, 王德滋. 2006. 北美西部與中國(guó)東南部盆嶺構(gòu)造對(duì)比研究. 高校地質(zhì)學(xué)報(bào), 12(1): 1–13.

唐茂云, 劉靜, 李翠平, 王偉, 張金玉, 許強(qiáng). 2021. 青藏高原東南緣的新生代盆地古高度重建研究與進(jìn)展. 地震地質(zhì), 43(3): 576–599.

汪品先. 1998. 亞洲形變與全球變冷——探索氣候與構(gòu)造的關(guān)系. 第四紀(jì)研究, 18(3): 213–221.

汪品先. 2005. 新生代亞洲形變與海陸相互作用. 地球科學(xué), 30(1): 1–18.

Cao K, Leloup P H, Wang G C, Liu W, Mahéo G, Shen T Y, Xu Y D, Sorrel P, Zhang K X. 2020. Thrusting, exhumation, and basin fill on the western margin of the South China block during the India-Asia collision., 133(1–2): 74–90.

Cao K, Wang G C, Leloup P H, Mahéo G, Xu Y D, van der Beek P A, Replumaz A, Zhang K X. 2019. Oligocene- Early Miocene topographic relief generation of southeastern Tibet triggered by thrusting., 38(1): 374–391.

Cao L C, Shao L, Qiao P J, Zhao Z G, van Hinsbergen D J J. 2018. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE TibetanPlateau., 496: 120– 131.

Cao S Y, Neubauer F, Liu J L, Genser J, Leiss B. 2011. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan-Red River belt, southwestern Yunnan, China: Evidence from40Ar/39Ar thermochronology., 42(3): 525–550.

Cater A. 1999. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinterland evolution., 27(3): 235–238.

Chen Y, Yan M D, Fang X M, Song C H, Zhang W L, Zan J B, Zhang Z G, Li B S, Yang Y P, Zhang D W. 2017. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River., 476: 22–33.

Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2005. Late Cenozoic uplift of southeastern Tibet., 33(6): 525–528.

Clark M K, Royden L H, Whipple K X, Burchfiel B C, Zhang X J, Tang W. 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau.:, 111(F3), F03002.

Clift P D, Blusztajn J, Nguyen A D. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam., 33(19), doi: 10.1029/2006GL027772.

Clift P D, Carter A, Wysocka A, Van Hoang L, Zheng H B, Neubeck N. 2020. A late Eocene-Oligocene through- flowing river between the Upper Yangtze and South China Sea.,,, 21(7), e2020GC009046.

Cui Y C, Shao L, Li Z X, Zhu W L, Qiao P J, Zhang X T. 2021. A Mesozoic Andean-type active continental marginalong coastal South China: New geological records fromthe basement of the northern South China Sea., 99: 36–52.

Dong S W, Zhang Y Q, Li H L, Shi W, Xue H M, Li J H, Huang S Q, Wang Y C. 2018. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia — Commemorating 90th years of the “Yanshan Orogeny”.:, 61(12): 1–22.

Gilder S A, Keller G R, Luo M, Goodell P C. 1991. Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China., 197(2): 225–243.

Gourbet L, Leloup P H, Paquette J L, Sorrel P, Maheo G, Wang G C, Xu Y D, Cao K, Antoine P O, Eymard I, Liu W, Lu H J, Replumaz A, Chevalier M L, Zhang K X, Wu J, Shen T Y. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution., 700–701: 162–179.

Guo F, Wu Y M, Zhang B, Zhang X B, Zhao L, Liao J. 2021. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: An overview., 212, 103448.

Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China., 416(6877): 159–163.

Hoke G D. 2018. Geochronology transforms our view of how Tibet’s southeast margin evolved., 46(1): 95–96.

Hoke G D, Liu-Zeng J, Hren M T, Wissink G K, Garzione C N. 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene., 394: 270–278.

Ingalls M, Rowley D, Olack G, Currie B, Li S Y, Schmidt J, Tremblay M, Polissar P, Shuster D L, Lin D, Colman A. 2018. Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering., 130(1–2): 307–330.

Jolivet L, Tamaki K, Fournier M. 1994. Japan Sea, opening history and mechanism: A synthesis.:, 99(B11): 22237–22259.

Kapp P, DeCelles P G. 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and workingtectonic hypotheses., 319(3): 159–254.

Leloup P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trong T T P, Replumaz A, Tapponnier P. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia.:, 106(B4): 6683–6732.

Leloup P H, Lacassin R, Tapponnier P, Sch?rer U, Zhong D L, Liu X H, Zhang L S, Ji S C, Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiarytransform boundary of Indochina., 251(1–4): 3–84.

Li H L, Zhang Y Q. 2013. Zircon U-Pb geochronology of the Konggar granitoid and migmatite: Constraints on the Oligo-Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet., 606: 127–139.

Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014. Cretaceoustectonic evolution of South China: A preliminary synthesis., 134(1): 98–136.

Li S H, Su T, Spicer R A, Xu C L, Sherlock S, Halton A, Hoke G, Tian Y M, Zhang S T, Zhou Z K, Deng C L, Zhu R X. 2020. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina., 39(7), e2019TC005974.

Li S Y, Currie B S, Rowley D B, Ingalls M. 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region., 432: 415–424.

Li X H, Wei G J, Shao L, Liu Y, Liang X R, Jian Z M, Sun M, Wang P X. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia., 211(3–4): 207–220.

Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model., 35(2): 179–182.

Liu J L, Chen X Y, Tang Y, Song Z J, Wang W. 2019. The Ailao Shan-Red River shear zone revisited: Timing and tectonic implications., 132(5–6): 1165–1182.

Liu-Zeng J, Tapponnier P, Gaudemer Y, Ding L. 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution.:, 113(F4), F04018.

Liu-Zeng J, Zhang J Y, McPhillips D, Reiners P, Wang W, Pik R, Zeng L S, Hoke G, Xie K J, Xiao P, Zheng D W, Ge Y K. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology., 490: 62–76.

Potter P E, Pettijohn F J. 1977. Paleocurrents and Basin Analysis. New York: Springer-Verlag: 1–425.

Searle M P, Yeh M W, Lin T H, Chung S L. 2010. Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China., 6(4): 316–338.

Shao L, Cao L C, Pang X, Jiang T, Qiao P J, Zhao M. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea.,,, 17(2): 255–269.

Shao L, Meng A H, Li Q Y, Qiao P J, Cui Y C, Cao L C, Chen S H. 2017. Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea., 394: 39–51.

Shen X M, Tian Y T, Li D W, Qin S W, Vermeesch P, Schwanethal J. 2016. Oligocene-Early Miocene river incision near the first bend of the Yangze River: Insights from apatite (U-Th-Sm)/He thermochronology., 687: 223–231.

Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet., 6(3): 495–504.

Sun X L, Tian Y T, Kuiper K F, Li C A, Zhang Z J, Wijbrans J R. 2021. No Yangtze River prior to the Late Miocene: Evidence from detrital muscovite and K-feldspar40Ar/39Ar geochronology., 48(5), e2020GL089903.

Suo Y H, Li S Z, Jin C, Zhang Y, Zhou J, Li X Y, Wang P C, Liu Z, Wang X Y, Somerville I. 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China., 196, 102884.

Tapponnier P. 2001. Oblique stepwise rise and growth of the Tibet Plateau., 294(5547): 1671–1677.

Taylor B, Hayes D. 1983. Origin and history of the South China Sea Basin., 27: 23–56.

Tian Y T, Kohn B P, Gleadow A J W, Hu S B. 2013. Constructing the Longmen Shan eastern Tibetan Plateaumargin: Insights from low-temperature thermochronology., 32(3): 576–592.

Tian Y T, Kohn B P, Gleadow A J W, Hu S B. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau.:, 119(1): 676–698.

Wang D Z, Shu L S. 2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China., 3(2): 109?124.

Wang E C, Kirby E, Furlong K P, van Soest M, Xu G Q, Shi X H, Kamp P J J, Hodges K V. 2012a. Two-phase growth of high topography in eastern Tibet during the Cenozoic., 5(9): 640–645.

Wang H, Li K J, Tian Y T, Zhang G H. 2020a. Oligocene- Early Miocene exhumation and shortening along the Anninghe fault in the southeastern Tibetan Plateau: Insights from zircon and apatite (U-Th)/He thermochronology., doi: 10.1080/00206814. 2020.1858354.

Wang L C, Shen L J, Liu C L, Ding L. 2020b. Evolution of the paleo-Mekong River in the Early Cretaceous: Insightsfrom the provenance of sandstones in the Vientiane Basin, central Laos.,,, 545, 109651.

Wang S F, Jiang G G, Xu T D, Tian Y T, Zheng D W, Fang X M. 2012b. The Jinhe-Qinghe fault — An inactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet., 544–545: 93–102.

Wang W, Yang X H, Bidgoli T S, Ye J R. 2019. Detrital zircon geochronology reveals source-to-sink relationships in the Pearl River Mouth Basin, China., 388: 81–98.

Wang Y, Wang Y J, Schoenbohm L M, Zhang P Z, Zhang B, Sobel E R, Zhou R J, Shi X H, Zhang J J, Stockli D F, Guo X F. 2020c. Cenozoic exhumation of the Ailaoshan-Red River Shear Zone: New insights from low-temperature thermochronology., 39(9), e2020TC006151.

Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies., 23(4): 1273–1305.

Xiong Z Y, Ding L, Spicer R A, Farnsworth A, Wang X, Valdes P J, Su T, Zhang Q H, Zhang L Y, Cai F L, Wang H Q, Li Z Y, Song P P, Guo X, Yue Y. 2020. The early Eocene rise of the Gonjo Basin, SE Tibet: From low desert to high forest., 543, 116312.

Xu C H, Zhang L, Shi H S, Brix M R, Huhma H, Chen L H, Zhang M Q, Zhou Z Y. 2017. Tracing an Early Jurassic magmatic arc from South to East China Seas., 36(3): 466–492.

Xu S M, Ye Q, Li S Z, Somerville I, Feng H W, Tang Z W, Shu D G, Bi H M. 2016a. Sequential patterns in Cenozoic marginal basins of the Northwest Pacific., 51(S1): 387–415.

Xu Y H, Wang C Y, Zhao T P. 2016b. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block, SE China., 124: 1–13.

Yan Y, Yao D, Tian Z X, Huang C Y, Dilek Y, Clift P D, Li Z A. 2018. Tectonic topography changes in Cenozoic East Asia: A landscape erosion-sediment archive in the South China Sea.,,, 19(6): 1731–1750.

Ye Q, Mei L F, Shi H S, Camanni G, Shu Y, Wu J, Yu L, Deng P, Li G. 2018. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data., 187: 186–204.

Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen., 28: 211–280.

Zhang H P, Oskin M E, Liu-Zeng J, Zhang P Z, Reiners P W, Xiao P. 2016a. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces., 449: 176–185.

Zhang L M, Wang C S, Cao K, Wang Q, Tan J, Gao Y. 2016b. High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin., 456: 112–123.

Zhang R, Jiang D B, Ramstein G, Zhang Z S, Lippert P C, Yu E T. 2018. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study., 484: 295–308.

Zhang Y Z, Replumaz A, Leloup P H, Wang G C, Bernet M, van der Beek P, Paquette J L, Chevalier M L. 2017. Cooling history of the Gongga batholith: Implications for the Xianshuihe Fault and Miocene kinematics of SE Tibet., 465: 1–15.

Zhang Z J, Daly J S, Li C A, Tyrrell S, Sun X L, Badenszki E, Li Y W, Zhang D, Tian Y T, Yan Y. 2021a. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma., 216, 103601.

Zhang Z J, Daly J S, Yan Y, Lei C, Badenszki E, Sun X L, Tian Y T. 2021b. No connection between the Yangtze and Red rivers since the late Eocene., 129, 105115.

Zheng H B, Clift P D, He M Y, Bian Z X, Liu G Z, Liu X C, Xia L, Yang Q, Jourdan F. 2020. Formation of the first bend in the late Eocene gave birth to the modern Yangtze River, China., 49(1): 35–39.

Zheng H B, Clift P D, Wang P, Tada R, Jia J T, He M Y, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River., 110(19): 7556–7561.

Zhong L F, Li G, Yan W, Xia B, Feng Y X, Miao L, Zhao J X. 2017. Using zircon U-Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea., 134: 176–190.

Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithospheresubduction and underplating of mafic magmas., 326(3): 269?287.

Zhu C Y, Wang G C, Leloup P H, Cao K, Maheo G, Chen Y, Zhang P, Shen T Y, Wu G L, Sotiriou P, Wu B. 2021. Role of the Early Miocene Jinhe-Qinghe Thrust Belt in the building of the Southeastern Tibetan Plateau topography., 811, 228871.

Cretaceous-Cenozoic First-order Landscape Evolution of the East Asia and its Tectonic Drivers: A Synthesis of Sedimentary and Structural Records

TIAN Yuntao1, 2, QIN Yonghui1, HU Jie3, ZHANG Guihong1, LIU Yimin1, PAN Lili1, YAN Zhaokun4, ZHANG Zengjie1, SUN Xilin1, ZHANG Peizhen1, 2

(1. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, Guangdong, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China; 3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 4. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China)

TheCretaceous-Cenozoic deformation of the East Asia was dominated by multiple tectonic events, including the closure of the Neo-Tethys Ocean and subsequent Indo-Eurasia collision in the western margin, the westward Pacific subduction, and the subsequent opening of the South China Sea in the eastern margin. In the meantime, the landscape of the East Asia experienced magnificent change, which has been interpreted by a “seesaw” model. The model suggests that the Mesozoic-Paleogene topography was west-dipping with lowlands in the west (what are now the southeast Tibetan Plateau) and high mountains in the east continental margin, which was named as the East Asia coastal mountains. Neogene uplift of the Tibetan Plateau and opening of the East Asia marginal seas inverted the landscape to the modern east-tilting landform. Here we report new paleocurrent studies of the sedimentary basins (which are the Yulin, Shiwandashan, Nanning and Baise Basin from east to west) in the middle-upper reaches of the Xijiang River. Combining the results of detrital provenance studies of the Pearl River Mouth Basin, paleoaltimetric and tectonic studies of the southeast Tibetan Plateau, this work suggests that (1) during the Cretaceous, detritus of sedimentary basins in the middle-upper reaches of the Xijiang drainage mainly sourced from the east, indicating highlands in the east, consistent with the “seesaw” model. (2) During the Paleogene, detritus of the Pearl River Mouth Basin sourced mainly from the coastal granitic intrusions, whereas the detritus of the Yulin and Shiwandashan Basins continued to source from the east, indicating the Xijiang River has not formed. In addition, the Nanning and Baise Basins formed, with detritus sourced from both the west and the east. Further to the west, the southeast Tibetan Plateau has accommodated significant transpressional deformation and elevation gain. Such a synthesis of various pieces of information indicates a Paleogene V-shaped landscape, with highlands in both the western and eastern margins of the East Asia. (3) Since the late Oligocene, detrital signals became gradually similar to those of the modern Pearl River Mouth Basin. Further, newly mapped Neogene conglomerate along the Xijiang River shows paleocurrents similar to the modern flow direction. These lines of evidence indicate the late Oligocene formation of the Xijiang River, implying the coastal highlands may have been denudated to low elevations. With continued uplift of the Tibetan Plateau, the modern-like eastward dipping landscape of the East Asia has been shaped. This study is the very first to reveal a Paleogene V-shaped landscape for the East Asia, updating the understanding of the landscape evolution.

East Asia, Tibetan Plateau; tectonic geomorphology; sedimentary basin; paleo-drainage evolution; landscape evolution

2021-12-10;

2022-02-25

國(guó)家自然科學(xué)基金項(xiàng)目(U1701641、42172229)、南方海洋科學(xué)與工程廣東省實(shí)驗(yàn)室(珠海)自主科研項(xiàng)目(SML2021SP315)和廣東省引進(jìn)人才創(chuàng)新創(chuàng)業(yè)團(tuán)隊(duì)(2016ZT06N331)聯(lián)合資助。

田云濤(1984–), 男, 教授, 博士生導(dǎo)師, 主要從事構(gòu)造地質(zhì)與熱年代學(xué)研究。E-mail: tianyuntao@mail.sysu.edu.cn

P542

A

1001-1552(2022)03-0471-012

10.16539/j.ddgzyckx.2022.03.005

猜你喜歡
白堊紀(jì)物源碎屑
Sweet Carrots甜甜的胡蘿卜
白堊紀(jì)大逃殺
九寨溝震區(qū)泥石流物源特征研究
霸王龍稱霸白堊紀(jì)
七千萬(wàn)年前的一天有多長(zhǎng)?聽聽白堊紀(jì)海底貝殼怎么說(shuō)
成都粘土的分層、成因及物源研究綜述
東營(yíng)三角洲沙三中物源分析探討
清潔攪拌機(jī)的小妙招
白堊紀(jì)歷險(xiǎn)記
第三紀(jì)火山沉積硼礦與火山巖關(guān)系研究
伊川县| 榆社县| 垫江县| 红原县| 三门峡市| 通州市| 瓮安县| 赣榆县| 洛川县| 盐亭县| 汾西县| 丽水市| 新密市| 美姑县| 扶风县| 苏尼特右旗| 澄迈县| 富民县| 隆尧县| 吴桥县| 府谷县| 临高县| 寿宁县| 满城县| 巴楚县| 南漳县| 讷河市| 阆中市| 霞浦县| 工布江达县| 通江县| 北宁市| 衡阳县| 浮山县| 彭州市| 育儿| 赤壁市| 德昌县| 天门市| 苍山县| 江门市|