国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈還田對土壤理化性質(zhì)及水肥狀況影響的研究進展

2022-07-13 01:23:46郭相平張秫瑄操信春
灌溉排水學報 2022年6期
關鍵詞:作物秸稈土壤

陳 盛,黃 達,2,3*,張 力,郭相平,張秫瑄,操信春

?作物水肥高效利用?

秸稈還田對土壤理化性質(zhì)及水肥狀況影響的研究進展

陳 盛1,黃 達1,2,3*,張 力4,郭相平1,張秫瑄1,操信春1

(1.河海大學 農(nóng)業(yè)科學與工程學院,南京 210098;2.桂林理工大學 土木與建筑工程學院,廣西 桂林 541004;3.廣西建筑新能源與節(jié)能重點實驗室,廣西 桂林 541004;4.鹽城市農(nóng)業(yè)資源開發(fā)規(guī)劃設計與評審中心,江蘇 鹽城 224000)

農(nóng)作物秸稈是農(nóng)作物的重要光合產(chǎn)物和最主要的副產(chǎn)品,資源十分豐富。其富含氮、磷、鉀等元素,是農(nóng)業(yè)生態(tài)系統(tǒng)中一種十分寶貴的生物質(zhì)資源,利用潛力巨大。秸稈還田是最主要的秸稈資源化利用方式,具有改良土壤、保水控鹽和培肥增產(chǎn)等顯著效果。本文系統(tǒng)整理和總結(jié)了2012年以來秸稈還田對土壤理化性質(zhì)、水鹽運移、土壤肥力及作物產(chǎn)量、負面影響及防治措施的研究進展,探究其影響規(guī)律和作用機理,探尋不同秸稈還田處理方式的適用性。整理歸納了秸稈還田配合不同耕作方式、添加物及預處理和粉碎程度等改善土壤理化性質(zhì)的研究概況,總結(jié)了秸稈改善土壤理化性質(zhì)作用機理;對比分析了秸稈還田量、埋深、長度和還田方式等對秸稈還田調(diào)控水鹽運移的影響,探究了秸稈保水控鹽的作用機理;總結(jié)概述了秸稈還田提升土壤肥力,促進作物增產(chǎn)的研究成果,提出了配施氮肥,加快秸稈腐解和注意土壤初始水肥條件等合理建議;闡述介紹了當前秸稈還田面臨的主要問題及其防治措施;最后,在前人的研究基礎上提出了秸稈還田實際應用的部分注意事項,并對未來潛在研究方向進行了展望。以期為秸稈資源化利用、鹽漬土改良、農(nóng)業(yè)高效生產(chǎn)等方面的研究、應用與決策提供有價值的參考依據(jù)。

秸稈還田;土壤團聚體;水鹽運移;土壤肥力;土壤改良

0 引 言

我國是農(nóng)業(yè)大國,農(nóng)作物種植是我國的根基產(chǎn)業(yè)。作為農(nóng)作物種植產(chǎn)生的最主要副產(chǎn)品,秸稈年產(chǎn)量十分巨大,年產(chǎn)量超8 億t,居世界首位[1]。然而,受限于收集方式、利用技術和運輸成本等因素,我國早年秸稈資源化利用程度較低,處理方式以焚燒、廢棄為主,不僅造成資源浪費,而且導致環(huán)境污染。近年來,我國把農(nóng)業(yè)資源綜合利用納入生態(tài)文明建設總體布局,不斷完善法規(guī)政策,加大財政支持,健全標準規(guī)范,強化科技支撐,推動包括秸稈在內(nèi)的農(nóng)業(yè)廢棄物資源的高效利用,秸稈資源化利用率大幅度提高?!兜诙稳珖廴驹雌詹楣珗蟆凤@示,2017年全國秸稈產(chǎn)生量為8.05 億t,秸稈可收集資源量為6.74 億t,秸稈利用量為5.85 億t[2],綜合利用率72.7%。有關分析報告表明,2019年,我國秸稈的綜合利用率達到86%,2020年為90%[3]。秸稈利用方式及比例圖1 所示,其中秸稈直接還田為最主要的利用方式,占比39%左右[3]。

圖1 我國2020年秸稈利用方式及比例Fig.1 Utilization mode and proportion of straw in China in 2020

近年來,眾多學者針對秸稈還田改善土壤理化性質(zhì)、調(diào)控水鹽運移和提升土壤肥力等方面,進行了大量深入的研究,成果豐碩。相關研究已證明,秸稈還田可降低土壤體積質(zhì)量,提高土壤孔隙度,促進大團聚體形成,改良土壤結(jié)構(gòu),提升土壤穩(wěn)定性;增加土壤含水率,抑制土壤鹽分表聚,有效改良鹽漬土;增加土壤碳、氮、鉀、磷等營養(yǎng)物質(zhì),提升土壤肥力,促進作物增產(chǎn)。對于穩(wěn)定農(nóng)業(yè)生態(tài)平衡、發(fā)展循環(huán)經(jīng)濟、構(gòu)建資源節(jié)約型社會、減輕環(huán)境壓力都具有十分重要的意義。

本文全面、系統(tǒng)地整理和總結(jié)了2012年以來不同秸稈還田措施對土壤理化性質(zhì)、水鹽運移、土壤肥力和作物生長及產(chǎn)量影響的研究,探究其影響規(guī)律和作用機理,探尋不同秸稈還田處理方式的適用性,為秸稈資源化利用、鹽漬土改良、農(nóng)業(yè)高效生產(chǎn)和生態(tài)環(huán)境可持續(xù)發(fā)展等方面的研究、應用與決策提供有價值的參考依據(jù)。

1 秸稈還田改善土壤理化性狀

秸稈還田是改善土壤理化性質(zhì)的重要農(nóng)藝措施之一。秸稈還田可促進土壤中l(wèi)t;0.25 mm 粒徑顆粒向gt;0.25 mm 粒徑水穩(wěn)性團聚體團聚,導致大粒徑(gt;2 mm、0.25~2 mm)水穩(wěn)性大團聚體比例顯著增加,小粒徑(0.25~0.053 mm、lt;0.053 mm)水穩(wěn)性微團聚體的比例顯著降低[4-7],團聚體穩(wěn)定性明顯增強[8-9];可顯著提升土壤平均重量直徑(MWD)、幾何平均直徑值(GMD)、水穩(wěn)系數(shù)(K)和有機碳量(SOC),降低土壤體積質(zhì)量,提高土壤孔隙度[10-15]。從而改良土壤結(jié)構(gòu),提升土壤穩(wěn)定性。

1.1 秸稈還田配合適當耕作方式提升改良效果

秸稈還田配合深耕、旋耕等耕作方式,顯著改善不同深度土層的理化性質(zhì)。鄒文秀等[16]研究發(fā)現(xiàn),在東北平原地區(qū)(黑土,質(zhì)地:壤黏土)采用玉米秸稈還田配合深耕翻和超深耕翻促進底層土壤重組,增加耕層厚度,擴大土壤持水率,增強土壤水分調(diào)節(jié)能力,大幅改善20~35 cm 和35~50 cm 土層的物理性質(zhì)。董建新等[17]研究表明,在黃淮地區(qū)(褐土,質(zhì)地:壤質(zhì)黏土)采用玉米秸稈顆?;€田配合深翻和旋耕,可降低0~20 cm 和 20~40 cm 土層的土壤體積質(zhì)量,提升田間持水率、土壤孔隙度和團聚體穩(wěn)定性。薛斌等[18]研究發(fā)現(xiàn),江漢平原地區(qū)(水稻土,質(zhì)地:壤土、粉質(zhì)壤土)采用水稻秸稈還田配合傳統(tǒng)耕作的土壤體積質(zhì)量降低較明顯,免耕則增加土壤體積質(zhì)量。龐黨偉等[19]對比研究發(fā)現(xiàn),泰萊平原地區(qū)(潮褐土,質(zhì)地:黏壤土)玉米秸稈不還田時,采用連續(xù)旋耕的耕作方式會導致0~30 cm 土層的有機質(zhì)量下降,土壤體積質(zhì)量增大,孔隙度降低;但秸稈還田后,相應的結(jié)果正好相反;連續(xù)2年旋耕加1年深耕的效果更佳。張玉銘等[20]比較了華北平原地區(qū)(潮褐土,質(zhì)地:黏壤土)玉米秸稈旋耕還田和深翻耕還田對土壤團聚體的影響,結(jié)果表明秸稈深翻耕還田促進0~40 cm 土層土壤有效融合,消除了耕層土壤養(yǎng)分表聚現(xiàn)象,明顯提升了20~40 cm 土壤有機碳氮量以及大團聚體對土壤有機碳氮的貢獻率。實際應用時,可結(jié)合種植作物生長特點選擇適宜耕作方式,提升秸稈還田改良效果。

1.2 秸稈聯(lián)合生物炭、化肥、氨化處理增強改善作用

秸稈與生物炭、化肥、氨化處理聯(lián)合使用,可進一步提升土壤理化性質(zhì)改良的效果。秸稈和生物炭聯(lián)合施用效果優(yōu)于秸稈或生物炭單獨使用,顯著促進土壤大團聚體形成,提高團聚體有機碳量[21],提升土壤pH 值和土壤飽和導水率(SHC)[22]。秸稈還田配施化肥處理可增加gt;0.25 mm 團聚體量,降低0.053~0.25 mm 和lt;0.053 mm 團聚體量;提高0~20 cm 和20~40 cm 土層團聚體穩(wěn)定性,并顯著提高土壤有機碳量,團聚體穩(wěn)定性顯著增強,效果比單施化肥更顯著[23-25]。紫云英配合秸稈全量還田施用也有相似的效果[26]。將秸稈粉碎至粉末狀,并氨化處理后還田,可有效促進土壤已有孔隙向更大孔隙發(fā)展,提高土壤總孔隙度[27],耕層土壤體積質(zhì)量、大團聚體量、平均重量直徑(MWD)、幾何平均直徑(GMD)等指標明顯優(yōu)于傳統(tǒng)秸稈還田[28]。未來可進一步研究秸稈還田聯(lián)合不同肥料、秸稈預處理或添加劑對土壤理化性質(zhì)的影響,制定更優(yōu)配合比,不斷優(yōu)化秸稈還田效果。

1.3 秸稈粉碎程度對土壤結(jié)構(gòu)的影響

秸稈粉碎程度不足時,秸稈以段狀為主,若與土壤混合不均勻,易使耕層土壤內(nèi)部形成空洞,導致根系無法與土壤顆粒有效接觸,影響播種質(zhì)量和根系生長;同時空洞還會導致土壤水分和溫度加快流失,影響后茬作物秧苗生長[29]。隨秸稈還田量和還田頻率的增加,上述危害會進一步加劇。Zhang 等[30]研究發(fā)現(xiàn)與10 cm 和20 cm 小麥秸稈相比,5 cm 段狀小麥秸稈還田對土壤孔隙度、體積質(zhì)量等物理性質(zhì)的改善效果顯著上升。張宏媛等[31]利用CT 掃描技術對比分析了5 cm段狀玉米秸稈和2 mm 粉末玉米秸稈的孔隙形態(tài)特征,發(fā)現(xiàn)2 mm 粉末秸稈孔隙數(shù)量多、分布均勻,呈現(xiàn)明顯的復雜多孔結(jié)構(gòu)。因此,實際生產(chǎn)時應提高秸稈粉碎程度,減小秸稈長度,建議以lt;5 cm 段狀或粉末狀秸稈還田為宜,并應確保秸稈與土壤充分均勻混合。

1.4 秸稈還田改善土壤理化性質(zhì)的作用機理

秸稈還田改善土壤理化性質(zhì)的原因主要是:①秸稈本身為有機物料,腐解后向土壤輸送大量有機碳氮物質(zhì),并產(chǎn)生多糖、蛋白質(zhì)、木質(zhì)素等有機質(zhì);土壤有機質(zhì)是團聚體形成的重要膠結(jié)物質(zhì),可促進土壤中礦物和黏粒膠結(jié)形成大團聚體[22,32-35];②秸稈還田增加土壤有機質(zhì)量,提升土壤通氣性能,改善土壤微生態(tài)環(huán)境,提高土壤微生物活性,促使作物根系分泌或溢泌出更多的有機化合物,進一步促進大粒徑團聚體形成[5,12,36];③秸稈還田為蚯蚓、螞蟻、蟋蟀等動物提供了豐富的食物來源和適宜的生活環(huán)境,土壤中動物的數(shù)量增加。動物通過攝食、穿行、排泄等活動,疏松土壤,提高土壤孔隙率,驅(qū)動土壤碳氮循環(huán),加快秸稈腐化[37]。這些因素共同作用,有效促進了土壤大團聚體的形成,顯著提升土壤穩(wěn)定性。

2 秸稈還田調(diào)控土壤水鹽運移

全世界約1/4 耕地受到鹽漬化影響[38]。鹽漬化土壤含鹽高,結(jié)構(gòu)差,孔隙少,滲透差,養(yǎng)分低,微生物群落結(jié)構(gòu)和活性差[39-41],嚴重阻礙了作物正常生長,極大程度限制了農(nóng)業(yè)高效生產(chǎn),對糧食安全生產(chǎn)、耕地紅線造成嚴峻威脅,亟須改良。秸稈還田可顯著影響土壤水鹽運移,增加土壤含水率,減少土壤水分蒸發(fā),抑制土壤鹽分表聚,具有保水控鹽的作用,有效改良鹽漬土[42-44]。

2.1 秸稈還田量對土壤水鹽運移的影響

秸稈對水鹽運移的影響與還田量有關,總體上,秸稈保水控鹽效果與還田量呈正相關關系,表層積鹽量、土壤蒸發(fā)強度和累積蒸發(fā)量與秸稈還田量呈反相關關系[45-48]。范雷雷等[45]在河套灌區(qū)研究發(fā)現(xiàn),不同玉米秸稈覆蓋時0~80 cm 土壤層含鹽量均有所減少,其中覆蓋量1.2 kg/m2和0.9 kg/m2處理抑制效果最優(yōu),增幅為初始含鹽量的14.10%和24.74%。梁建財?shù)萚46]發(fā)現(xiàn),在河套灌區(qū)玉米秸稈覆蓋可提高0~100 cm 土壤含水率,降低土壤含鹽量;相對于未覆蓋秸稈處理,秸稈覆蓋量0.6 kg/m2及以上均可使土壤表層達到脫鹽效果,保水脫鹽效果隨還田量增加而顯著提升。鄧亞鵬等[47]研究了黃河三角洲地區(qū)小麥秸稈覆蓋秋澆后鹽漬土壤水鹽運移的特征,結(jié)果表明,秸稈覆蓋抑制消融水蒸發(fā),0.9 kg/m2處理的土壤含水率最高;減弱土壤積鹽,1.2 kg/m2和0.6 kg/m2分別在0~10 cm和0~40 cm 土層中的脫鹽效果最好。李小牛等[48]研究結(jié)果表明:秸稈層以上的田間持水率與玉米秸稈還田量成正比, 添加玉米秸稈后的0~20 cm 土壤層含水率均高于土壤層田間持水率。當然,秸稈還田量并非越多越好,當秸稈還田量過多時,秸稈腐解問題凸顯,加劇土壤空洞,不利于作物生長。

2.2 秸稈埋深和長度對土壤水鹽運移的影響

秸稈埋深和長度對土壤水鹽運移也有一定影響。除常規(guī)表層覆蓋還田外,近年來將秸稈埋入地下一定深度形成隔離層的方法也開始研究和應用。秸稈埋深方面,李芙榮等[49]研究了蘇北平原地區(qū)不同玉米秸稈埋深(0/40/70/40+100 cm 雙層)對土壤水鹽分布及其動態(tài)變化的影響。結(jié)果表明,不同玉米秸稈埋深對土壤含水率變化影響較小,除了70 cm 埋深,其他埋深處理對鹽分表聚的抑制效果較好,其中(40+100)cm雙層埋深處理的保水控鹽效果最佳。張金珠等[50]研究發(fā)現(xiàn),在北疆石河子,小麥秸稈埋深30 cm 可阻礙35 cm 以下土壤毛管水上升,從而影響土壤水鹽運移。王學成等[51]設計了不同棉花秸稈埋深(10/15/30/45 cm)對土壤水鹽分布和棉花根系構(gòu)型的影響,結(jié)果表明,在南疆阿拉爾,棉花秸稈埋深對二者影響顯著,土壤虛實程度有所差異,土壤水鹽分布發(fā)生變化,其中,埋深30 cm可促進棉花根系生長。秸稈長度方面,張宏媛等[31]對比分析了5 cm 段狀玉米秸稈、玉米秸稈顆粒和玉米秸稈粉末對秸稈層孔隙度和灌溉水入滲等的影響,試驗表明,5 cm 段狀玉米秸稈隔層孔隙度隨深度變化較明顯,其淋洗時水分優(yōu)先流現(xiàn)象最顯著,持續(xù)時間較長。張金珠等[52]研究不同小麥秸稈長度(1/10 cm)的秸稈隔層對鹽漬土入滲過程土壤水鹽分布的影響,結(jié)果表明,小麥秸稈長度影響鹽分滯留深度,秸稈10 cm 比1 cm 處理的全鹽量最大值深度有所下移。在實際應用時,應結(jié)合土壤水鹽分布情況和作物生長特點,針對性調(diào)整秸稈埋深和秸稈長度,調(diào)控土壤水鹽運移,確保作物處于適宜的水鹽環(huán)境。

2.3 秸稈還田方式對保水控鹽效果的影響

不同的秸稈還田方式對保水控鹽效果的影響有所差異。不同學者對比分析了秸稈表層覆蓋、秸稈掩埋、秸稈覆蓋+掩埋等還田方式的保水控鹽效果,所得結(jié)論基本一致,即秸稈覆蓋+掩埋方式更能抑制水分蒸發(fā)和鹽分表聚,效果優(yōu)于單一處理[53-56]。秸稈表層覆蓋可抑制蒸發(fā),掩埋作為隔層可儲蓄水分,促使0~30 cm 土層保持“高水低鹽”狀態(tài),適宜作物生長。此外,秸稈還田與覆膜、覆砂等農(nóng)技措施配合使用,可有效提升保水控鹽效果。部分學者對比研究了秸稈覆蓋、秸稈掩埋、上秸下秸、上膜下秸、地膜覆蓋等處理對土壤保水控鹽效果的影響,結(jié)果表明,不同措施的土壤保水控鹽效果與作用時期不同,且差異較大;上膜下秸的效果最佳,時效最長,能控制整個作物生育期[57-60]。趙文舉等[61]設置覆砂、覆膜、覆麥秸稈單獨或二者組合使用,研究發(fā)現(xiàn)不同處理均可顯著減少土壤水分蒸發(fā),但保水效果有所差異,總體上,覆砂的保水效果優(yōu)于覆秸稈,二者搭配使用效果更佳。因此,可采用多層秸稈復合還田方式,進一步提升秸稈保水控鹽的效果。

2.4 秸稈還田調(diào)控土壤水鹽運移的作用機理

關于秸稈還田調(diào)控土壤水鹽運移的作用機理,學者們研究結(jié)論大致相同,主要如下:①淋洗入滲階段,秸稈隔層與上覆土層存在孔隙差異,土-秸界面處水勢差逆向,延緩濕潤鋒推進速度,秸稈隔層表現(xiàn)出阻水減滲的效果,即“毛細阻滯”[62-63],導致土壤含水率上升;隨著秸稈隔層含水率的不斷增加,其導水率也不斷上升,當秸稈隔層含水率達到飽和時,秸稈隔層導水率大于周邊土壤導水率,產(chǎn)生二次阻礙[64],即“水力阻滯”,導致上層水分入滲進一步減緩,同時減少下層水分上升。土壤水分因“毛細阻滯”和“水力阻滯”影響而延緩入滲,土壤水分在耕層土壤的蓄積時間延長,土壤含水率升高,促進了土壤中可溶性鹽離子的交換和溶解,待重力水完全下滲后,帶走更多的鹽分離子,提升淋洗脫鹽效果[30,64];②在蒸發(fā)階段,由于秸稈隔層阻斷了毛管水上升路徑,地下水沿土壤毛管上升至隔層后只能以水汽擴散的形式穿越秸稈層及以上的土壤進入大氣,潛水蒸發(fā)能力大幅減弱,從而有效抑制了地下水或深層土壤中的鹽分向上運移,大幅降低土壤返鹽量[65-66]。

3 秸稈還田提升土壤肥力,促進作物增產(chǎn)

大量研究表明[67-78],秸稈腐解能提高土壤中碳、氮、鉀、磷等營養(yǎng)物質(zhì),增加土壤微生物的數(shù)量和活性,促進有機物分解和養(yǎng)分釋放,提升土壤肥力,同時創(chuàng)造適宜環(huán)境,有利于作物生長和產(chǎn)量及品質(zhì)的提高。

3.1 秸稈還田培肥增產(chǎn)效果明顯

隨著秸稈還田腐解,秸稈中營養(yǎng)物質(zhì)逐步分解釋放,從而顯著提升土壤肥力,有效提高作物水分利用效率、氮肥農(nóng)學利用效率、氮肥偏生產(chǎn)力、氮肥吸收利用率等生長指數(shù)[79-82],促進作物生長,提高作物產(chǎn)量及品質(zhì)。陳金等[83]研究發(fā)現(xiàn)玉米秸稈還田大幅度提高冬小麥全生育期干物質(zhì)積累總量,降低開花前干物質(zhì)積累量及其占全生育期比例。劉艷慧等[84]探究得到長期棉花秸稈還田可培肥地力,提高棉花總鈴數(shù)、單鈴重和產(chǎn)量。張學林等[85]研究結(jié)果顯示,與秸稈不還田處理相比,小麥秸稈還田后可顯著提高玉米穗行數(shù)、行粒數(shù)、穗粒數(shù)、千粒質(zhì)量、籽粒蛋白質(zhì)、淀粉量和產(chǎn)量,脂肪量降低。同時,秸稈還田還具有調(diào)控土壤溫度、改善土壤微生物和緩解鹽分脅迫等作用,促進作物增產(chǎn)。研究表明,秸稈覆蓋還田對土壤溫濕度具有雙向阻礙作用,保溫保墑,有利于玉米生長和產(chǎn)量提升[86]。淺埋秸稈隔層可有效緩解植株受到鹽分脅迫,有利于番茄植株的光合作用和相關生理參數(shù),提高番茄產(chǎn)量及品質(zhì)[87-88]。此外,對秸稈進行氨化、堆肥等處理后還田可提升改善效果。氨化秸稈還田具有良好的蓄水保墑能力,增加夏玉米、冬小麥等作物的葉面積指數(shù),提高作物水分利用率和產(chǎn)量,促進地上部干物質(zhì)積累,相關指標提升明顯優(yōu)于傳統(tǒng)秸稈還田[89-90]。低溫堆腐秸稈還田可以改善土壤微生物群落結(jié)構(gòu),提升土壤肥力,實現(xiàn)玉米增產(chǎn)[91]。

3.2 秸稈配合氮肥施用培肥增產(chǎn)效果更佳

秸稈還田可能會造成土壤pH 值升高,改變硝化和反硝化過程,提高土壤氨揮發(fā),導致土壤氮素損失[92];此外,由于秸稈碳氮比較高,秸稈腐化過程中微生物大量增殖消耗土壤速效氮,導致土壤氮素不足,影響作物生長,造成減產(chǎn)。因此,秸稈還田應配合化肥施用,尤其是氮肥,降低碳氮比,加速秸稈降解,降低化感抑制效應[93],避免還田腐解前期與微生物“爭氮”產(chǎn)生的不利影響,并提高作物氮肥農(nóng)學利用率[94]。研究表明,秸稈還田配氮肥可激發(fā)氮的礦化作用,顯著增強土壤供氮能力;同時,加速秸稈腐敗,增加土壤有機質(zhì),提升土壤營養(yǎng)元素吸附力,彌補微生物在秸稈降解過程中對養(yǎng)分的固持[95],顯著提高土壤中有機碳和總氮量[96],并可將總氮儲存在上部根區(qū),在有限的條件下減輕氮和灌溉水的負面影響[97],從而提升培肥增產(chǎn)效果。此外,秸稈還田配合氮肥施用,可有效降低氮肥施用量,與單施氮肥相比,降幅可達15%~30%[98-100],不僅提升作物產(chǎn)量,還能降低化肥成本,同時減輕農(nóng)業(yè)面源污染。

3.3 土壤水肥條件對秸稈還田增產(chǎn)效果有差異

土壤水肥條件不同,秸稈還田效果可能有所差異,前期研究結(jié)論尚未一致,有待進一步論證。Rasool等[101]研究發(fā)現(xiàn)番茄的果實產(chǎn)量、品質(zhì)和水分利用效率均受灌溉、施肥和秸稈還田的影響;在較低的施氮肥和灌溉水平下,水稻秸稈還田較無秸稈處理番茄產(chǎn)量顯著增加,可溶性糖量、糖酸比(SAR)和維生素C(Vc)等指標均有所提升;但在較高的施氮肥和灌溉水平下,秸稈還田處理則會降低番茄產(chǎn)量,由此推斷秸稈還田可以緩解有限灌溉水和氮肥造成的脅迫,從而提高溫室種植番茄的果實產(chǎn)量和品質(zhì)。該研究結(jié)論與張素瑜等[102]的研究結(jié)論有所矛盾。張素瑜等[102]研究表明在輕旱和水分適宜的土壤水分條件下,玉米秸稈還田可促進小麥根系生長,延長根系衰老時間,提升作物利用效率和產(chǎn)量;但土壤水分條件較差時,秸稈還田效果正好相反。這可能與作物種類、土壤質(zhì)地和氣候環(huán)境等因素有關。因此,秸稈還田應注意水肥條件的適用情況,達到正向增產(chǎn)效果。

4 秸稈還田產(chǎn)生的負面影響及防治措施

秸稈腐解緩慢和易誘發(fā)病蟲害是當前秸稈還田實際生產(chǎn)應用時面臨的主要難點問題,對農(nóng)業(yè)種植及管理造成較大負面影響,導致農(nóng)民對常規(guī)秸稈還田技術產(chǎn)生抗拒情緒,制約秸稈還田推廣應用,亟須解決。

4.1 秸稈腐解緩慢及其防治措施

秸稈初期腐解緩慢,短時間內(nèi)大量秸稈積聚,易超過土壤消納能力,不僅加劇土壤空洞,影響后茬作物種子萌發(fā)與秧苗扎根,造成作物出苗率低、苗期根系虛浮等問題,影響作物產(chǎn)量;而且秸稈腐解養(yǎng)分釋放與作物需求不匹配,造成秸稈營養(yǎng)元素利用率下降。

秸稈腐解的影響因素紛繁復雜,秸稈性質(zhì)(碳氮比、碳磷比、木質(zhì)素量等)、土壤性質(zhì)(pH 值、通氣性、養(yǎng)分狀況、土壤溫度、含水率等)、氣候條件(溫度、濕度、降雨量等)、還田模式(秸稈長度、還田量、耕作方式、秸稈埋深等)等均會對秸稈腐解速度造成一定影響[103-104]。當前,主要可通過充分粉碎秸稈、秸稈掩埋還田、秸稈氨化處理、加入促腐菌劑或腐熟劑等方式,促進秸稈腐解,加速秸稈養(yǎng)分釋放。充分粉碎秸稈,盡可能減小秸稈長度,甚至秸稈粉末化還田,增大秸稈與土壤的接觸面積,提高秸稈與土壤混合程度,加快水分吸收,加速營養(yǎng)物質(zhì)溶解,為微生物代謝提供更多碳源和能量,促進微生物數(shù)量增長,提升秸稈腐解速度[105]。采用掩埋還田的秸稈腐解速度優(yōu)于覆蓋還田[106-107],這可能是因為土壤中的濕度及夜間溫度一般高于土壤表面,且秸稈隔層的保水保肥保墑的效果優(yōu)于秸稈表層覆蓋,從而更利于微生物的生長與繁殖,秸稈掩埋還田時腐解速度更快。氨化處理促使秸稈中由木質(zhì)素、纖維素和半纖維素組成的三維網(wǎng)狀大分子結(jié)構(gòu)斷裂成易發(fā)酵的小分子物質(zhì),并破壞秸稈細胞表層,加速秸稈腐解[108];同時,氨化處理緩解土壤碳氮比失衡,有利于土壤微生物活動和生長繁殖,秸稈分解速度顯著加快[109]。促腐菌劑和腐熟劑中富含一種或數(shù)種具有降解木質(zhì)素、纖維素和半纖維素的真菌或細菌。真菌可穿透秸稈角質(zhì)層進入秸稈縫隙,分泌水解酶降解纖維素等物質(zhì);細菌則通過分解小分子物質(zhì)實現(xiàn)對有機物料的降解[110]。綜上不難看出,秸稈腐解與微生物關系密切,秸稈腐解速度與微生物活性通常呈正相關關系。因此,可采取相關措施提高微生物數(shù)量及活性,加快秸稈腐解,解決秸稈還田土壤空洞和養(yǎng)分釋放不及時的問題。

4.2 秸稈誘發(fā)病蟲害及其防治措施

秸稈中存在病株殘體且易攜帶病原菌和蟲卵,直接還田易誘發(fā)或加劇農(nóng)作物紋枯病、赤霉病、莖基腐病、大斑病等病害以及根結(jié)線蟲、灰飛虱、潛葉蠅、負泥蟲等蟲害風險,加重土傳病害[111-112];此外,在干旱地區(qū)秸稈還田易造成農(nóng)田鼠害,老鼠利用翻入土壤中的秸稈做窩,甚至作為過冬的食物,給來年的春播帶來風險。

通過調(diào)整秸稈還田方式,可有效降低病蟲害發(fā)生。研究表明,秸稈粉碎深翻相比于免耕覆蓋,可顯著降低玉米紋枯病和大斑病的發(fā)生程度[113];秸稈作掩埋處理可有效地消滅病殘體,減少田間菌源量,秸稈埋深超20 cm 時二化螟等幼蟲死亡率超過60%[114];充分粉碎秸稈至粉末狀,能一定程度破壞秸稈中的蟲卵和幼蟲,有效降低蟲害發(fā)生;采用秸稈堆漚還田方式,將秸稈預先進行堆肥、漚肥處理,腐熟后施入土壤,也可消滅大量寄生蟲卵、病原菌及雜草草籽[115]。此外,秸稈添加生防菌還田可減少紋枯病等土傳病害的發(fā)生[116]。通過引入芽孢桿菌、假單胞菌和菌根真菌等生防菌,改善土壤微生物群落結(jié)構(gòu),生防菌與病原菌競爭營養(yǎng)和空間,從而抑制病原菌的生長與繁殖;同時,生防菌還能提高作物提高抗病、抗蟲性,降低病蟲害的威脅[117]。

值得注意的是,無有害源的秸稈還田本身亦可有效抑制病蟲害發(fā)生。秸稈還田后釋放出酚酸物質(zhì),對病原菌產(chǎn)生化感作用,抑制玉米大斑病菌等菌絲生長,抑制玉米大斑病等病情指數(shù)的發(fā)展[118]。同時,秸稈還田改善土壤理化性質(zhì),增加土壤營養(yǎng)物質(zhì),一方面提升土壤中有益微生物多樣性,與病原菌競爭養(yǎng)分,抑制病原菌生長繁殖[119],另一方面改善土壤食物網(wǎng)結(jié)構(gòu),提高病原生物捕食者(蚯蚓、節(jié)肢動物等)的種類及數(shù)量,通過天敵捕食減少病蟲害[120]。因此,在實際秸稈還田應用中,應加強秸稈有害源的控制,還田前盡可能減少秸稈中的病原菌和蟲卵,從源頭上降低秸稈還田病蟲害的負面影響。

5 總結(jié)與展望

秸稈還田具有改良土壤理化性質(zhì)、保水控鹽和培肥增產(chǎn)等顯著作用,對農(nóng)業(yè)高效生產(chǎn)和環(huán)境可持續(xù)發(fā)展具有重要意義,值得推廣應用。鑒于不同地區(qū)農(nóng)業(yè)氣候資源、土壤水肥氣熱條件和農(nóng)業(yè)管理模式差別較大,在秸稈還田實際應用時應因地制宜,綜合不同氣候、土壤、秸稈、作物等多種因素,確定適宜的秸稈還田方式,提升秸稈還田效果。

秸稈還田對土壤改良及培肥增產(chǎn)的研究成果比較豐碩,但仍有許多問題有待進一步研究。例如:①秸稈腐解速度影響因素繁雜,氣候條件、秸稈種類、土壤類型及水肥氣熱條件、土壤微生物種類及數(shù)量、秸稈埋深都會對其產(chǎn)生影響,研究各影響因素對秸稈腐解及其改良土壤、培肥增產(chǎn)的綜合效應,探明秸稈腐解規(guī)律與土壤理化性質(zhì)、作物生長、水肥利用等方面的內(nèi)在聯(lián)系及機理,進一步解決因腐解緩慢引起土壤空洞和養(yǎng)分釋放不及時的問題。②秸稈還田技術尚可進一步優(yōu)化。研究秸稈加工處理(如粉末化、氨化、碳化處理、堆漚肥處理等),添加相關藥劑或微生物,調(diào)整秸稈還田、耕作方式或優(yōu)化水肥管理等多種措施復合作用下對土壤改良效果和作物生長及產(chǎn)量、品質(zhì)的影響,探尋更優(yōu)的秸稈還田技術,實現(xiàn)秸稈高效資源化利用。③研究不同氣候區(qū)和種植習慣條件下,秸稈還田技術對不同類型、質(zhì)地的土壤理化性質(zhì)改善作用的差異,為不同地區(qū)的秸稈還田技術推廣應用提供參考依據(jù)。④進一步探明秸稈還田對土壤各方面性質(zhì)的影響規(guī)律及其作用機理,總結(jié)經(jīng)驗公式,構(gòu)建應用模型,分析研究不同氣候資源、土壤類型及水肥氣熱條件、種植作物品種和農(nóng)業(yè)管理模式等條件下適宜的秸稈還田模式,選擇還田量、埋深、耕作方式、水肥管理等指標參數(shù),確定秸稈還田策略,指導實踐農(nóng)業(yè)生產(chǎn),加快秸稈還田技術推廣應用。

[1] 彭春艷, 羅懷良, 孔靜. 中國作物秸稈資源量估算與利用狀況研究進展[J]. 中國農(nóng)業(yè)資源與區(qū)劃, 2014, 35(3): 14-20.

PENG Chunyan, LUO Huailiang, KONG Jing. Advance in estimation and utilization of crop residues resources in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(3): 14-20.

[2] 中華人民共和國生態(tài)環(huán)境部, 國家統(tǒng)計局, 中華人民共和國農(nóng)業(yè)農(nóng)村部. 第二次全國污染源普查公報[R]. 2020.

Ministry of Ecology and Environment, PRC, National Bureau of Statistics, Ministry of Agriculture and Rural Affairs, PRC. Bulletin of the second National Survey of pollution sources[R]. 2020.

[3] 2021—2026年中國秸稈垃圾處理行業(yè)市場前景預測與投資戰(zhàn)略規(guī)劃分析報告, 前瞻產(chǎn)業(yè)研究院[M]. 深圳: 前瞻產(chǎn)業(yè)研究院, 2021.

Report on prospects and investment strategy planning analysis on china straw refuse treatment industry (2021—2026)[M]. Shenzhen: Forward Industrial Research Institute, 2021.

[4] 陳曉東, 吳景貴, 范圍, 等. 有機物料對原生鹽堿土微團聚體特征及穩(wěn)定性的影響[J]. 水土保持學報, 2020, 34(2): 201-207.

CHEN Xiaodong, WU Jinggui, FAN Wei, et al. Effect of organic materials on the characteristics and stability of micro-aggregates in the native saline-alkali soil[J]. Journal of Soil and Water Conservation,2020, 34(2): 201-207.

[5] 張姝, 袁宇含, 苑佰飛, 等. 玉米秸稈深翻還田對土壤及其團聚體內(nèi)有機碳含量和化學組成的影響[J].吉林農(nóng)業(yè)大學學報:1-14[2021-09-28].

ZHANG Shu, YUAN Yuhan, YUAN Baifei ,et al. Effects of maize straw returning with deep ploughing on organic carbon content and chemical composition in bulk soil and soil aggregates[J]. Journal of Jilin Agricultural University: 1-14[2021-09-28].

[6] 李昊昱, 孟兆良, 龐黨偉, 等. 周年秸稈還田對農(nóng)田土壤固碳及冬小麥-夏玉米產(chǎn)量的影響[J]. 作物學報, 2019, 45(6): 893-903.

LI Haoyu, MENG Zhaoliang, PANG Dangwei, et al. Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland[J]. Acta Agronomica Sinica, 2019, 45(6): 893-903.

[7] 王碧勝, 于維水, 武雪萍, 等. 不同耕作措施下添加秸稈對土壤有機碳及其相關因素的影響[J]. 中國農(nóng)業(yè)科學, 2021, 54(6): 1 176-1 187.

WANG Bisheng, YU Weishui, WU Xueping, et al. Effects of straw addition on soil organic carbon and related factors under different tillage practices[J]. Scientia Agricultura Sinica, 2021, 54(6): 1 176-1 187.

[8] HARTLEY W, RIBY P, WATERSON J. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability[J]. Journal of Environmental Management,2016, 181: 770-778.

[9] ANNABI M, RACLOT D, BAHRI H, et al. Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia[J].Catena, 2017, 153: 157-167.

[10] 安嫄嫄, 馬琨, 王明國, 等. 玉米秸稈還田對土壤團聚體組成及其碳氮分布的影響[J]. 西北農(nóng)業(yè)學報, 2020, 29(5): 766-775.

AN Yuanyuan, MA Kun, WANG Mingguo, et al. Effect of maize straw returning to field on soil aggregates and their carbon and nitrogen distributions[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020,29(5): 766-775.

[11] 何瑞成, 吳景貴, 李建明. 不同有機物料對原生鹽堿地水穩(wěn)性團聚體特征的影響[J]. 水土保持學報, 2017, 31(3): 310-316.

HE Ruicheng, WU Jinggui, LI Jianming. Effects of different organic materials on the characteristics of water stable aggregates in a primary saline alkali soil[J]. Journal of Soil and Water Conservation, 2017, 31(3):310-316.

[12] QIU Q Y, WU L F, OUYANG Z, et al. Priming effect of maize residue and urea N on soil organic matter changes with time[J]. Applied Soil Ecology, 2016, 100: 65-74.

[13] ZHENG L, WU W L, WEI Y P, et al. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of Northern China[J]. Soil and Tillage Research,2015, 145: 78-86.

[14] SONG G X, NOVOTNY E H, MAO J D, et al. Characterization of transformations of maize residues into soil organic matter[J]. Science of the Total Environment, 2017, 579: 1 843-1 854.

[15] MU?OZ K, BUCHMANN C, MEYER M, et al. Physicochemical and microbial soil quality indicators as affected by the agricultural management system in strawberry cultivation using straw or black polyethylene mulching[J]. Applied Soil Ecology, 2017, 113: 36-44.

[16] 鄒文秀, 韓曉增, 嚴君, 等. 耕翻和秸稈還田深度對東北黑土物理性質(zhì)的影響[J]. 農(nóng)業(yè)工程學報, 2020, 36(15): 9-18.

ZOU Wenxiu, HAN Xiaozeng, YAN Jun, et al. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 9-18.

[17] 董建新, 宋文靜, 叢萍, 等. 旋耕配合秸稈顆粒還田對土壤物理特性的影響[J]. 中國農(nóng)業(yè)科學, 2021, 54(13): 2 789-2 803.

DONG Jianxin, SONG Wenjing, CONG Ping, et al. Improving farmland soil physical properties by rotary tillage combined with high amount of granulated straw[J]. Scientia Agricultura Sinica, 2021, 54(13):2 789-2 803.

[18] 薛斌, 殷志遙, 肖瓊, 等. 稻-油輪作條件下長期秸稈還田對土壤肥力的影響[J]. 中國農(nóng)學通報, 2017, 33(7): 134-141.

XUE Bin, YIN Zhiyao, XIAO Qiong, et al. Effects of long-term straw returning on soil fertility under rice rape rotation system[J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 134-141.

[19] 龐黨偉, 陳金, 唐玉海, 等. 玉米秸稈還田方式和氮肥處理對土壤理化性質(zhì)及冬小麥產(chǎn)量的影響[J]. 作物學報, 2016, 42(11): 1 689-1 699.

PANG Dangwei, CHEN Jin, TANG Yuhai, et al. Effect of returning methods of maize straw and nitrogen treatments on soil physicochemical property and yield of winter wheat[J]. Acta Agronomica Sinica, 2016, 42(11): 1 689-1 699.

[20] 張玉銘, 胡春勝, 陳素英, 等. 耕作與秸稈還田方式對碳氮在土壤團聚體中分布的影響[J]. 中國生態(tài)農(nóng)業(yè)學報(中英文), 2021, 29(9):1 558-1 570.

ZHANG Yuming, HU Chunsheng, CHEN Suying, et al. Effects of tillage and straw returning method on the distribution of carbon and nitrogen in soil aggregates[J]. Chinese Journal of Eco-Agriculture, 2021,29(9): 1 558-1 570.

[21] 徐國鑫, 王子芳, 高明, 等. 秸稈與生物炭還田對土壤團聚體及固碳特征的影響[J]. 環(huán)境科學, 2018, 39(1): 355-362.

XU Guoxin, WANG Zifang, GAO Ming, et al. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J].Environmental Science, 2018, 39(1): 355-362.

[22] 張海晶, 王少杰, 田春杰, 等. 玉米秸稈及其生物炭對東北黑土溶解有機質(zhì)特性的影響[J]. 水土保持學報, 2021, 35(2): 243-250.

ZHANG Haijing, WANG Shaojie, TIAN Chunjie, et al. Effects of maize straw and its biochar on the dissolved organic matter characteristics of black soil in northeastern China[J]. Journal of Soil and Water Conservation, 2021, 35(2): 243-250.

[23] 李新悅, 李冰, 莫太相, 等. 長期秸稈還田對水稻土團聚體及氮磷鉀分配的影響[J]. 應用生態(tài)學報, 2021, 32(9): 3 257-3 266.

LI Xinyue, LI Bing, MO Taixiang, et al. Effects of long-term straw returning on distribution of aggregates and nitrogen, phosphorus, and potassium in paddy[J]. Chinese Journal of Applied Ecology, 2021, 32(9):3 257-3 266.

[24] 朱建彬, 郭相平, 謝毅, 等. 秸稈隔層還田及水氮管理對設施土壤團聚體及固碳特征的影響[J]. 江蘇農(nóng)業(yè)學報, 2021, 37(3): 632-638.

ZHU Jianbin, GUO Xiangping, XIE Yi, et al. Effects of returning straw interlayer to the field, water and nitrogen management on aggregates and carbon sequestration of facility soil[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3): 632-638.

[25] 皇甫呈惠, 孫筱璐, 劉樹堂, 等. 長期定位秸稈還田對土壤團聚體及有機碳組分的影響[J]. 華北農(nóng)學報, 2020, 35(3): 153-159.

HUANGFU Chenghui, SUN Xiaolu, LIU Shutang, et al. Effect of long-term straw returning to field on soil aggregates and organic carbon components[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(3): 153-159.

[26] 宋佳, 黃晶, 高菊生, 等. 冬種綠肥和秸稈還田對雙季稻區(qū)土壤團聚體和有機質(zhì)官能團的影響[J]. 應用生態(tài)學報, 2021, 32(2): 564-570.

SONG Jia, HUANG Jing, GAO Jusheng, et al. Effects of green manure planted in winter and straw returning on soil aggregates and organic matter functional groups in double cropping rice area[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 564-570.

[27] 丁奠元, 馮浩, 趙英, 等. 氨化秸稈還田對土壤孔隙結(jié)構(gòu)的影響[J].植物營養(yǎng)與肥料學報, 2016, 22(3): 650-658.

DING Dianyuan, FENG Hao, ZHAO Ying, et al. Effect of ammoniated straw returning on soil pore structure[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 650-658.

[28] 余坤, 馮浩, 王增麗, 等. 氨化秸稈還田改善土壤結(jié)構(gòu)增加冬小麥產(chǎn)量[J]. 農(nóng)業(yè)工程學報, 2014, 30(15): 165-173.

YU Kun, FENG Hao, WANG Zengli, et al. Ammoniated straw improving soil structure and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 165-173.

[29] ZHANG L, WANG J, PANG H C, et al. Effects of pelletized straw on soil nutrient properties in relation to crop yield[J]. Soil Use and Management, 2018, 34(4): 479-489.

[30] ZHANG Z M, ZHANG Z Y, LU P R, et al. Soil water-salt dynamics and maize growth as affected by cutting length of topsoil incorporation straw under brackish water irrigation[J]. Agronomy, 2020, 10(2): 246.

[31] 張宏媛, 逄煥成, 盧闖, 等. CT 掃描分析秸稈隔層孔隙特征及其對土壤水入滲的影響[J]. 農(nóng)業(yè)工程學報, 2019, 35(6): 114-122.

ZHANG Hongyuan, PANG Huancheng, LU Chuang, et al. Pore characteristics of straw interlayer based on computed tomography images and its influence on soil water infiltration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 114-122.

[32] 鄧華, 高明, 龍翼, 等. 生物炭和秸稈還田對紫色土旱坡地土壤團聚體與有機碳的影響[J]. 環(huán)境科學, 2021, 42(11): 5 481-5 490.

DENG Hua, GAO Ming, LONG Yi, et al. Effects of biochar and straw return on soil aggregate and organic carbon on purple soil dry slope land[J]. Environmental Science, 2021, 42(11): 5 481-5 490.

[33] XU X R, SCHAEFFER S, SUN Z H, et al. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels[J]. Soil and Tillage Research, 2020, 199: 104 593.

[34] 王秀娟, 解占軍, 董環(huán), 等. 秸稈還田對玉米產(chǎn)量和土壤團聚體組成及有機碳分布的影響[J]. 玉米科學, 2018, 26(1): 108-115.

WANG Xiujuan, XIE Zhanjun, DONG Huan, et al. Effects of straw returning on yield and soil aggregates composition and organic carbon distribution[J]. Journal of Maize Sciences, 2018, 26(1): 108-115.

[35] 田慎重, 王瑜, 李娜, 等. 耕作方式和秸稈還田對華北地區(qū)農(nóng)田土壤水穩(wěn)性團聚體分布及穩(wěn)定性的影響[J]. 生態(tài)學報, 2013, 33(22):7 116-7 124.

TIAN Shenzhong, WANG Yu, LI Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013,33(22): 7 116-7 124.

[36] XIE W J, CHEN Q F, WU L F, et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study[J]. Soil and Tillage Research, 2020,198: 104 535.

[37] 康玉娟, 武海濤. 蚯蚓對土壤碳氮循環(huán)關鍵過程的影響及其機制研究進展[J]. 土壤與作物, 2021, 10(2): 150-162.

KANG Yujuan, WU Haitao. Effects and mechanism of earthworms on soil organic carbon and nitrogen cycling: A review[J]. Soils and Crops,2021, 10(2): 150-162.

[38] 魏守才, 謝文軍, 夏江寶, 等. 鹽漬化條件下土壤團聚體及其有機碳研究進展[J]. 應用生態(tài)學報, 2021, 32(1): 369-376.

WEI Shoucai, XIE Wenjun, XIA Jiangbao, et al. Research progress on soil aggregates and associated organic carbon in salinized soils[J].Chinese Journal of Applied Ecology, 2021, 32(1): 369-376.

[39] MINHAS P S, RAMOS T B, BEN-GAL A, et al. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues[J]. Agricultural Water Management, 2020, 227: 105 832.

[40] LIU L P, LONG X H, SHAO H B, et al. Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province,China[J]. Ecological Engineering, 2015, 81: 328-334.

[41] ZHANG T, WANG T, LIU K, et al. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses[J]. Agricultural Water Management,2015, 159: 115-122.

[42] CAO J S, LIU C M, ZHANG W J, et al. Effect of integrating straw into agricultural soils on soil infiltration and evaporation[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2012, 65(12): 2 213-2 218.

[43] ZHAO Y G, PANG H C, WANG J, et al. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield[J]. Field Crops Research, 2014, 161: 16-25.

[44] BEZBORODOV G A, SHADMANOV D K, MIRHASHIMOV R T, et al. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J]. Agriculture,Ecosystems amp; Environment, 2010, 138(1/2): 95-102.

[45] 范雷雷, 史海濱, 李瑞平, 等. 秸稈覆蓋對溝灌水鹽遷移與玉米水分利用效率的影響[J]. 農(nóng)業(yè)機械學報, 2021, 52(2): 283-293, 319.

FAN Leilei, SHI Haibin, LI Ruiping, et al. Effects of straw mulching on soil water-salt transportation and water use efficiency of maize under furrow irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 283-293, 319.

[46] 梁建財, 史海濱, 楊樹青, 等. 秸稈覆蓋對鹽漬土壤水鹽狀況及向日葵產(chǎn)量的影響[J]. 土壤通報, 2014, 45(5): 1 202-1 206.

LIANG Jiancai, SHI Haibin, YANG Shuqing, et al. The effects of straw mulching on soil water, soil salinity and grain yield of a salty sunflower field[J]. Chinese Journal of Soil Science, 2014, 45(5): 1 202-1 206.

[47] 鄧亞鵬, 孫池濤, 張俊鵬, 等. 秸稈覆蓋條件下濱海鹽漬土蒸發(fā)對近地層微氣候變化影響的模擬研究[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2021, 39(2):202-210.

DENG Yapeng, SUN Chitao, ZHANG Junpeng, et al. Simulation of the effects of straw mulching on the micro-climate and soil evaporation of coastal saline soil[J]. Agricultural Research in the Arid Areas, 2021,39(2): 202-210.

[48] 李小牛. 雙層氨化秸稈還田對鹽堿地水鹽運移及玉米生長的影響[J].節(jié)水灌溉, 2021(7): 80-83.

LI Xiaoniu. Effects of double ammoniated straw returning on water and salt transport and maize growth in saline alkali soil[J]. Water Saving Irrigation, 2021(7): 80-83.

[49] 李芙榮, 楊勁松, 吳亞坤, 等. 不同秸稈埋深對蘇北灘涂鹽漬土水鹽動態(tài)變化的影響[J]. 土壤, 2013, 45(6): 1 101-1 107.

LI Furong, YANG Jinsong, WU Yakun, et al. Effects of straw mulch at different depths on water-salt dynamic changes of coastal saline soil in north Jiangsu Province[J]. Soils, 2013, 45(6): 1 101-1 107.

[50] 張金珠, 虎膽?吐馬爾白, 王振華, 等. 不同深度秸稈覆蓋對滴灌棉田土壤水鹽運移的影響[J]. 灌溉排水學報, 2012, 31(3): 37-41.

ZHANG Jinzhu, HUDAN?Tumarebi, WANG Zhenhua, et al. Effect of different depth straw mulching on soilwater movement and salt transport under saline-alkali drip irrigation for the cotton[J]. Journal of Irrigation and Drainage, 2012, 31(3): 37-41..

[51] 王學成, 劉冉, 楊瑩攀, 等. 棉花秸稈不同埋深對土壤水鹽分布及棉花根系構(gòu)型的影響[J]. 節(jié)水灌溉, 2021(9): 77-82.

WANG Xuecheng, LIU Ran, YANG Yingpan, et al. Effects of different burial depth of cotton straw on soil water and salt distribution and cotton root architecture[J]. Water Saving Irrigation, 2021(9): 77-82.

[52] 張金珠, 王振華, 虎膽?吐馬爾白. 具有秸稈夾層層狀土壤一維垂直入滲水鹽分布特征[J]. 土壤, 2014, 46(5): 954-960.

ZHANG Jinzhu, WANG Zhenhua, HUDAN?Tumarebi. Distribution characteristics of one-dimensional vertical infiltration water and salt in layered soil with subsurface straw layer[J]. Soils, 2014, 46(5): 954-960.

[53] 張子璇, 牛蓓蓓, 李新舉. 不同改良模式對濱海鹽漬土土壤理化性質(zhì)的影響[J]. 生態(tài)環(huán)境學報, 2020, 29(2): 275-284.

ZHANG Zixuan, NIU Beibei, LI Xinju. Effect of different improvement modes on physical and chemical characters of the coastal saline soil[J].Ecology and Environmental Sciences, 2020, 29(2): 275-284.

[54] 楊東, 李新舉, 孔欣欣. 不同秸稈還田方式對濱海鹽漬土水鹽運動的影響[J]. 水土保持研究, 2017, 24(6): 74-78.

YANG Dong, LI Xinju, KONG Xinxin. Effects of different straw returning modes on the water and salt movement in the coastal saline soil[J]. Research of Soil and Water Conservation, 2017, 24(6): 74-78.

[55] 王曼華, 陳為峰, 宋希亮, 等. 秸稈雙層覆蓋對鹽堿地水鹽運動影響初步研究[J]. 土壤學報, 2017, 54(6): 1 395-1 403.

WANG Manhua, CHEN Weifeng, SONG Xiliang, et al. Preliminary study on effect of straw mulching and incorporation on water and salt movement in salinized soil[J]. Acta Pedologica Sinica, 2017,54(6): 1 395-1 403.

[56] 李小牛. 不同氨化秸稈還田量對鹽堿地土壤水鹽因子及玉米生長發(fā)育的影響[J]. 中國農(nóng)村水利水電, 2020(2): 118-121.

LI Xiaoniu. The effect of different amount of ammoniated straw mulching on soil water and salt factors and growth and development of maize in saline-alkali land[J]. China Rural Water and Hydropower,2020(2): 118-121.

[57] 趙永敢, 逄煥成, 李玉義, 等. 秸稈隔層對鹽堿土水鹽運移及食葵光合特性的影響[J]. 生態(tài)學報, 2013, 33(17): 5 153-5 161.

ZHAO Yonggan, PANG Huancheng, LI Yuyi, et al. Effects of straw interlayer on soil water and salt movement and sunflower photosynthetic characteristics in saline-alkali soils[J]. Acta Ecologica Sinica, 2013, 33(17): 5 153-5 161.

[58] 靳亞紅, 楊樹青, 張萬鋒, 等. 秸稈與地膜覆蓋方式對咸淡交替灌溉模式下水鹽調(diào)控及玉米產(chǎn)量的影響[J]. 中國土壤與肥料, 2020(2):198-205.

JIN Yahong, YANG Shuqing, ZHANG Wanfeng, et al. Effects of straw and plastic film mulching on water-salt regulation and maize yield in alternate brackish irrigation[J]. Soil and Fertilizer Sciences in China,2020(2): 198-205.

[59] 呂雯, 孫兆軍, 陳小莉, 等. 地膜秸稈復合覆蓋改善龜裂堿土水鹽特性提高油葵產(chǎn)量[J]. 農(nóng)業(yè)工程學報, 2018, 34(13): 125-133.

LYU Wen, SUN Zhaojun, CHEN Xiaoli, et al. Plastic film and straw combined mulchingimproving water and salt characteristics of Takyr Solonetzs and yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 125-133.

[60] 王樂, 何平如, 張紅玲, 等. 秸稈深埋和覆膜對土壤水鹽及番茄產(chǎn)量的影響[J]. 水土保持研究, 2020, 27(3): 372-378.

WANG Le, HE Pingru, ZHANG Hongling, et al. Effects of straw burying and film mulching on soil water-salt and yield of tomato[J].Research of Soil and Water Conservation, 2020, 27(3): 372-378.

[61] 趙文舉, 馬宏, 范嚴偉, 等. 不同覆蓋模式下砂壤土水鹽運移特征研究[J]. 水土保持學報, 2016, 30(3): 331-336.

ZHAO Wenju, MA Hong, FAN Yanwei, et al. Study on the characteristics of water and salt transport in sandy loam soil under different mulching models[J]. Journal of Soil and Water Conservation,2016, 30(3): 331-336.

[62] 郭相平, 楊泊, 王振昌, 等. 秸稈隔層對濱海鹽漬土水鹽運移影響[J].灌溉排水學報, 2016, 35(5): 22-27.

GUO Xiangping, YANG Bo, WANG Zhenchang, et al. Influence of straw interlayer on the water and salt movement of costal saline soil[J].Journal of Irrigation and Drainage, 2016, 35(5): 22-27.

[63] 張萬鋒, 楊樹青, 靳亞紅, 等. 秸稈深埋下灌水量對土壤水鹽分布與夏玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)機械學報, 2021, 52(1): 228-237.

ZHANG Wanfeng, YANG Shuqing, JIN Yahong, et al. Effects of irrigation amount on soil water and salt distribution and summer maize yield under deeply buried straw[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 228-237.

[64] ZHAO Y G, WANG S J, LI Y, et al. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield[J]. Geoderma, 2019, 352: 13-21.

[65] ZHAO Y G, LI Y Y, WANG J, et al. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils[J]. Soil and Tillage Research, 2016, 155: 363-370.

[66] ZHANG H Y, PANG H C, ZHAO Y G, et al. Water and salt exchange flux and mechanism in a dry saline soil amended with buried straw of varying thicknesses[J]. Geoderma, 2020, 365: 114 213.

[67] 胡宏祥, 汪玉芳, 陳祝, 等. 秸稈還田配施化肥對黃褐土氮磷淋失的影響[J]. 水土保持學報, 2015, 29(5): 101-105.

HU Hongxiang, WANG Yufang, CHEN Zhu, et al. Effects of straw return with chemical fertilizer on nitrogen and phosphorus leaching from yellow cinnamon soil[J]. Journal of Soil and Water Conservation,2015, 29(5): 101-105.

[68] 劉磊, 廖萍, 邵華, 等. 施石灰和秸稈還田對雙季稻田土壤鉀素表觀平衡的互作效應[J]. 作物學報, 2022, 48(1): 226-237.

LIU Lei, LIAO Ping, SHAO Hua, et al. Interactive effects of liming and straw return on apparent soil potassium balance in a double rice cropping system[J]. Acta Agronomica Sinica, 2022, 48(1): 226-237.

[69] 孫志祥, 韓上, 武際, 等. 秸稈還田對雙季稻產(chǎn)量和土壤鉀素平衡的影響[J]. 中國農(nóng)學通報, 2020, 36(9): 9-13.

SUN Zhixiang, HAN Shang, WU Ji, et al. Effect of straw returning on yield and soil potassium balance of double cropping rice[J]. Chinese Agricultural Science Bulletin, 2020, 36(9): 9-13.

[70] 徐虎, 蔡岸冬, 周懷平, 等. 長期秸稈還田顯著降低褐土底層有機碳儲量[J]. 植物營養(yǎng)與肥料學報, 2021, 27(5): 768-776.

XU Hu, CAI Andong, ZHOU Huaiping, et al. Long-term straw incorporation significantly reduced subsoil organic carbon stock in cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5):768-776.

[71] 周正萍, 田寶庚, 陳婉華, 等. 不同耕作方式與秸稈還田對土壤養(yǎng)分及小麥產(chǎn)量和品質(zhì)的影響[J]. 作物雜志, 2021(3): 78-83.

ZHOU Zhengping, TIAN Baogeng, CHEN Wanhua, et al. Effects of different tillage methods and straw returning on soil nutrients and wheat yield and quality[J]. Crops, 2021(3): 78-83.

[72] 龔靜靜, 靳玉婷, 胡宏祥, 等. 稻秸還田對油菜季徑流氮磷及COD流失的影響[J]. 水土保持學報, 2019, 33(4): 24-29.

GONG Jingjing, JIN Yuting, HU Hongxiang, et al. Effects of rice straw incorporation on nitrogen, phosphorus and COD loss in rape seasonal runoff[J]. Journal of Soil and Water Conservation, 2019, 33(4): 24-29.

[73] 李雨諾, 樊媛媛, 曹彬彬, 等. 關中平原麥玉輪作體系作物秸稈不同還田模式下土壤有機碳和無機碳庫變化特征[J]. 應用生態(tài)學報,2021, 32(8): 2 703-2 712.

LI Yu’nuo, FAN Yuanyuan, CAO Binbin, et al. Soil organic and inorganic carbon pools as affected by straw return modes under a wheat-maize rotation system in the Guanzhong Plain, Northwest China[J].Chinese Journal of Applied Ecology, 2021, 32(8): 2 703-2 712.

[74] 高麗秀, 李俊華, 張宏, 等. 秸稈還田對滴灌春小麥產(chǎn)量和土壤肥力的影響[J]. 土壤通報, 2015, 46(5): 1 155-1 160.

GAO Lixiu, LI Junhua, ZHANG Hong, et al. Effects of straw return on the spring wheat yield and soil fertility under drip irrigation[J]. Chinese Journal of Soil Science, 2015, 46(5): 1 155-1 160.

[75] HUANG T T, YANG N, LU C, et al. Soil organic carbon, total nitrogen,available nutrients, and yield under different straw returning methods[J].Soil and Tillage Research, 2021, 214: 105 171.

[76] SOON Y K, LUPWAYI N Z. Straw management in a cold semi-arid region: Impact on soil quality and crop productivity[J]. Field Crops Research, 2012, 139: 39-46.

[77] DIKGWATLHE S B, CHEN Z D, LAL R, et al. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain[J]. Soil and Tillage Research, 2014, 144: 110-118.

[78] ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research, 2018, 175:178-186.

[79] 張哲, 孫占祥, 張燕卿, 等. 秸稈還田與氮肥配施對春玉米產(chǎn)量及水分利用效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2016, 34(3): 144-152.

ZHANG Zhe, SUN Zhanxiang, ZHANG Yanqing, et al. Effects of crop residues incorporation and N-fertilizer on yield and water use efficiency of spring maize[J]. Agricultural Research in the Arid Areas, 2016, 34(3):144-152.

[80] 高金虎, 孫占祥, 馮良山, 等. 秸稈與氮肥配施對玉米生長及水分利用效率的影響[J]. 東北農(nóng)業(yè)大學學報, 2011, 42(11): 116-120.

GAO Jinhu, SUN Zhanxiang, FENG Liangshan, et al. Effect of corn straw plus nitrogen fertilizer on growth and water use efficiency of maize[J]. Journal of Northeast Agricultural University, 2011, 42(11):116-120.

[81] 楊晨璐, 劉蘭清, 王維鈺, 等. 麥玉復種體系下秸稈還田與施氮對作物水氮利用及產(chǎn)量的效應研究[J]. 中國農(nóng)業(yè)科學, 2018,51(9): 1 664-1 680.

YANG Chenlu, LIU Lanqing, WANG Weiyu, et al. Effects of the application of straw returning and nitrogen fertilizer on crop yields,water and nitrogen utilization under wheat-maize multiple cropping system[J]. Scientia Agricultura Sinica, 2018, 51(9): 1 664-1 680.

[82] 李瑋, 喬玉強, 陳歡, 等. 玉米秸稈還田配施氮肥對冬小麥土壤氮素表觀盈虧及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學報, 2015, 21(3):561-570.

LI Wei, QIAO Yuqiang, CHEN Huan, et al. Effects of combined maize straw and N application on soil nitrogen surplus amount and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):561-570.

[83] 陳金, 唐玉海, 尹燕枰, 等. 秸稈還田條件下適量施氮對冬小麥氮素利用及產(chǎn)量的影響[J]. 作物學報, 2015, 41(1): 160-167.

CHEN Jin, TANG Yuhai, YIN Yanping, et al. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat[J]. Acta Agronomica Sinica, 2015, 41(1): 160-167.

[84] 劉艷慧, 王雙磊, 李金埔, 等. 棉花秸稈還田對土壤速效養(yǎng)分及微生物特性的影響[J]. 作物學報, 2016, 42(7): 1 037-1 046.

LIU Yanhui, WANG Shuanglei, LI Jinpu, et al. Effects of cotton straw returning on soil available nutrients and microbial characteristics[J].Acta Agronomica Sinica, 2016, 42(7): 1 037-1 046.

[85] 張學林, 張許, 王群, 等. 秸稈還田配施氮肥對夏玉米產(chǎn)量和品質(zhì)的影響[J]. 河南農(nóng)業(yè)科學, 2010, 39(9): 69-73.

ZHANG Xuelin, ZHANG Xu, WANG Qun, et al. Effects of straw returned plus nitrogen ferilizer on summer maize yield and grain quality[J]. Journal of Henan Agricultural Sciences, 2010, 39(9): 69-73.

[86] 馬永財, 滕達, 衣淑娟, 等. 秸稈覆蓋還田及腐解率對土壤溫濕度與玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)機械學報, 2021, 52(10): 90-99.

MA Yongcai, TENG Da, YI Shujuan, et al. Effects of straw mulching and decomposition rate on soil temperature and humidity and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery,2021, 52(10): 90-99.

[87] CHEN S, WANG Z C, GUO X P, et al. Effects of vertically heterogeneous soil salinity on tomato photosynthesis and related physiological parameters[J]. Scientia Horticulturae, 2019, 249: 120-130.

[88] CHEN S, ZHANG Z Y, WANG Z C, et al. Effects of uneven vertical distribution of soil salinity under a buried straw layer on the growth,fruit yield, and fruit quality of tomato plants[J]. Scientia Horticulturae,2016, 203: 131-142.

[89] 余坤, 李國建, 李百鳳, 等. 不同秸稈還田方式對土壤質(zhì)量改良效應的綜合評價[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2020, 38(3): 213-221.

YU Kun, LI Guojian, LI Baifeng, et al. Comprehensive evaluation of soil quality under different straw incorporation approaches[J].Agricultural Research in the Arid Areas, 2020, 38(3): 213-221.

[90] 董勤各, 李悅, 馮浩, 等. 秸稈氨化還田對農(nóng)田水分與夏玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)機械學報, 2018, 49(11): 220-229.

DONG Qin’ge, LI Yue, FENG Hao, et al. Effects of ammoniated straw incorporation on soil water and yield of summer maize(Zea mays L.)[J].Transactions of the Chinese Society for Agricultural Machinery, 2018,49(11): 220-229.

[91] 劉慧嶼, 何志剛, 劉艷, 等. 低溫堆腐與秸稈深翻還田對玉米產(chǎn)量及土壤微生物群落的影響[J]. 土壤通報, 2021, 52(4): 873-884.

LIU Huiyu, HE Zhigang, LIU Yan, et al. Effects of low-temperature compost and deep tillage returning of maize straw on maize yield and soil microbial community[J]. Chinese Journal of Soil Science, 2021,52(4): 873-884.

[92] 朱啟林, 劉麗君, 張雪彬, 等. 生物炭和秸稈添加對海南熱帶水稻土氮素淋溶的影響[J]. 水土保持學報, 2021, 35(4): 193-199.

ZHU Qilin, LIU Lijun, ZHANG Xuebin, et al. Effect of biochar and straw addition on nitrogen leaching of tropical paddy soil in Hainan[J].Journal of Soil and Water Conservation, 2021, 35(4): 193-199.

[93] 張國偉, 王曉婧, 楊長琴, 等. 前茬作物秸稈還田下輪作模式和施肥對大豆產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學報(中英文), 2021, 29(9):1 493-1 501.

ZHANG Guowei, WANG Xiaojing, YANG Changqin, et al. Effects of rotational pattern and fertilization application on soybean yield under straws returning of preceding crop[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1 493-1 501.

[94] 白偉, 張立禎, 逄煥成, 等. 秸稈還田配施氮肥對春玉米水氮利用效率的影響[J]. 華北農(nóng)學報, 2018, 33(2): 224-231.

BAI Wei, ZHANG Lizhen, PANG Huancheng, et al. Effects of straw returning plus nitrogen fertilizer on water use efficiency and nitrogen use efficiency of spring maize in northeast China[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(2): 224-231.

[95] 侯賢清, 吳鵬年, 王艷麗, 等. 秸稈還田配施氮肥對土壤水肥狀況和玉米產(chǎn)量的影響[J]. 應用生態(tài)學報, 2018, 29(6): 1 928-1 934.

HOU Xianqing, WU Pengnian, WANG Yanli, et al. Effects of returning straw with nitrogen application on soil water and nutrient status, and yield of maize[J]. Chinese Journal of Applied Ecology,2018, 29(6): 1 928-1 934.

[96] 汪軍, 王德建, 張剛, 等. 連續(xù)全量秸稈還田與氮肥用量對農(nóng)田土壤養(yǎng)分的影響[J]. 水土保持學報, 2010, 24(5): 40-44, 62.

WANG Jun, WANG Dejian, ZHANG Gang, et al. Effects of different nitrogen fertilizer rate with continuous full amount of straw incorporated on paddy soil nutrients[J]. Journal of Soil and Water Conservation, 2010, 24(5): 40-44, 62.

[97] RASOOL G, GUO X P, WANG Z C, et al. Effect of fertigation levels on water consumption, soil total nitrogen, and growth parameters of brassica chinensis under straw burial[J]. Communications in Soil Science and Plant Analysis, 2021, 52(1): 32-44.

[98] 黃容, 高明, 萬毅林, 等. 秸稈還田與化肥減量配施對稻-菜輪作下土壤養(yǎng)分及酶活性的影響[J]. 環(huán)境科學, 2016, 37(11): 4 446-4 456.

HUANG Rong, GAO Ming, WAN Yilin, et al. Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils[J]. Environmental Science, 2016, 37(11): 4 446-4 456.

[99] 李錦, 田霄鴻, 王少霞, 等. 秸稈還田條件下減量施氮對作物產(chǎn)量及土壤碳氮含量的影響[J]. 西北農(nóng)林科技大學學報(自然科學版), 2014,42(1): 137-143.

LI Jin, TIAN Xiaohong, WANG Shaoxia, et al. Effects of nitrogen fertilizer reduction on crop yields, soil nitrate nitrogen and carbon contents with straw returning[J]. Journal of Northwest A amp; F University(Natural Science Edition), 2014, 42(1): 137-143.

[100] 李有兵, 李錦, 李碩, 等. 秸稈還田下減量施氮對作物產(chǎn)量及養(yǎng)分吸收利用的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2015, 33(1): 79-84, 152.

LI Youbing, LI Jin, LI Shuo, et al. Effects of reducing nitrogen application on crop yields, nutrients uptake and utilization with straw incorporation[J]. Agricultural Research in the Arid Areas, 2015, 33(1):79-84, 152.

[101] RASOOL G, GUO X P, WANG Z C, et al. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato[J]. Agricultural Water Management, 2020,239: 106 239.

[102] 張素瑜, 王和洲, 楊明達, 等. 水分與玉米秸稈還田對小麥根系生長和水分利用效率的影響[J]. 中國農(nóng)業(yè)科學, 2016, 49(13): 2 484-2 496.

ZHANG Suyu, WANG Hezhou, YANG Mingda, et al. Influence of returning corn stalks to field under different soil moisture contents on root growth and water use efficiency of wheat (triticum aestivum L.)[J].Scientia Agricultura Sinica, 2016, 49(13): 2 484-2 496.

[103] 李昌明, 王曉玥, 孫波. 不同氣候和土壤條件下秸稈腐解過程中養(yǎng)分的釋放特征及其影響因素[J]. 土壤學報, 2017, 54(5): 1 206-1 217.

LI Changming, WANG Xiaoyue, SUN Bo. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions[J]. Acta Pedologica Sinica,2017, 54(5): 1 206-1 217.

[104] 張紅, 曹瑩菲, 徐溫新, 等. 植物秸稈腐解特性與微生物群落變化的響應[J]. 土壤學報, 2019, 56(6): 1 482-1 492.

ZHANG Hong, CAO Yingfei, XU Wenxin, et al. Decomposition of plant straws and accompanying variation of microbial communities[J].Acta Pedologica Sinica, 2019, 56(6): 1 482-1 492.

[105] 蔡麗君, 趙桂范, 劉婧琦, 等. 玉米不同部位秸稈腐解特征及其影響因素研究[J]. 玉米科學, 2019, 27(2): 113-119.

CAI Lijun, ZHAO Guifan, LIU Jingqi, et al. Study on maize straw decomposition characteristics and influencing factors[J]. Journal of Maize Sciences, 2019, 27(2): 113-119.

[106] KAMOTA A, MUCHAONYERWA P, MNKENI P N S. Decomposition of surface-applied and soil-incorporated bt maize leaf litter and Cry1Ab protein during winter fallow in South Africa[J]. Pedosphere, 2014, 24(2):251-257.

[107] 韓錦澤. 玉米秸稈還田深度對土壤有機碳組分及酶活性的影響[D].哈爾濱: 東北農(nóng)業(yè)大學, 2017.

HAN Jinze. Effects of maize straw returned depths onsoil organic carbon fractions and enzyme activities[D]. Harbin: Northeast Agricultural University, 2017.

[108] 馬興元, 劉琪, 馬君. 氨化預處理對生物質(zhì)秸稈厭氧發(fā)酵的影響[J].生態(tài)環(huán)境學報, 2011, 20(10): 1 503-1 506.

MA Xingyuan, LIU Qi, MA Jun. The effects of ammoniation pretreatment on anaerobic fermentation of the Biomass straw[J].Ecology and Environmental Sciences, 2011, 20(10): 1 503-1 506.

[109] 余坤, 馮浩, 趙英, 等. 氨化秸稈還田加快秸稈分解提高冬小麥產(chǎn)量和水分利用效率[J]. 農(nóng)業(yè)工程學報, 2015, 31(19): 103-111.

YU Kun, FENG Hao, ZHAO Ying, et al. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 103-111.

[110] 姚云柯. 促腐菌對水稻秸稈腐解的影響及其機理[D]. 北京: 中國農(nóng)業(yè)科學院, 2021.

YAO Yunke. Effect of straw-decomposition inoculants on rice straw decomposition and its mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.

[111] 陸寧海, 楊蕊, 郎劍鋒, 等. 秸稈還田對土壤微生物種群數(shù)量及小麥莖基腐病的影響[J]. 中國農(nóng)學通報, 2019, 35(34): 102-108.

LU Ninghai, YANG Rui, LANG Jianfeng, et al. Straw returning affects soil microbial population and wheat crown rot[J]. Chinese Agricultural Science Bulletin, 2019, 35(34): 102-108.

[112] 陳云峰, 夏賢格, 楊利, 等. 秸稈還田是秸稈資源化利用的現(xiàn)實途徑[J]. 中國土壤與肥料, 2020(6): 299-307.

CHEN Yunfeng, XIA Xian’ge, YANG Li, et al. Straw return is the realistic way of straw resource utilization[J]. Soil and Fertilizer Sciences in China, 2020(6): 299-307.

[113] 李磊. 秸稈還田方式對玉米紋枯病和大斑病發(fā)生流行的影響及機制研究[D]. 沈陽: 沈陽農(nóng)業(yè)大學, 2020.

LI Lei. Effects of straw mulching on occurrence and prevalence of maize sheath blight and maize macular disease[D]. Shenyang: Shenyang Agricultural University, 2020.

[114] 孫秀娟. 秸稈集中掩埋還田對赤霉病菌(Fusriaum graminearum Sehw.)和二化螟(Chilo suppressalis Walker)幼蟲存活的影響[D]. 南京:南京農(nóng)業(yè)大學, 2012.

SUN Xiujuan. Effects of straw centralize-buried in soil on suevtval dynamics of phytoalexin (fusarium graminearum sehw.) and stem-borer(chilo suppressalis walker) larvae[D]. Nanjing: Nanjing Agricultural University, 2012.

[115] 劉芳, 張長生, 陳愛武, 等. 秸稈還田技術研究及應用進展[J]. 作物雜志, 2012(2): 18-23.

LIU Fang, ZHANG Changsheng, CHEN Aiwu, et al. Technology research and application prospect of straw returning[J]. Crops, 2012(2):18-23.

[116] 王振躍, 施艷, 李洪連. 玉米秸稈還田配施生防放線菌S024 對麥田土壤微生物及小麥紋枯病的影響[J]. 生態(tài)學雜志, 2011, 30(2):311-314.

WANG Zhenyue, SHI Yan, LI Honglian. Effects of maize residue return in combination with S024 on soil microbial population and wheat sharp eyespot[J]. Chinese Journal of Ecology, 2011, 30(2): 311-314.

[117] 喬俊卿, 劉郵洲, 余翔, 等. 集成生物防治和秸稈還田技術對設施番茄增產(chǎn)及土傳病害防控效果研究[J]. 中國生物防治學報, 2013, 29(4):547-554.

QIAO Junqing, LIU Youzhou, YU Xiang, et al. Evaluation of yield increasing and control efficiency of tomato soil-borne diseases under the integrated application of straw returning and biocontrol agent[J].Chinese Journal of Biological Control, 2013, 29(4): 547-554.

[118] 郭曉源, 景殿璽, 周如軍, 等. 玉米秸稈腐解液酚酸物質(zhì)含量檢測及對玉米大斑病菌的影響[J]. 玉米科學, 2016, 24(4): 166-172.

GUO Xiaoyuan, JING Dianxi, ZHOU Rujun, et al. Detection of phenolic acids in crop straw decomposed liquid and their effect on pathogen of northern leaf blight of corn[J]. Journal of Maize Sciences,2016, 24(4): 166-172.

[119] 徐金強, 劉素慧, 劉慶濤, 等. 大蒜秸稈還田對溫室番茄連作土壤微生物及根結(jié)線蟲病的影響[J]. 江蘇農(nóng)業(yè)科學, 2017, 45(7): 91-93, 97.

XU Jinqiang, LIU Suhui, LIU Qingtao, et al. Effects of garlic straw returning on soil microorganisms and root-knot nematodes of tomato continuous cropping in greenhouse [J]. Jiangsu Agricultural Sciences,2017, 45(7): 91-93, 97.

[120] 曹志平, 周樂昕, 韓雪梅. 引入小麥秸稈抑制番茄根結(jié)線蟲病[J].生態(tài)學報, 2010, 30(3): 765-773.

CAO Zhiping, ZHOU Lexin, HAN Xuemei. Controlling tomato root-knot nematode disease by incorporating winter wheat straw to soil[J]. Acta Ecologica Sinica, 2010, 30(3): 765-773.

The Effects of Straw Incorporation on Physicochemical Properties of Soil: A Review

CHEN Sheng1, HUANG Da1,2,3*, ZHANG Li3, GUO Xiangping1, ZHANG Shuxuan1, CAO Xinchun1

(1. College of Agricultural Engineering, Hohai University, Nanjing 210098, China;2. College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China;3. Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin 541004, China;4. Yancheng Agricultural Resources Development Planning, Design and Evaluation Center, Yancheng 224000, China)

Straw incorporation is a proven agronomic practice not only for improving water conservation and alleviating soil salinization but also increasing soil fertility and crop yield. This paper reviews the progresses in decades of studies on effects of straw incorporation on physical and biogeochemical properties of soil as well as the consequences for water and salt transport, soil nutrients and crop yield. We also review the side effects of straw incorporation and their mitigations. In particular, we focus on the combined effects of straw incorporation with other agronomic practices including tillage, soil conditioners, pretreatment of straw, and analyze the mechanisms underlying the changes in soil properties in response to these treatments. The effects of the amount of incorporated straw, its buried depth, the way of incorporation on water and salt movement are also analyzed. We discuss the mechanisms underlying the improved water storage and soil desalination, as well as soil fertility and crop yield due to straw incorporation. Several perspectives which deserve further studies are also highlighted, including its combined effect with nitrogen fertilization, accelerating straw decomposition, the impact on soil water and soil nutrients, as well as some detrimental influences and their mitigation. Based on available studies, some points worth attention in practical application of straw incorporation are addressed. This review provides a reference for research and application of straw in crop production.

straw incorporation; soil aggregation; soil water and salt movement; soil fertility; soil quality improvement

S156.4

A

10.13522/j.cnki.ggps.2021540

陳盛, 黃達, 張力, 等. 秸稈還田對土壤理化性質(zhì)及水肥狀況影響的研究進展[J]. 灌溉排水學報, 2022, 41(6): 1-11.

CHEN Sheng, HUANG Da, ZHANG Li, et al. The Effects of Straw Incorporation on Physicochemical Properties of Soil:A Review[J]. Journal of Irrigation and Drainage, 2022, 41(6): 1-11.

1672 - 3317(2022)06 - 0001 - 11

2021-11-03

國家自然科學基金項目(52109052);中國博士后科學基金資助項目(2021M690873);中央高?;究蒲袠I(yè)務費專項資金項目(B200202094);廣西建筑新能源與節(jié)能重點實驗室(桂科能22-J-21-8)

陳盛(1989-),男。博士,主要從事鹽堿土改良,鹽脅迫下的植物響應研究。E-mail:chens@hhu.edu.com

黃達(1990-),男。博士研究生,講師,主要從事鹽堿土改良,鹽脅迫下的植物響應研究。E-mail: dada-wong@hhu.edu.com

責任編輯:趙宇龍

猜你喜歡
作物秸稈土壤
土壤
作物遭受霜凍該如何補救
四種作物 北方種植有前景
解讀“一號文件”:推進秸稈綜合利用
推廣秸稈還田 有效培肥土壤
靈感的土壤
學生天地(2020年34期)2020-06-09 05:50:36
內(nèi)生微生物和其在作物管理中的潛在應用
識破那些優(yōu)美“擺拍”——鏟除“四風”的土壤
當代陜西(2019年11期)2019-06-24 03:40:26
秸稈綜合利用模式探索
靈感的土壤
兴安县| 安岳县| 广东省| 库伦旗| 上思县| 阳西县| 曲阜市| 苗栗县| 呼图壁县| 梨树县| 历史| 梁平县| 岑溪市| 昌黎县| 万州区| 武宣县| 兴隆县| 巨野县| 吉木乃县| 临城县| 体育| 秦皇岛市| 尖扎县| 盐城市| 探索| 邵阳市| 年辖:市辖区| 上饶县| 吐鲁番市| 陵川县| 新丰县| 扬州市| 铁力市| 柏乡县| 浠水县| 公主岭市| 体育| 锡林浩特市| 札达县| 甘谷县| 高碑店市|