胡峰帆,范秀娟,彭峰,鄧春明,劉敏,曾德長(zhǎng),寧成云
醫(yī)用材料聚醚醚酮等離子噴涂表面改性研究進(jìn)展
胡峰帆1,2,范秀娟2,彭峰3,鄧春明2,劉敏2,曾德長(zhǎng)1,寧成云1
(1.華南理工大學(xué) 材料科學(xué)與工程學(xué)院,廣州 510640;2.廣東省科學(xué)院新材料研究所 現(xiàn)代材料表面工程技術(shù)國(guó)家工程實(shí)驗(yàn)室 廣東省現(xiàn)代表面工程技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣州 510651;3.廣東省人民醫(yī)院,廣州 510080)
聚醚醚酮材料(PEEK)具有良好的生物相容性、化學(xué)穩(wěn)定性、X射線可穿透性及優(yōu)異的力學(xué)性能,廣泛用于創(chuàng)傷、脊柱和關(guān)節(jié)等生物醫(yī)療領(lǐng)域。然而,PEEK屬于生物惰性材料,其骨整合性不足,這在一定程度上限制了該材料在骨修復(fù)與替換等領(lǐng)域的發(fā)展和應(yīng)用。等離子噴涂技術(shù)由于工藝簡(jiǎn)單、經(jīng)濟(jì),噴涂涂層的黏結(jié)強(qiáng)度高等特點(diǎn),是解決聚醚醚酮材料骨整合能力不足的重要表面涂層改性技術(shù)。首先,簡(jiǎn)述了等離子噴涂工藝的涂層沉積機(jī)理,并分別對(duì)等離子噴涂鈦以及羥基磷灰石兩種常用涂層進(jìn)行了介紹;其次,從不同噴涂工藝以及噴涂參數(shù)對(duì)涂層的影響出發(fā),詳細(xì)介紹了近幾年對(duì)PEEK基等離子噴涂涂層的結(jié)合強(qiáng)度等機(jī)械性能的最新研究進(jìn)展,并對(duì)等離子噴涂過程對(duì)PEEK基體的機(jī)械強(qiáng)度、疲勞強(qiáng)度、熱性能和化學(xué)降解等初始性能影響進(jìn)行了總結(jié)與評(píng)價(jià),詳細(xì)介紹了PEEK基等離子噴涂涂層體內(nèi)外生物性能的最新研究進(jìn)展;最后,展望了等離子噴涂改性PEEK基材料的臨床應(yīng)用前景,以期為未來設(shè)計(jì)新型PEEK基生物材料提供理論指導(dǎo)。
聚醚醚酮;等離子噴涂;機(jī)械性能;生物性能;
金屬基生物材料如鈦合金由于其優(yōu)異的耐腐蝕性和較高的機(jī)械強(qiáng)度在臨床骨科生物醫(yī)用材料領(lǐng)域得到了廣泛的應(yīng)用[1]。然而,長(zhǎng)期使用中金屬離子的釋放以及應(yīng)力屏蔽等問題引起了人們廣泛的擔(dān)憂。術(shù)后并發(fā)癥如骨溶解、致敏性以及由植入體松動(dòng)導(dǎo)致的植入體失敗都有可能發(fā)生。傳統(tǒng)金屬基植入材料已不能滿足臨床應(yīng)用安全無毒且長(zhǎng)壽命等需求[2-3]。因此,新型醫(yī)用材料的開發(fā)與研究顯得尤為重要。
聚醚醚酮(PEEK)作為一種熱塑性聚合物,具有與人皮質(zhì)骨相當(dāng)?shù)膹椥阅A浚?~4 GPa)和密度(1.3 g/cm3),這在一定程度上減弱或消除了傳統(tǒng)金屬基植入體的應(yīng)力屏蔽效應(yīng)[4-5]。PEEK具有良好的化學(xué)穩(wěn)定性,極大地方便了其作為植入物在臨床上進(jìn)行多種滅菌處理[6]。此外,PEEK還具有良好的射線可通過性,存在于人體中進(jìn)行計(jì)算機(jī)斷層掃描(CT)和磁共振檢查(MRI)時(shí)不會(huì)產(chǎn)生偽影,且在臨床檢查和診斷時(shí)不需要拆除[7]。然而,PEEK屬于惰性材料,其表面生物活性較低,骨整合性不足,不利于細(xì)胞的黏附、增殖和分化,易引起植入體與人體骨組織之間纖維組織的生成[8-9],最終造成許多并發(fā)癥如種植體移位、籠陷或假性關(guān)節(jié)等問題發(fā)生,這限制了PEEK在臨床中的進(jìn)一步應(yīng)用[10-11]。
雖然PEEK在物理和化學(xué)性質(zhì)上都是穩(wěn)定的,但它可以通過物理或者化學(xué)方法如離子噴涂[12]、氣溶膠沉積[13]、電子束沉積[14]等在基體表面制備具有生物活性涂層以達(dá)到改善表面性能的目的[15]。表面涂層改性能夠在不影響基體機(jī)械強(qiáng)度和延展性下增加表面生物活性。骨科植入體涂覆涂層能夠在不使用額外骨水泥或螺釘?shù)那闆r下固定植入體,減少術(shù)后住院時(shí)間,防止過敏反應(yīng),從而延長(zhǎng)植入體的壽命[16]。因此,近幾年表面涂層技術(shù)改性植入體生物活性的研究得到了廣泛的關(guān)注。等離子噴涂技術(shù)作為表面涂層改性重要的技術(shù)之一,是唯一一種被美國(guó)食品與藥品管理局(FDA)批準(zhǔn)的制備生物涂層的方法,并且已廣泛用于臨床金屬基生物材料表面改性[17-18]。對(duì)于新型醫(yī)用聚合物PEEK材料,等離子噴涂改性其表面骨整合性研究是目前該領(lǐng)域研究的熱點(diǎn)。本文主要對(duì)等離子噴涂改性PEEK基植入物材料的相關(guān)研究進(jìn)行了介紹。
等離子噴涂技術(shù)是指以等離子體為熱源,將粉末噴涂材料加熱到熔融或半熔融狀態(tài),并經(jīng)加速沉積到經(jīng)過預(yù)處理的工件表面而形成涂層,如圖1所示[19]。目前常用的工藝方法有大氣等離子噴涂(APS)、真空等離子噴涂(VPS)以及低壓等離子噴涂(LPPS)。此外還有超低壓等離子噴涂和懸浮液等離子噴涂(SPS)等新型工藝技術(shù)[20]。從涂層結(jié)構(gòu)上來看,等離子噴涂涂層組織細(xì)密,氧化物含量較低,涂層與基體間的結(jié)合以及涂層粒子間的結(jié)合形式除以機(jī)械結(jié)合為主外,還可產(chǎn)生微區(qū)冶金結(jié)合和物理結(jié)合,具有較高的結(jié)合強(qiáng)度。從工藝技術(shù)上,噴涂材料范圍廣泛,設(shè)備精度高,并且調(diào)控噴涂參數(shù)可以實(shí)現(xiàn)不同厚度、孔隙率等要求的涂層制備[21-22]。
聚醚醚酮作為一種耐高溫的工程熱塑性材料,具有相對(duì)較高的玻璃化轉(zhuǎn)變溫度(約140 ℃)和熔點(diǎn)(約340 ℃),能在200 ℃以上的溫度短時(shí)間暴露[23]。這些特征使得等離子噴涂工藝能夠應(yīng)用于聚醚醚酮基材料改性,前提是準(zhǔn)確地調(diào)節(jié)對(duì)基底冷卻影響較大的參數(shù),例如:冷卻系統(tǒng)、等離子槍與基底的位置和距離、涂覆過程中的相對(duì)運(yùn)動(dòng)等。
采用等離子噴涂技術(shù)制備生物涂層的研究中,金屬材料Ti和陶瓷材料羥基磷灰石粉末是兩種常用的噴涂材料。鈦涂層不僅具備金屬材料較好的機(jī)械強(qiáng)度、高粗糙度和多孔性特征,還可增加植入體與骨組織的接觸面積,有利于骨長(zhǎng)入,提高涂層與骨界面的結(jié)合強(qiáng)度;而且,在一定程度上可改變?cè)谪?fù)載狀態(tài)下骨植入體與骨之間界面的力學(xué)傳遞方式[24-26]。HA作為一種生物活性材料,其成分和天然骨相同,具有十分優(yōu)良的生物相容性和生物活性,可被人體組織降解吸收[27-28]。植入人體后,能夠很快地與骨結(jié)合,從而獲得更穩(wěn)定的固定強(qiáng)度,同時(shí)減少愈合時(shí)間和減輕患者疼痛[29]。粗糙多孔Ti涂層和生物活性羥基磷灰石涂層在等離子噴涂臨床金屬基骨科植入物上已經(jīng)得到了廣泛的應(yīng)用。而等離子噴涂改性新型生物材料PEEK基生物涂層的研究仍是該領(lǐng)域研究的熱點(diǎn)。
圖1 等離子噴涂工藝過程示意圖[19]
生物材料聚醚醚酮等離子噴涂生物涂層的研究可以追溯到至少幾十年前。Ha等[30]首次采用等離子噴涂方法對(duì)聚醚醚酮植入體進(jìn)行了涂層研究。通過APS工藝在高碳纖維增強(qiáng)聚醚醚酮(CFR–PEEK)基板上沉積了厚度達(dá)200 μm的HA涂層。然而,涂層的結(jié)合強(qiáng)度很低,僅有2.8 MPa。研究發(fā)現(xiàn),在1 650 ℃以上,HA顆粒部分熔融導(dǎo)致PEEK基體蒸發(fā)產(chǎn)生蒸汽膜,蒸汽膜阻礙了PEEK基體與涂層的緊密接觸進(jìn)而造成結(jié)合強(qiáng)度降低。在之后的研究中,Ha等[31]又通過VPS工藝制備了一系列不同厚度的Ti涂層、HA涂層以及HA/Ti復(fù)合涂層,涂層都與PEEK基體具有良好的連鎖反應(yīng),認(rèn)為VPS是一種適合在CFR–PEEK植入物沉積HA/Ti涂層的方法。Beauvais等[32]利用APS工藝成功在聚醚醚酮試樣上涂覆了厚度為150 μm的HA涂層。涂層的結(jié)合強(qiáng)度提高到7.5 MPa,涂層的結(jié)晶度為74%。提出可以通過優(yōu)化基體噴砂工藝或使用VPS工藝制備鈦結(jié)合層來提高涂層的黏合強(qiáng)度,并且使用高性能黏合劑可以更好地評(píng)估強(qiáng)度。Bureau等[33-34]介紹了兩項(xiàng)關(guān)于聚醚醚酮上APS–HAp涂層的不同研究。第一項(xiàng)研究是關(guān)于APS參數(shù)對(duì)Ca–P基涂層(HA、α–TCP和β–TCP)結(jié)晶度和相含量的影響。結(jié)果表明不同噴涂工藝參數(shù)對(duì)羥基磷灰石涂層的晶相與非晶相之間有顯著的調(diào)節(jié)作用。第二項(xiàng)研究介紹一種新的HA涂層制備方法,首先在PEEK基體上制備了HA(質(zhì)量分?jǐn)?shù)30%)/PEEK復(fù)合層,然后采用APS技術(shù)在復(fù)合層上制備了厚度為85 μm的HA涂層,力學(xué)性能測(cè)試表明,該涂層的結(jié)合強(qiáng)度為(20.9±2.1) MPa,遠(yuǎn)遠(yuǎn)高于以往的研究。
涂層的制備工藝影響涂層的力學(xué)性能,通過改善等離子噴涂工藝參數(shù)以適應(yīng)聚醚醚酮基材,涂層的機(jī)械性能逐漸得到改善。Wu等[35]研究了等離子體功率、噴涂距離、氣體流量和送粉速率等APS噴涂參數(shù)對(duì)HA粉末表面溫度和飛行速率的影響,研究表明,隨著載氣中氬氣含量的增加以及噴涂電流的增加,HA粒子的飛行速率增大。隨著送粉速率和噴涂距離的增加,HA粒子的飛行速率減小。Zappini等[36]以CFR–PEEK為基體,分別通過APS和VPS技術(shù)研制了從低厚度/低孔隙率到高厚度/高孔隙率的3種鈦涂層,如圖2所示。并對(duì)3種涂層的力學(xué)性能進(jìn)行了評(píng)估,結(jié)果表明,3種涂層的結(jié)合強(qiáng)度均高于30 MPa。Suska等[37]通過使用更小的粉末顆粒尺寸(黏結(jié)層為15~45 μm Ti粉末,頂層為15~50 μm的HA粉末)和更長(zhǎng)的等離子噴涂距離,對(duì)應(yīng)用于鈦合金基底的商業(yè)VPS工藝進(jìn)行了改進(jìn)。測(cè)量雙層200 μm涂層的結(jié)合強(qiáng)度為(28.5±2.3)MPa。Ca/P和結(jié)晶度分別為1.67和58.7%。Vogel等[38]分別采用平均粒度為90 μm和180 μm的 Ti粉末制備了兩種不同的VPS–Ti涂層。較小的粒度導(dǎo)致較低的表面粗糙度和較低的結(jié)合強(qiáng)度(細(xì)Ti:= 30.2 μm,結(jié)合強(qiáng)度為30.3 MPa;粗Ti:= 64.1 μm,結(jié)合強(qiáng)度為37.8 MPa),但涂層分布更均勻,孔隙率更高(細(xì)Ti 33.3%,粗Ti 30%)。
鈦?zhàn)鳛橐环N高活潑性金屬,在等離子噴涂過程中,氣體吸附到顆粒上會(huì)發(fā)生氧化、氮化以及相變,其化學(xué)成分會(huì)發(fā)生變化。因此,通過對(duì)噴涂參數(shù)的精心優(yōu)化和噴涂粒子的適當(dāng)選擇,可以獲得多種不同特性的等離子噴涂Ti涂層,圖3顯示了成功用于鈦合金或鈷鉻合金金屬植入體的不同鈦涂層[21]。一般情況下,與APS工藝相比,VPS工藝等離子體的焰流的直徑和長(zhǎng)度更大,氣體流速更快。這導(dǎo)致涂層具有高密度、低氧化物含量以及高結(jié)合強(qiáng)度[39]。此外,表面預(yù)處理同樣也是影響涂層與基材結(jié)合強(qiáng)度的關(guān)鍵因素之一。噴砂作為一種廉價(jià)、簡(jiǎn)單且快速的技術(shù),已經(jīng)被廣泛應(yīng)用于這一目的。噴砂因素如磨料顆粒的類型、硬度和尺寸、工藝壓力和時(shí)間等必須考慮在內(nèi),且需根據(jù)不同的基材仔細(xì)調(diào)整。而對(duì)于HA涂層,其較差的力學(xué)性能阻礙了HA作為高應(yīng)力區(qū)域的大塊材料的使用。將生物活性HA涂層和機(jī)械強(qiáng)度高的金屬結(jié)合是成功制造承重外科植入物的關(guān)鍵。在獲得HA涂層的不同方法中,等離子噴涂仍然被認(rèn)為是成本/效益最高的工藝技術(shù)。HA涂層的重要屬性如相組成、結(jié)晶度、微觀結(jié)構(gòu)性能和結(jié)合強(qiáng)度取決于等離子噴涂過程的各種參數(shù),這些特性顯著影響著涂層的機(jī)械強(qiáng)度、化學(xué)穩(wěn)定性以及植入后的生物反應(yīng)。對(duì)金屬基植入體HA涂層的研究表明,電弧功率越大,氣體流量越大,粉末尺寸越小,涂層組織越均勻,孔隙率越低。較低的等離子體功率以及氣體流量和較大的粉末尺寸會(huì)導(dǎo)致涂層微觀結(jié)構(gòu)的不均勻性和多孔性。當(dāng)噴涂距離增大到一定值時(shí),涂層均勻性增大,隨著噴涂距離增大,均勻性減小[40]。對(duì)于PEEK基植入物,與金屬基板相比,其熔化和分解溫度較低,建議使用較小的粉末顆粒尺寸和較長(zhǎng)的噴涂距離。此外,HA在等離子噴涂過程中同樣也會(huì)發(fā)生化學(xué)變化和相變化,羥基磷灰石在高溫(超過1 350 ℃)下是不穩(wěn)定的、部分HA會(huì)分解成磷酸三鈣(TCP)、磷酸四鈣(TTCP)和非晶相等雜質(zhì)。由于這些雜質(zhì)比 HA 的溶解度高得多,降解快,使得涂層在載荷和人體體液腐蝕的共同作用下變得不穩(wěn)定,導(dǎo)致涂層早期溶解,從而降低涂層與基底之間的結(jié)合強(qiáng)度。就涂層與骨的結(jié)合來看,涂層溶解和降解造成Ca、P局部濃度相對(duì)較高,卻能與骨細(xì)胞的蛋白質(zhì)分子相互作用,并刺激骨生長(zhǎng),使植入體與骨形成化學(xué)和生物結(jié)合。因此,適量的溶解和降解是必須的,重要的是應(yīng)避免涂層過早的溶解而減弱涂層與基底的牢固結(jié)合,即需控制涂層中HA的含量。
圖2 (a)低厚度/低孔隙率鈦涂層,(b)中等厚度/中等孔隙率鈦涂層,(c)高厚度/高孔隙率鈦涂層[36]
圖3 不同噴涂工藝下的等離子噴涂鈦涂層[21]
等離子噴涂工藝涂覆聚醚醚酮植入物時(shí),調(diào)整等離子噴涂工藝參數(shù)以提高涂層附著力或優(yōu)化粗糙度以及孔隙率可能會(huì)對(duì)PEEK基底特性產(chǎn)生負(fù)面影響。聚醚醚酮基體的機(jī)械性能和化學(xué)性能在涂覆過程后應(yīng)保持不變或至少應(yīng)保持在一定的安全限值內(nèi),因此,那些可能受涂層工藝影響的PEEK的性能如機(jī)械強(qiáng)度、疲勞強(qiáng)度、熱性能和化學(xué)降解得到了研究者的廣泛關(guān)注,以期實(shí)現(xiàn)保障PEEK自身優(yōu)異性能的前提下,提高其骨整合性能。
Beauvais等[32]對(duì)噴涂前后PEEK基體的拉伸強(qiáng)度、沖擊強(qiáng)度、拉伸伸長(zhǎng)率和彎曲強(qiáng)度進(jìn)行了測(cè)量。結(jié)果表明,涂覆HA涂層導(dǎo)致PEEK拉伸強(qiáng)度、沖擊強(qiáng)度、彎曲強(qiáng)度值略有提高。而拉伸伸長(zhǎng)率變從32%降至15%。等離子體產(chǎn)生大量紫外線等輻射,聚醚醚酮拉伸伸長(zhǎng)率的降低可以用紫外線照射來解釋。Oliveira等[41]通過APS工藝在聚醚醚酮表面涂覆了HA涂層,研究了等離子噴涂過程對(duì)PEEK疲勞性能和拉伸性能的影響。三點(diǎn)彎曲試驗(yàn)和拉伸試驗(yàn)表明,等離子噴涂過程對(duì)PEEK材料的拉伸強(qiáng)度沒有明顯的影響,材料的彎曲強(qiáng)度和疲勞應(yīng)力衰減率略有提高。Vogel等[38]采用了VPS工藝在聚醚醚酮表面涂覆了Ti涂層。試驗(yàn)結(jié)果表明,涂層工藝對(duì)PEEK材料的彎曲模量、5%彎曲應(yīng)變時(shí)的彎曲應(yīng)力和斷裂應(yīng)變并沒有顯著影響。試樣的拉伸強(qiáng)度、物理化學(xué)性能沒有發(fā)生改變。Sarg?n等[42]對(duì)聚醚醚酮噴涂前后進(jìn)行了紅外光譜分析(FTIR),如圖4所示,以評(píng)估等離子噴涂工藝對(duì)聚醚醚酮化學(xué)結(jié)構(gòu)和官能團(tuán)的變化。結(jié)果顯示,聚醚醚酮聚合物在涂覆期間或之后沒有發(fā)生任何化學(xué)變化。
圖4 聚醚醚酮表面涂層和聚醚醚酮樣品的紅外光譜比較[42]
在PEEK基上涂覆等離子噴涂涂層需要考慮的重要方面是它在紫外線照射下的化學(xué)降解。由于紫外線的吸收,芳香族醚鍵處的聚合物鏈可能會(huì)發(fā)生斷裂而產(chǎn)生羥基(—OH)和酯基(O—C==O),造成PEEK機(jī)械性能的損失和變色。因此,還必須規(guī)范涂層工藝,最大限度地減少PEEK基材暴露的紫外線輻射[43-45]。
植入物表面涂層的體外生物性能測(cè)試是評(píng)估制備涂層生物活性的主要手段,體外生物性能的結(jié)果也是表面涂層改性植入物是否有效的主要依據(jù)。Yoon等[46]將人骨髓間充質(zhì)干細(xì)胞(hMSCs)以一定密度接種到不同表面粗糙度的等離子噴涂后的PEEK–Ti上。研究表明,表面形貌直接影響細(xì)胞黏附和增殖的能力。細(xì)胞要在粗糙的表面上生長(zhǎng),必須形成偽足并相互作用。如果細(xì)胞深陷在超粗糙表面的深孔中,它們就無法通過偽足形成相互作用,即表面粗糙度不能超過一定的范圍。Barillas等[47]使用二氧化鈦(TiO2)作為黏結(jié)層,采用APS制備了HA–TiO2–PEEK復(fù)合材料,并對(duì)涂層的微觀結(jié)構(gòu)、物理化學(xué)性質(zhì)以及穩(wěn)定性進(jìn)行了評(píng)估。將人成骨肉瘤細(xì)胞(MG63)種植到制備好的涂層上培養(yǎng)1 h后,細(xì)胞開始在涂層表面附著生長(zhǎng),體外生物試驗(yàn)表明,該涂層體現(xiàn)了良好的生物相容性與生物活性。Beard等[48]通過測(cè)量不同基體促進(jìn)骨相關(guān)基因表達(dá)的能力來評(píng)估基體與細(xì)胞之間的相互作用。將小鼠骨髓間充質(zhì)干細(xì)胞(BM–MSCs)分別種植在Ti、PEEK以及PEEK–Ti基體上,采用兩步RT–qPCR分析堿性磷酸酶(AlP)、骨鈣素(OCN)、RUNX2等骨形成標(biāo)志物的基因表達(dá)。試驗(yàn)結(jié)果表明,與Ti、PEEK基體相比,PEEK-Ti在14 d內(nèi)顯示出更高的成骨基因表達(dá)和細(xì)胞存活率。Sarg?n等[43]采用大氣等離子噴涂在PEEK基體上分別噴涂了Ti、Ti–HA、TiO2–HA涂層。在模擬體液(SBF)中進(jìn)行的體外實(shí)驗(yàn)表明,HA、Ti–HA和TiO2–HA涂層均具有良好的生物活性。
骨植入體植入后會(huì)形成促進(jìn)骨生長(zhǎng)的表面,這一過程始于骨祖細(xì)胞附著在植入體表面會(huì)沉積一層富鈣、無膠原的界面層。它為分化后的骨祖細(xì)胞生成膠原骨基質(zhì)提供了基礎(chǔ)。Hickey等[49]為了探究界面層的沉積條件,將人轉(zhuǎn)染成骨細(xì)胞(hFOB 1.19)種植在PEEK–Ti、未改性PEEK和Ti–6Al–4V基體的表面,比較了不同基體表面界面層的沉積情況。PEEK–Ti粗糙表面為細(xì)胞增殖提供了更大的接觸面積,僅細(xì)胞培養(yǎng)24 h后,PEEK–Ti表面所測(cè)得的鈣沉積量分別比未改性Ti–6Al–4V和PEEK高出305%和470%,如圖5所示。堿性磷酸酶的缺乏則證實(shí)了細(xì)胞仍未分化。這些試驗(yàn)結(jié)果表明PEEK-Ti表面可以通過刺激未分化的骨祖細(xì)胞加速富鈣界面的形成從而促進(jìn)骨生長(zhǎng),這與普遍認(rèn)為只有成熟的成骨細(xì)胞沉積鈣的觀點(diǎn)相反。后續(xù)需要更多的研究來闡明其作用機(jī)制。表1總結(jié)了近幾年聚醚醚酮植入物上等離子噴涂生物涂層的體外生物性能的研究。
圖5 不同基體表面hFOB 1.19細(xì)胞鈣相對(duì)沉積量[49]
在聚醚醚酮基底上成功制備具有足夠機(jī)械性能的鈦和羥基磷灰石涂層后體外細(xì)胞實(shí)驗(yàn),研究者傾向于關(guān)注這些涂層的體內(nèi)行為。Devine等[50]分別采用真空等離子噴涂(VPS)和物理氣相沉積(PVD)2種不同的技術(shù)在CF/PEEK螺釘上分別涂覆了Ti涂層。與PVD制備的鈦涂層螺釘相比,VPS制備的鈦涂層螺釘具有更高的去除扭矩和直接骨接觸。Suska等[37]采用VPS在CFR-PEEK基板上涂覆了HA/Ti復(fù)合涂層,經(jīng)過清潔與消毒后植入11只成年雌性新西蘭白兔中。植入6周后,對(duì)手術(shù)部位進(jìn)行組織學(xué)研究,發(fā)現(xiàn)HA/Ti包覆的CFR–PEEK植入物與HA涂覆的鈦合金植入物具有同等的骨結(jié)合性,后者被普遍接受為工業(yè)標(biāo)準(zhǔn)。Walsh等[51]研究了等離子噴涂Ti涂層的PEEK材料對(duì)骨/植入體界面的力學(xué)和組織學(xué)性能的影響。利用建立好的綿羊模型,成功在4只綿羊的股骨遠(yuǎn)端和脛骨近端移入了涂覆Ti涂層的PEEK植入體。體內(nèi)試驗(yàn)表明,植入4周后,與未改性的PEEK相比,多孔鈦涂層提高了骨/植入體界面的剪切強(qiáng)度,并且隨著時(shí)間的推移剪切強(qiáng)度持續(xù)升高,組織學(xué)檢查顯示等離子噴涂的Ti涂層可以實(shí)現(xiàn)骨與植入體的直接結(jié)合。隨后Walsh等[52]繼續(xù)對(duì)等離子噴涂HA涂層的PEEK材料進(jìn)行了綿羊體內(nèi)研究。試驗(yàn)結(jié)果表明,與純PEEK植入體相比,PEEK–HA植入體在頸椎融合模型試驗(yàn)中能夠改善骨生長(zhǎng)和融合效果,如圖6所示。Stübinger等[53]比較了不同等離子噴涂涂層(APS–Ti、VPS–Ti、VPS–Ti黏接層+APS–HA表層)對(duì)PEEK和CFR–PEEK植入體的體內(nèi)行為。將108根聚醚醚酮棒植入6只綿羊的骨盆中,分別在2周和12周后對(duì)手術(shù)部位進(jìn)行組織學(xué)檢查并進(jìn)行拔出試驗(yàn)測(cè)試。與未涂層的植入物相比,等離子噴涂后的植入體在骨結(jié)合方面有顯著改善,且12周后顯示出更高的拔出值(<0.001)。其中雙層涂層(鈦結(jié)合層和羥基磷灰石表層)在2周和12周后顯示出最優(yōu)異的結(jié)果。他們得出結(jié)論,等離子噴涂鈦和羥基磷灰石涂層對(duì)骨結(jié)合有顯著的改善作用。Sclafani等[54]對(duì)44名在接受前路腰椎體間融合術(shù)(ALIF)中移入VPS–Ti–PEEK植入體的患者進(jìn)行了術(shù)后隨訪。隨訪入體上的VPS–Ti涂層為骨-植入體界面提供了快速而穩(wěn)定的固定,顯著改善了術(shù)后患者的臨床結(jié)果。
表1 等離子噴涂PEEK植入體的體外生物活性研究總結(jié)
Tab.1 A summary of bioactivity on plasma-sprayed PEEK implants in vitro
通過動(dòng)物體內(nèi)試驗(yàn),Ti涂層以及HA涂層脊柱植入物的臨床試驗(yàn)也取得了良好的結(jié)果,但需要進(jìn)一步的臨床試驗(yàn)來證明涂層的長(zhǎng)期穩(wěn)定性。聚醚醚酮植入物上等離子噴涂生物涂層的體內(nèi)生物性能的研究總結(jié)見表2。
圖6 植入12周后PEEK(a,c)和PEEK–HA(b,d)分別在松質(zhì)骨部位骨生長(zhǎng)[52]
表2 聚醚醚酮植入物上等離子噴涂生物涂層的體內(nèi)生物性能研究總結(jié)
Tab.2 A summary of bioactivity on plasma-sprayed biological coating PEEK implants in vivo
PEEK作為一種有機(jī)熱塑性聚合物,有著十分優(yōu)異的生物相容性、化學(xué)穩(wěn)定性、X射線可穿透性以及與人體自然骨相匹配的力學(xué)性能。然而,PEEK屬于惰性材料,其表面生物活性較低,骨整合能力欠佳。等離子噴涂作為重要的表面涂層改性技術(shù),應(yīng)用在PEEK材料上的力學(xué)和生物學(xué)研究已經(jīng)有30年歷史。研究者們分別對(duì)等離子噴涂PEEK基涂層機(jī)械性能以及體內(nèi)外生物性能進(jìn)行了研究,并對(duì)等離子噴涂工藝對(duì)PEEK基體的初始性能影響進(jìn)行了探索。
在制備PEEK基生物涂層的等離子噴涂工藝中,APS是最具成本效益的方法,有會(huì)議論文報(bào)道,符合國(guó)際標(biāo)準(zhǔn)的生物相容性Ti和HA涂層都可以用APS在PEEK基材上生產(chǎn),目前,國(guó)際期刊上沒有同行評(píng)議的文章報(bào)告其結(jié)合強(qiáng)度超過標(biāo)準(zhǔn)中規(guī)定的下限。另一方面,與APS相比,VPS具有更高的純度和結(jié)合強(qiáng)度,且調(diào)控噴涂參數(shù)可以實(shí)現(xiàn)不同厚度、孔隙率、粗糙度等要求的涂層制備。但工藝成本較高,耗時(shí)較長(zhǎng)。為了提高APS涂層在PEEK植入體上的性能,未來可采用懸浮液等離子噴涂或遮蔽式等離子噴涂等方法代替。在懸浮液等離子噴涂法中,通過液體載體將細(xì)粉末注入等離子體中,較低的噴涂溫度以及較高的粒子飛行速度提供了較高的結(jié)晶度以及結(jié)合強(qiáng)度。此外,用這種方法能夠用細(xì)粉末生產(chǎn)非常薄的涂層。在遮蔽式等離子噴涂方法中,使用氣體或固體屏蔽來防止噴涂的粒子與周圍空氣中的氧氣接觸。因此,在不使用真空室的情況下,依舊可以得到較低氧化物含量和較高純度的涂層,從而獲得較好的機(jī)械性能。
從目前僅有的文獻(xiàn)來看,等離子噴涂工藝應(yīng)用在PEEK基涂層主要是HA以及Ti涂層為主,其他類型的生物涂層文獻(xiàn)鮮有報(bào)道。研究主要集中在涂層的機(jī)械性能以及涂層生物活性方面。而對(duì)涂層的機(jī)械性能研究主要體現(xiàn)在結(jié)合強(qiáng)度等方面,對(duì)于涂層的綜合性能還缺乏系統(tǒng)的研究。如何調(diào)控噴涂工藝參數(shù)在保證基體初始性能的條件下制備具有優(yōu)異綜合性能的PEEK基生物涂層還需要進(jìn)一步探索。此外,涂層的抗菌性能亦是植入體植入成功的關(guān)鍵因素之一,Ti涂層屬于生物惰性材料,自身不具備生物活性以及抗菌性能。而HA作為一種生物活性材料,其抗菌作用差、骨誘導(dǎo)能力弱等體內(nèi)生物性能等問題限制了其在臨床上的應(yīng)用。采用等離子噴涂工藝制備PEEK基生物涂層的研究方興未艾,隨著研究的深入,未來應(yīng)有更多的生物活性涂層被開發(fā)出來。制備兼具生物活性、抗菌性能以及優(yōu)異機(jī)械性能的PEEK基等離子噴涂涂層是目前攻克的重要難題。
PEEK植入體目前主要還處于研究階段,尚未投入大規(guī)模臨床生產(chǎn),關(guān)于PEEK植入體生物學(xué)性能研究還僅局限于動(dòng)物模型試驗(yàn),PEEK植入體能否替代傳統(tǒng)觀金屬基植入體還需更長(zhǎng)久的研究。
[1] SINGH J, CHATHA S S, SINGH H. Synthesis and Characterization of Plasma Sprayed Functional Gradient Bioceramic Coating for Medical Implant Applications[J]. Ceramics International, 2021, 47(7): 9143-9155.
[2] MAVROGENIS A F, VOTTIS C, TRIANTAFYLLO-POULOS G, et al. PEEK Rod Systems for the Spine[J]. European Journal of Orthopaedic Surgery & Traumat-ology, 2014, 24(1): 111-116.
[3] KUMAR N, RAMAKRISHNAN S A, LOPEZ K G, et al. Can Polyether Ether Ketone Dethrone Titanium as the Choice Implant Material for Metastatic Spine Tumor Surgery? [J]. World Neurosurgery, 2021, 148: 94-109.
[4] NAJEEB S, ZAFAR M S, KHURSHID Z, et al. Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics[J]. Journal of Prostho-dontic Research, 2016, 60(1): 12-19.
[5] ANGUIANO-SANCHEZ J, MARTINEZ-ROMERO O, SILLER H R, et al. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis[J]. Computational and Mathematical Methods in Medicine, 2016, 2016: 6183679.
[6] BUCK E, LI Hao, CERRUTI M. Surface Modification Strategies to Improve the Osseointegration of Poly(Et-heretherketone) and Its Composites[J]. Macromolecular Bioscience, 2020, 20(2): e1900271.
[7] VERMA S, SHARMA N, KANGO S, et al. Developm-ents of PEEK (Polyetheretherketone) as a Biomedical Material: A Focused Review[J]. European Polymer Journal, 2021, 147: 110295.
[8] PELLETIER M H, CORDARO N, PUNJABI V M, et al. PEEK Versus Ti Interbody Fusion Devices: Resultant Fu-sion, Bone Apposition, Initial and 26-Week Biomec-hanics[J]. Clinical Spine Surgery, 2016, 29(4): E208- E214.
[9] PHAN K, HOGAN J A, ASSEM Y, et al. PEEK-Halo Effect in Interbody Fusion[J]. Journal of Clinical Neuro-science: Official Journal of the Neurosurgical Society of Australasia, 2016, 24: 138-140.
[10] LIU Xi-lin, HAN Fei, ZHAO Peng, et al. Layer-by-Layer Self-Assembled Multilayers on PEEK Implants Improve Osseointegration in an Osteoporosis Rabbit Model[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2017, 13(4): 1423-1433.
[11] RAO P J, PELLETIER M H, WALSH W R, et al. Spine Interbody Implants: Material Selection and Modification, Functionalization and Bioactivation of Surfaces to Improve Osseointegration[J]. Orthopaedic Surgery, 2014, 6(2): 81-89.
[12] KANG A S, SINGH G, CHAWLA V. In-Vitro Perfo-rmance of Reinforced Hydroxyapatite Coatings Deposited Using Vacuum Plasma Spray Technique on Ti-6Al-4V[J]. Materials Today: Proceedings, 2020, 26: 671-676.
[13] HAHN B D, PARK D S, CHOI J J, et al. Osteoconductive Hydroxyapatite Coated PEEK for Spinal Fusion Surg-ery[J]. Applied Surface Science, 2013, 283: 6-11.
[14] HAN C M, LEE E J, KIM H E, et al. The Electron Beam Deposition of Titanium on Polyetheretherketone (PEEK) and the Resulting Enhanced Biological Properties[J]. Biomaterials, 2010, 31(13): 3465-3470.
[15] MA Rui, TANG Ting-ting. Current Strategies to Improve the Bioactivity of PEEK[J]. International Journal of Molecular Sciences, 2014, 15(4): 5426-5445.
[16] ESPALLARGAS N. Introduction to Thermal Spray Coati-ngs[M]//Future Development of Thermal Spray Coatings. Amsterdam: Elsevier, 2015: 1-13.
[17] GUILLEM-MARTI J, CINCA N, PUNSET M, et al. Porous Titanium-Hydroxyapatite Composite Coating Ob-tained on Titanium by Cold Gas Spray with High Bond Strength for Biomedical Applications[J]. Colloids and Surfaces B: Biointerfaces, 2019, 180: 245-253.
[18] GANVIR A, NAGAR S, MARKOCSAN N, et al. Deposition of Hydroxyapatite Coatings by Axial Plasma Spraying: Influence of Feedstock Characteristics on Coa-ting Microstructure, Phase Content and Mechanical Properties[J]. Journal of the European Ceramic Society, 2021, 41(8): 4637-4649.
[19] MERAN C, GUNER A T. A Review on Plasma Sprayed Titanium and Hydroxyapatite Coatings on Polyether-etherketone Implants[J]. International Journal of Surface Science and Engineering, 2019, 13(4): 237.
[20] ARCOS D, VALLET-REGí M. Substituted Hydrox-yapatite Coatings of Bone Implants[J]. Journal of Mate-rials Chemistry B, 2020, 8(9): 1781-1800.
[21] ROBOTTI P, ZAPPINI G. Thermal Plasma Spray Depo-sition of Titanium and Hydroxyapatite on PEEK Impla-nts[M]//PEEK Biomaterials Handbook. Amsterdam: Else-vier, 2019: 147-177.
[22] SINGH J, CHATHA S S, SINGH H. Characterization and Corrosion Behavior of Plasma Sprayed Calcium Silicate Reinforced Hydroxyapatite Composite Coatings for Med-ical Implant Applications[J]. Ceramics International, 2021, 47(1): 782-792.
[23] ZHANG Jue, CAI Liang, WANG Ting-lan, et al. Lithium Doped Silica Nanospheres/Poly(Dopamine) Composite Coating on Polyetheretherketone to Stimulate Cell Resp-onses, Improve Bone Formation and Osseoint-egration[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14(3): 965-976.
[24] GKOMOZA P, LAMPROPOULOS G S, VARDAVO-ULIAS M, et al. Microstructural Investigation of Porous Titanium Coatings, Produced by Thermal Spraying Tech-niques, Using Plasma Atomization and Hydride-Deh-ydride Powders, for Orthopedic Implants[J]. Surface and Coatings Technology, 2019, 357: 947-956.
[25] YANG C Y, CHEN C R, CHANG E, et al. Characteristics of Hydroxyapatite Coated Titanium Porous Coatings on Ti-6Al-4V Substrates by Plasma Sprayed Method[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 82B(2): 450-459.
[26] BRAEM A, CHAUDHARI A, VIVAN CARDOSO M, et al. Peri- and Intra-Implant Bone Response to Microporous Ti Coatings with Surface Modification[J]. Acta Bioma-terialia, 2014, 10(2): 986-995.
[27] SURMENEV R A, SURMENEVA M A. A Critical Review of Decades of Research on Calcium Phospha-te-Based Coatings: How far are we from Their Widesp-read Clinical Application? [J]. Current Opinion in Biome-dical Engineering, 2019, 10: 35-44.
[28] ARIFIN A, SULONG A B, MUHAMAD N, et al. Mate-rial Processing of Hydroxyapatite and Titanium Alloy (HA/Ti) Composite as Implant Materials Using Powder Metallurgy: A Review[J]. Materials & Design, 2014, 55: 165-175.
[29] RATHA I, DATTA P, BALLA V K, et al. Effect of Doping in Hydroxyapatite as Coating Material on Biomedical Implants by Plasma Spraying Method: A Review[J]. Ceramics International, 2021, 47(4): 4426-4445.
[30] -W HA S, MAYER J, KOCH B, et al. Plasma-Sprayed Hydroxylapatite Coating on Carbon Fibre Reinforced Thermoplastic Composite Materials[J]. Journal of Mate-rials Science: Materials in Medicine, 1994, 5(6): 481-484.
[31] HA S W, GISEP A, MAYER J, et al. Topographical Characterization and Microstructural Interface Analysis of Vacuum-Plasma-Sprayed Titanium and Hydroxyapatite Coatings on Carbon Fibre-Reinforced Poly(Etheret-herketone)[J]. Journal of Materials Science Materials in Medicine, 1997, 8(12): 891-896.
[32] BEAUVAIS S, DECAUX O. Plasma Sprayed Biocom-patible Coatings on PEEK Implants[J]. Material Science, 2007, 534: 389.
[33] BUREAU M, LEGOUX J G, DIMITRIEVSKA S. CaP Coating on PEEK Varies Upon Processing Conditions[J]. Coatings, 2009, 21: 481.
[34] BUREAU M, SPRING A, LEGOUX J G. High Adhesion Plasma-Sprayed HA Coating on PEEK and other Poly-mers[J]. Coatings, 2019, 33: 564.
[35] WU G M, HSIAO W D, KUNG S F. Investigation of Hydroxyapatite Coated Polyether Ether Ketone Comp-osites by Gas Plasma Sprays[J]. Surface and Coatings Technology, 2009, 203(17-18): 2755-2758.
[36] ZAPPINI G, MALLARDOA A, FABBRIA A. Recent Developments in Plasma Spray Coatings on CFR-PEEK for Orthopaedic Applications[J]. Material Science and Engineering, 2017, 181: 12001.
[37] SUSKA F, OMAR O, EMANUELSSON L, et al. Enhanc-ement of CRF-PEEK Osseointegration by Plasma-Spra-yed Hydroxyapatite: A Rabbit Model[J]. Journal of Bio-materials Applications, 2014, 29(2): 234-242.
[38] VOGEL D, DEMPWOLF H, BAUMANN A, et al. Characterization of Thick Titanium Plasma Spray Coat-ings on PEEK Materials Used for Medical Implants and the Influence on the Mechanical Properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77: 600-608.
[39] FAUCHAIS P L, HEBERLEIN J V R, BOULOS M I. D.C. Plasma Spraying[M]//Thermal Spray Fundamentals. Boston, MA: Springer US, 2013: 383-477.
[40] WANG Ai-juan, LU Yu-peng, CHEN Chuan-zhong, et al. Effect of Plasma Spraying Parameters on the Sprayed Hydroxyapatite Coating[J]. Surface Review and Letters, 2007, 14(2): 179-184.
[41] OLIVEIRA T P, SILVA S N, SOUSA J A. Flexural Fatigue Behavior of Plasma-Sprayed Hydroxyapat-ite- Coated Polyether-Ether-Ketone (PEEK) Injection Moldi-ngs Derived from Dynamic Mechanical Analysis[J]. Inte-rnational Journal of Fatigue, 2018, 108: 1-8.
[42] SARGIN F, ERDOGAN G, KANBUR K, et al. Inves-tigation ofBehavior of Plasma Sprayed Ti, TiO2and HA Coatings on PEEK[J]. Surface and Coatings Technology, 2021, 411: 126965.
[43] NAKAMURA H, NAKAMURA T, NOGUCHI T, et al. Photodegradation of PEEK Sheets under Tensile Stress[J]. Polymer Degradation and Stability, 2006, 91(4): 740-746.
[44] SUTTER J K, MIYOSHI K, BOWMAN C, et al. Erosion Coatings for Polymer Matrix Composites in Propulsion Applications[J]. High Performance Polymers, 2003, 15(4): 421-440.
[45] IVOSEVIC M, KNIGHT R, KALIDINDI S R, et al. Adhesive/Cohesive Properties of Thermally Sprayed Fun-ctionally Graded Coatings for Polymer Matrix Com-posites[J]. Journal of Thermal Spray Technology, 2005, 14(1): 45-51.
[46] YOON B J V, XAVIER F, WALKER B R, et al. Optimizing Surface Characteristics for Cell Adhesion and Proliferation on Titanium Plasma Spray Coatings on Polyetheretherketone[J]. The Spine Journal, 2016, 16(10): 1238-1243.
[47] BARILLAS L, TESTRICH H, CUBERO-SESIN J M, et al. Bioactive Plasma Sprayed Coatings on Polymer Substrates Suitable for Orthopedic Applications: A Study with PEEK[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2(5): 520-525.
[48] BEARD R, VAN HORN M R, BUCKLEN B. 54. Titan-ium Plasma Spray Enhances Ability of PEEK to Express Genes Related to Bone Formation[J]. The Spine Journal, 2020, 20(9): S26.
[49] HICKEY D J, LORMAN B, FEDDER I L. Improved Response of Osteoprogenitor Cells to Titanium Plas-ma-Sprayed PEEK Surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2019, 175: 509-516.
[50] DEVINE D M, HAHN J, RICHARDS R G, et al. Coating of Carbon Fiber-Reinforced Polyetheretherketone Impla-nts with Titanium to Improve Bone Apposition[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2013, 101B(4): 591-598.
[51] WALSH W R, BERTOLLO N, CHRISTOU C, et al. Plasma-Sprayed Titanium Coating to Polyetheretherke-tone Improves the Bone-Implant Interface[J]. The Spine Journal, 2015, 15(5): 1041-1049.
[52] PHD N B, et al. Does PEEK/HA Enhance Bone For-mation Compared with PEEK in a Sheep Cervical Fusion Model? [J]. Clinical Orthopaedics and Related Rese-arch®, 2016, 474(11): 2364-2372.
[53] STüBINGER S, DRECHSLER A, BüRKI A, et al. Titanium and Hydroxyapatite Coating of Polyetherether-ketone and Carbon Fiber-Reinforced Polyetheretherk-etone: A Pilot Study in Sheep[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2016, 104(6): 1182-1191.
[54] SCLAFANI J A, BERGEN S R, STAPLES M, et al. Arthrodesis Rate and Patient Reported Outcomes after Anterior Lumbar Interbody Fusion Utilizing a Plasma- Sprayed Titanium Coated PEEK Interbody Implant: A Retrospective, Observational Analysis[J]. International Journal of Spine Surgery, 2017, 11(1): 4.
Research Advance in Medical Material Polyether-ether-ketone of Surface Modification by Plasma Spraying
1,2,2,3,2,2,1,1
(1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; 2. Guangdong Academy of Sciences, Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, the Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China; 3. Guangdong General Hospital, Guangzhou 510080, China)
Polyether ether ketone (PEEK) has the advantages of high mechanical strength, excellent chemical stability, and transparency to diagnostic X-rays, and its density and elasticity is closer to bones compared to metals. PEEK is widely used in biomedical fields such as trauma, spine, and joints. However, PEEK is a bioinert material with insufficient osteointegration, which limits the development and application in bone repair and replacement to a certain extent. Plasma spraying (PS) technology is an important surface coating modification technology to solve the problem of bone integration of PEEK materials due to its simple process, economy, and high adhesive strength of the coatings. Firstly, this paper briefly describes the coating deposition mechanism of PS process, then titanium (Ti) and hydroxyapatite (HA) coatings manufactured by PS are introduced respectively; Secondly, based on the different spraying processes and spraying parameters, the latest research progress of plasma sprayed PEEK-based coatings on mechanical properties such as bonding strength in recent years is introduced in detail. The effects of PS process on the initial properties of PEEK substrate, such as mechanical strength, fatigue strength, thermal properties and chemical degradation are summarized and evaluated; The latest research progress of plasma sprayed PEEK-based coatings on biological properties in vitro and in vivo is also introduced in detail; Finally, the clinical application of plasma sprayed PEEK is prospected to provide theoretical guidance for the design of new PEEK-based biomaterials in the future.
PEEK; plasma spraying; mechanical property, biological property
TG174.442
A
1001-3660(2022)07-0053-10
10.16490/j.cnki.issn.1001-3660.2022.07.005
2021–06–30;
2021–10–29
2021-06-30;
2021-10-29
廣東省特支本土團(tuán)隊(duì)計(jì)劃項(xiàng)目(2019BT02C629);廣東省現(xiàn)代表面工程技術(shù)重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(2020B1212060049);廣東省科學(xué)院建設(shè)國(guó)內(nèi)一流研究機(jī)構(gòu)行動(dòng)專項(xiàng)資金項(xiàng)目(2021GDASYL–20210103062);順德區(qū)2020年核心技術(shù)攻關(guān)項(xiàng)目(2030218000189)
Supported by Guangdong Special Support Program (2019BT02C629); Guangdong Key Laboratory of Modern Surface Engineering Technology (2020B1212060049); Special Fund Project of Guangdong Academy of Sciences to Build a First-class Research Institution in China (2021GDASYL-20210103062); Key Technology Project of Shunde District in 2020 (2030218000189)
胡峰帆(1997—),男,碩士研究生,主要研究方向?yàn)樯锿繉印?/p>
HU Feng-fan (1997-), Male, Postgraduate, Research focus: biological coating.
范秀娟(1989—),女,博士,工程師,主要研究方向?yàn)楸砻娓男陨锃h(huán)境涂層。
FAN Xiu-juan (1989-), Female, Doctor, Engineer, Research focus: surface modified biological environment coating.
胡峰帆,范秀娟,彭峰,等.醫(yī)用材料聚醚醚酮等離子噴涂表面改性研究進(jìn)展[J]. 表面技術(shù),2022, 51(7): 53-62.
HU Feng-fan, FAN Xiu-juan, PENG feng, et al. Research Advance in Medical Material Polyether-ether-ketone of Surface Modification by Plasma Spraying[J]. Surface Technology, 2022, 51(7): 53-62.
責(zé)任編輯:萬長(zhǎng)清