劉 勇,楊 濤,盤宏斌,曾 力,曹 雷
基于遞歸通用信號延遲疊加算子的單相鎖相環(huán)
劉 勇1,楊 濤1,盤宏斌1,曾 力1,曹 雷2
(1.湘潭大學(xué)自動化與電子信息學(xué)院,湖南 湘潭 411105;2.貴州電網(wǎng)有限責(zé)任公司都勻供電局,貴州 都勻 558000)
當(dāng)電網(wǎng)電壓存在諧波與直流偏移時,傳統(tǒng)鎖相環(huán)無法精確鎖相。為此,提出一種基于遞歸通用信號延遲疊加算子的改進單相鎖相環(huán)算法。該方法在鎖相環(huán)前級引入遞歸通用信號延遲疊加算子,以產(chǎn)生正交信號并濾除諧波。接著在兩相靜止坐標(biāo)系下,構(gòu)建延遲采樣周期濾波器,通過將正交分量延遲兩個采樣周期的方法抑制直流偏移。所提單相鎖相環(huán)技術(shù)能夠消除直流偏移和諧波干擾的影響,快速準(zhǔn)確地獲取基波和所需的特定次諧波信息,同時具有良好的動態(tài)性能和穩(wěn)定性。最后,仿真與實驗結(jié)果證明了該方法的可行性。
單相鎖相環(huán);延遲信號疊加;直流偏移;諧波分離;同步信號檢測
在有源電力濾波器和分布式發(fā)電系統(tǒng)等能源和電力應(yīng)用中,快速準(zhǔn)確地獲取電網(wǎng)電壓的相位、頻率和諧波成分等信息是十分重要的[1-4]。鎖相環(huán)結(jié)構(gòu)(Phase-Locked Loop, PLL)由鑒相器、環(huán)路濾波器和壓控振蕩器組成,結(jié)構(gòu)簡單、易于實現(xiàn),被廣泛應(yīng)用于電網(wǎng)同步[5-9]。
不同于三相供電系統(tǒng),在單相系統(tǒng)中,由于只有一個輸入信號,鎖相環(huán)結(jié)構(gòu)更為復(fù)雜[10]。近年來,基于正交信號發(fā)生器(Quadrature Signal Generator, QSG)的鎖相環(huán)因其在非理想電網(wǎng)電壓條件下的魯棒性,在單相系統(tǒng)中發(fā)揮著至關(guān)重要的作用[11-14]。
文獻[15]詳細研究了包括二階廣義積分器(Second-Order Generalized Integrator, SOGI)以及復(fù)系數(shù)濾波器(Complex-Coefficient Filter, CCF)在內(nèi)的多種正交信號發(fā)生技術(shù)。這些方法通過單相電網(wǎng)電壓信號生成虛擬正交信號,具有動態(tài)響應(yīng)慢、對諧波敏感等缺點。文獻[16]推導(dǎo)了一種通用信號延遲疊加算子(Generalized Delayed Signal Superposition Operator, GDSS),GDSS算子能夠?qū)崿F(xiàn)對單相輸入信號中任意所選頻率信號的提取,并生成其對應(yīng)的正交信號。基于這種GDSS算子,文獻[17]提出了一種基于GDSS算子的鎖相環(huán)結(jié)構(gòu)(GDSS-PLL),可以在諧波干擾下快速準(zhǔn)確地提取基波及諧波信號同步信號。
在實際電網(wǎng)中,由于電網(wǎng)故障、數(shù)字信號處理器中的 A/D 轉(zhuǎn)換、地磁現(xiàn)象、半波整流、電流互感器飽和以及分布式發(fā)電系統(tǒng)的直流注入等原因[18-19],PLL輸入電壓中會產(chǎn)生直流偏移。而直流偏移會導(dǎo)致PLL輸出波形中含二倍頻波動[20]。文獻[21]給出了直流偏移對鎖相環(huán)性能影響的定量分析。結(jié)果表明,隨著前級輸入中直流偏移量的增大,鎖相環(huán)的帶寬必須相應(yīng)減小。
針對以上問題,本文在GDSS-PLL的基礎(chǔ)上,提出一種改進單相鎖相環(huán)技術(shù)。首先,在離散域下基于直接形式的GDSS算子推導(dǎo)GDSS算子的遞歸實現(xiàn)形式。相對直接形式GDSS算子而言,遞歸GDSS算子減小了實現(xiàn)復(fù)雜度,且降低了計算量。然后,提出了一種延遲采樣周期濾波器(Delay Sampling Period Filter, DSPF)以濾除PLL輸入中的直流偏移。并對所提DSPF算法的抗噪性能進行研究,給出了相應(yīng)的解決方案。接著,通過遞歸GDSS算子提取單相輸入信號中的基波及所需諧波信號,并生成其對應(yīng)的正交信號。同時引入DSPF濾除所得信號中的直流偏移。最后通過基于同步旋轉(zhuǎn)坐標(biāo)系的鎖相環(huán)(Synchronous Reference Frame-Phase Locked Loop, SRF-PLL)獲取電網(wǎng)基波頻率和相位信息。仿真與實驗結(jié)果表明,所提鎖相方法在不同電網(wǎng)故障下都能保持良好的同步性能。
文獻[16]提出一種GDSS算子,其表達式為
根據(jù)文獻[26]給出的三角函數(shù)疊加公式,可以將式(4)進一步簡化為
圖1 GDSS直接實現(xiàn)形式
Fig. 1 Direct-form of GDSS
其中,j為虛部,根據(jù)式(11),式(9)和式(10)可以進一步簡化為
圖2 GDSS遞歸實現(xiàn)形式
進一步推導(dǎo),式(14)和式(15)可表示為
表1 RGDSS參數(shù)表
根據(jù)式(19)和式(20),通過推導(dǎo)可得次諧波在軸上的分量,可表示為
在工程實際中,DSPF算法需要在離散域內(nèi)實現(xiàn),對式(21)和式(22)進行離散化。
所提DSPF算法可以濾除直流偏移,理論動態(tài)響應(yīng)時間僅為兩個采樣周期。與目前廣泛應(yīng)用的DSC算法相比,動態(tài)響應(yīng)時間明顯縮短。
從圖4可以看出,基波頻率和相位同步是通過SRF-PLL實現(xiàn)的,但其性能主要由GDSS算子和DSPF模塊所組成的前置濾波級決定。因此可以根據(jù)具體應(yīng)用和控制要求靈活設(shè)計GDSS算子和DSPF模塊的參數(shù)和個數(shù)。由于預(yù)濾波級的RGDSS和DSPF模塊濾除了諧波和直流偏移,輸入信號沒有失真,因此SRF-PLL的帶寬可以設(shè)置的足夠?qū)?,PI參數(shù)可以按照文獻[29]所述設(shè)計。
圖4 MRGDSS-DSPF-PLL結(jié)構(gòu)圖
為進一步檢驗MRGDSS-DSPF-PLL的動態(tài)性能和穩(wěn)定性,設(shè)置了電壓跌落、相角跳變和頻率跳變3種工況。
圖6 在直流偏移和諧波干擾下的仿真結(jié)果
圖7 電壓跌落的仿真結(jié)果
圖8 相角跳變的仿真結(jié)果
圖9 頻率跳變的仿真結(jié)果
本文實驗基于StarSim半實物平臺進行驗證,如圖10所示,實驗平臺主要由快速控制原型器、I/O信號轉(zhuǎn)接板、實時仿真器以及主機操控平臺組成。通過基于FPGA的實時仿真器模擬單相電壓信號,鎖相環(huán)算法經(jīng)過編譯后下載到快速控制原型器中運行,鎖相結(jié)果可通過示波器或上位機顯示。實驗中參數(shù)設(shè)置與仿真一致,實驗結(jié)果如圖11所示。
圖10 半實物平臺組成
所提單相鎖相環(huán)在直流偏移和諧波干擾下的實驗結(jié)果如圖11(a)所示。對比圖6仿真結(jié)果以及圖11的實驗結(jié)果,動態(tài)過程超調(diào)量和響應(yīng)時間基本一致,可以看出所提方法能夠?qū)崿F(xiàn)基波頻率快速準(zhǔn)確的估計,由RGDSS和直流偏移濾除算法所組成的前置濾波級可以有效且快速地消除直流偏移和諧波干擾的影響,進而使SRF-PLL成功鎖相。
圖11(b)是電壓跌落時鎖相環(huán)的輸出波形,可以看到鎖相環(huán)動態(tài)響應(yīng)時間較短,約25 ms時鎖相環(huán)輸出達到穩(wěn)定,且頻率波形超調(diào)也較小,約為4%,與仿真結(jié)果相吻合。圖11(c)是相角跳變時的實驗結(jié)果,由于加入了DSPF算法,頻率估計過程超調(diào)量較大。頻率突變時的實驗結(jié)果如圖11(d)所示,在頻率偏移情況下鎖相環(huán)仍能準(zhǔn)確估計頻率。實驗證明了所提單相鎖相環(huán)結(jié)構(gòu)在電網(wǎng)常見故障下仍能精準(zhǔn)鎖相,盡管DSPF算法會增大頻率估計時動態(tài)響應(yīng)的超調(diào)量,但能通過調(diào)節(jié)使其表現(xiàn)出滿意的性能。
圖11 實驗結(jié)果
[1] PRAKASH S, SINGH J K, BEHERA R K, et al. A type-3 modified SOGI-PLL with grid disturbance rejection capability for single-phase grid-tied converters[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 4242-4252.
[2] MENG Xin, ZHU Yanbin, LIU Lei, et al. Research on power control strategy of household-level electric power router based on hybrid energy storage droop control[J]. Protection and Control Modern Power Systems, 2021, 6(2): 178-180.
[3] BAMIGBADE A, KHADKIKAR V, AL HOSANI M. Single-phase type-1 frequency-fixed FLL for distorted voltage condition[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3865-3875.
[4] TANG M, BIFARETTI S, PIPOLO S, et al. A novel low computational burden dual-observer phase-locked loop with strong disturbance rejection capability for more electric aircraft[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 3832-3841.
[5] 王佳浩, 潘歡, 納春寧, 等. 復(fù)雜電網(wǎng)環(huán)境下基于DDM-QT1-PLL的并網(wǎng)同步方法[J]. 電力系統(tǒng)保護與控制, 2020, 48(13): 132-141.
WANG Jiahao, PAN Huan, NA Chunning, et al. Grid-connected synchronization method based on DDM-QT1-PLL under complex grid conditions[J]. Power System Protection and Control, 2020, 48(13): 132-141.
[6] 朱建紅, 黃瓊, 孟棒棒. 基于分量濾波直接解耦風(fēng)電并網(wǎng)鎖相環(huán)設(shè)計[J]. 電力系統(tǒng)保護與控制, 2018, 46(24): 135-141.
ZHU Jianhong, HUANG Qiong, MENG Bangbang. Direct decoupling wind power grid-connected phase-locked loop design based oncomponent filtering[J]. Power System Protection and Control, 2018, 46(24): 135-141.
[7] 汪娟娟, 龔英明, 文兆新, 等. 一種基于級聯(lián)延遲信號消去鎖相環(huán)的高壓直流輸電同步觸發(fā)控制[J]. 中國電機工程學(xué)報, 2021, 41(2): 524-536.
WANG Juanjuan, GONG Yingming, WEN Zhaoxin, et al. A firing control of HVDC based on cascaded delayed signal cancellation phase locked loop[J]. Proceedings of the CSEE, 2021, 41(2): 524-536.
[8] 許津銘, 卞申一陽, 錢浩, 等. 弱電網(wǎng)下單相并網(wǎng)逆變器延時鎖相環(huán)的魯棒控制及優(yōu)化方法[J]. 中國電機工程學(xué)報, 2020, 40(7): 2062-2070, 2386.
XU Jinming, BIAN Shenyiyang, QIAN Hao, et al. Robust control and optimization of delay-based phase-locked loop of single-phase grid-connected inverters under weak grid conditions[J]. Proceedings of the CSEE, 2020, 40(7): 2062-2070, 2386.
[9] 朱建紅, 顧菊平, 孟棒棒, 等. 軟硬鎖相環(huán)在分布式風(fēng)電并網(wǎng)控制中的聯(lián)合應(yīng)用[J]. 太陽能學(xué)報, 2022, 43(1): 36-43.
ZHU Jianhong, GU Juping, MENG Bangbang, et al. Integrated application of software and hardware phase-locked loop on grid connection control for distributed wind power[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 36-43.
[10] 張振波, 王海云, 王維慶, 等. 基于改進型環(huán)路濾波器的單相鎖相環(huán)[J]. 電力系統(tǒng)保護與控制, 2021, 49(13): 135-141.
ZHANG Zhenbo, WANG Haiyun, WANG Weiqing, et al. Single phase locked loop based on improved loop filter[J]. Power System Protection and Control, 2021, 49(13): 135-141.
[11] SALEEM K, ALI Z, MEHRAN K. A single-phase synchronization technique for grid-connected energy storage system under faulty grid conditions[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 12019-12032.
[12] 陳四雄, 易龍強, 黃文俊, 等. 基于構(gòu)造非正交向量的單相鎖相技術(shù)研究[J]. 電工技術(shù)學(xué)報, 2019, 34(2): 398-408.
CHEN Sixiong, YI Longqiang, HUANG Wenjun, et al. Single-phase phase-locked technique based on constructing non-orthogonal vector[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 398-408.
[13] GOLESTAN S, GUERRER J M, VASQUEZ J C. A nonadaptive window-based PLL for single-phase applications[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 24-31.
[14] SALEEM K, MEHRAN K, ALI Z. An improved pre-filtering moving average filter based synchronization algorithm for single-phase V2G application[C] // 2020 IEEE Energy Conversion Congress and Exposition (ECCE), October 11-15, 2020, Detroit, MI, USA: 4088-4093.
[15] HAN Y, LUO M, ZHAO X, et al. Comparative performance evaluation of orthogonal-signal-generators- based single -phase PLL algorithms—a survey[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3932-3944.
[16] 盧勇, 肖國春, 臧龍飛. 一種基于通用信號延遲疊加算子的單相電網(wǎng)基波及諧波同步算法[J]. 中國電機工程學(xué)報, 2017, 37(7): 1974-1982.
LU Yong, XIAO Guochun, ZANG Longfei. Single-phase grid fundamental and harmonic component detection method based on generalized delayed signal superposition[J]. Proceedings of the CSEE, 2017, 37(7): 1974-1982.
[17] LU Y, XIAO G, WANG X, et al. Grid synchronization with selective harmonic detection based on generalized delayed signal superposition[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 3938-3949.
[18] KANJIYA P, KHADKIKAR V, ELMOURSI M S. Adaptive low-pass filter based DC offset removal technique for three-phase PLLs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9025-9029.
[19] 李欣悅, 李鳳婷, 尹純亞, 等. 直流雙極閉鎖故障下送端系統(tǒng)暫態(tài)過電壓計算方法[J]. 電力系統(tǒng)保護與控制, 2021, 49(1): 1-8.
LI Xinyue, LI Fengting, YIN Chunya, et al. Transient overvoltage calculation method of HVDC sending-end system under DC bipolar blocking[J]. Power System Protection and Control, 2021, 49(1): 1-8.
[20] MOHAMADIAN S, PAIRO H, GHASEMIAN A. A straightforward quadrature signal generator for single-phase SOGI-PLL with low susceptibility to grid harmonics[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 6997-7007.
[21] LUO S, WU F. Improved two-phase stationary frame EPLL to eliminate the effect of input harmonics, unbalance, and DC offsets[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2855-2863.
[22] 張建武, 陳權(quán), 李國麗, 等. 非理想電網(wǎng)下改進二階廣義積分器鎖相環(huán)研究[J]. 電力電子技術(shù), 2021, 55(7): 7-11.
ZHANG Jianwu, CHEN Quan, LI Guoli, et al. Research on improved second order generalized integerator phase-locked loop in non-ideal power grid[J]. Power Electronic, 2021, 55(7): 7-11.
[23] GOLESTAN S, GUERRERO J M, VASQUEZ J C. DC-offset rejection in phase-locked loops: a novel approach[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 4942-4946.
[24] 回楠木, 王大志, 李云路. 改進型DSC的并網(wǎng)鎖相環(huán)直流偏移消除方法[J]. 東北大學(xué)學(xué)報(自然科學(xué)版), 2018, 39(11): 1526-1531.
HUI Nanmu, WANG Dazhi, LI Yunlu. DC-offset elimination method for grid-connected phase-locked loop by modified DSC[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39(11): 1526-1531.
[25] 曾君, 岑德海, 陳潤, 等. 針對直流偏移和諧波干擾的單相鎖相環(huán)[J]. 電工技術(shù)學(xué)報, 2021, 36(16): 3504-3515.
ZENG Jun, CEN Dehai, CHEN Run, et al. Single-phase phase-locked loop for DC offset and harmonic interference[J]. Power System Protection and Control, 2021, 36(16): 3504-3515.
[26] GRADSHTEYN I S, RYZHIK I M. Table of integrals, series, and products[M]. San Diego: Academy Press, 2007, 36.
[27] 楊旭紅, 吳斌, 孫克帥, 等. 一種頻率自適應(yīng)延遲周期法的鎖相環(huán)研究[J]. 電機與控制學(xué)報, 2020, 24(2): 96-101.
YANG Xuhong, WU Bin, SUN Keshuai, et al. Frequency adaptive phase-locked loop based on delayed signal cancellation[J]. Electric Machines and Control, 2020, 24(2): 96-101.
[28] SUMATHI P, JANAKIRAMAN P A. Integrated phase-locking scheme for SDFT-based harmonic analysis of periodic signals[J]. IEEE Transactions on Circuits Systems II: Express Briefs, 2008, 55(1): 51-55.
[29] WANG Y F, LI Y W. Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1452-1463.
Single-phase phase-locked loop based on recursive implementation of generalized delayed signal superposition
LIU Yong1, YANG Tao1, PAN Hongbin1, ZENG Li1, CAO Lei2
(1. School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;2. Duyun Power Supply Bureau, Guizhou Power Grid Co., Ltd., Duyun 558000, China)
When there are harmonics and DC offset in a grid voltage, the traditional phase-locked loop (PLL) cannot accurately realize phase lock. Hence, an improved single-phase phase-locked loop algorithm based on recursive-form generalized delayed signal superposition (RGDSS) operators is proposed. To produce the orthogonal signals and filtering of the harmonic, RGDSS operators are introduced into the pre-stage of the PLL. Then in a two-phase stationary reference frame, a delayed sampling period filter is constructed to suppress the DC offset by delaying the orthogonal component by two sampling periods. The proposed PLL, which has good dynamic performance and stability, can effectively eliminate the influence of DC offset and harmonics, and obtain the fundamental and desired harmonic information quickly and accurately. Finally, the feasibility of the method is verified by simulation and experiment.
single-phase phase-locked loop; delayed signal superposition; DC offset; harmonic separation; detection of synchronizing signal
10.19783/j.cnki.pspc. 211175
國家自然科學(xué)基金項目資助(51577162);湖南省自然科學(xué)基金項目資助(2021JJ30674)
This work is supported by the National Natural Science Foundation of China (No. 51577162).
2021-08-27;
2021-12-28
劉 勇(1976—),男,碩士,副教授,研究方向為微網(wǎng)穩(wěn)定性和新能源微網(wǎng)逆變器;E-mail: xtdx_ly@163.com
楊 濤(1995—),男,通信作者,碩士研究生,研究方向為新能源并網(wǎng)鎖相環(huán)技術(shù);E-mail: 2945185118@qq.com
盤宏斌(1972—),男,博士,教授,研究方向為可再生能源發(fā)電與并網(wǎng)技術(shù)。E-mail: pan_hongbin@xtu.edu.cn
(編輯 許 威)