国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

單信號驅(qū)動的固態(tài)脈沖源

2022-09-01 06:38羅雨航李恩成
四川電力技術(shù) 2022年4期
關(guān)鍵詞:導(dǎo)通固態(tài)電容

羅雨航,鄭 靜,楊 鴿,李恩成

(1.四川水利職業(yè)技術(shù)學(xué)院,四川 成都 611231;2.國網(wǎng)四川省電力公司攀枝花供電公司,四川 攀枝花 617000)

0 引 言

固態(tài)脈沖源是一種儲能裝置,可以實現(xiàn)脈沖壓縮和電壓放大的功能,被廣泛應(yīng)用于國防[1]、電力裝備[2]、絕緣材料[3]、等離子體放電[4]、生物醫(yī)學(xué)工程[5]等領(lǐng)域,特別是在生物工程領(lǐng)域,脈沖電場引起的電穿孔效應(yīng)[6-8]已廣泛應(yīng)用于腫瘤消融[9]、消毒殺菌[10]等領(lǐng)域。傳統(tǒng)脈沖電源是基于火花隙開關(guān)[11],可輸出兆瓦級功率,主要應(yīng)用于國防軍工領(lǐng)域。但由于火花隙開關(guān)具有重復(fù)頻率低、壽命短、效率低、體積大等缺點,造成系統(tǒng)龐大,較少應(yīng)用于民用領(lǐng)域。隨著電力電子技術(shù)的發(fā)展,電力電子開關(guān)的應(yīng)用促進小型脈沖電源的發(fā)展,同時全控性固態(tài)開關(guān)可使脈沖電源輸出的脈沖參數(shù)任意可調(diào)[12-15],大幅提升輸出效率且操作簡單。傳統(tǒng)的固態(tài)脈沖電源通常采用高壓磁隔離驅(qū)動技術(shù)[16],該技術(shù)可將驅(qū)動信號和功率部分進行隔離,避免脈沖電源在放電時沖擊驅(qū)動電路。但高壓磁隔離驅(qū)動需要較多的磁芯來完成多路隔離信號驅(qū)動,加大了系統(tǒng)的體積和質(zhì)量,同時驅(qū)動電路復(fù)雜且不穩(wěn)定。而采用光纖提供隔離同步信號的驅(qū)動方案隔離電壓高,同步性更好,但是成本也較高,且需提供多路隔離的驅(qū)動供電電源。因此,驅(qū)動穩(wěn)定且結(jié)構(gòu)簡單的高壓脈沖發(fā)生器將使得結(jié)構(gòu)更加緊湊,節(jié)約成本。文獻[17]提出一種可靠的功率MOSFET堆疊方法,控制一個MOSFET,通過特定的電路結(jié)構(gòu)使得后續(xù)MOSFET自動開通和關(guān)斷。這種方法可以使高壓脈沖發(fā)生器的驅(qū)動更為簡單,減少了體積和質(zhì)量。但受驅(qū)動電路、控制型號、半導(dǎo)體開關(guān)差異等因素的影響,不同步的半導(dǎo)體開關(guān)的開通,容易引起過壓擊穿[18]。通常需要添加有源鉗位電路或RCD緩沖電路。傳統(tǒng)的有源鉗位電路反饋時間較長,文獻[19]采用了一種高速的反饋電路,將鉗位動作時間縮短到30 ns,從而減少過壓尖峰。

目前的串聯(lián)半導(dǎo)體開關(guān)技術(shù),由于開通關(guān)斷不同步,在有源區(qū)工作時長不一致。文獻[20]提出了一種自觸發(fā)高頻納秒發(fā)生器,其主電路結(jié)構(gòu)采取Marx電路,在遠(yuǎn)離電源一級提供一路信號驅(qū)動開關(guān)的導(dǎo)通狀態(tài),其余開關(guān)通過主電容對開關(guān)門極電容充電自行觸發(fā)導(dǎo)通,驅(qū)動電路簡單且無需磁芯隔離,大大縮減電源的體積和質(zhì)量。因此,在此基礎(chǔ)上提出了一種單信號驅(qū)動的固態(tài)脈沖電源的拓?fù)浣Y(jié)構(gòu),該結(jié)構(gòu)只需要一路信號驅(qū)動第一級固態(tài)開關(guān),其余開關(guān)通過主電容的充電分壓自行進行導(dǎo)通,系統(tǒng)即可實現(xiàn)對負(fù)載釋放脈沖高壓。該結(jié)構(gòu)無需磁芯隔離驅(qū)動,除第一級開關(guān)外其余開關(guān)均不需單獨的驅(qū)動電路,大大縮減了系統(tǒng)的體積和質(zhì)量,節(jié)約成本。

1 單信號驅(qū)動的固態(tài)脈沖源工作原理

圖1為單信號驅(qū)動的固態(tài)脈沖源的拓?fù)浣Y(jié)構(gòu),以3級為例,每一級包含一個主電容,2個充電電阻和一個MOSFET開關(guān)。直流電源DC通過充電電阻對各級主電容進行并聯(lián)充電。當(dāng)各級主電容達到額定電壓時,觸發(fā)開關(guān)Q1導(dǎo)通,電容C1經(jīng)過Q1—Ctr1—Ciss1—C1回路對開關(guān)Q2的門極電容Ciss1進行充電。當(dāng)電容Ciss1兩端電壓達到開關(guān)Q2的閾值電壓時,開關(guān)Q2自行觸發(fā)導(dǎo)通。同理,后級開關(guān)依次導(dǎo)通。當(dāng)全部開關(guān)均可靠導(dǎo)通后,各級主電容C1、C2、C3串聯(lián)對負(fù)載放電。此時,如果提供關(guān)斷信號使第一級開關(guān)Q1切換到關(guān)斷狀態(tài),各級主電容依然處于充電狀態(tài);而第二級開關(guān)Q2的門極電容Ciss1無法形成充電回路,電容Ciss1停止充電且通過Ciss1—Ctr1—R2回路對電阻R2釋放電能。當(dāng)Ciss1兩端電壓降到閾值電壓以下無法維持開關(guān)Q2導(dǎo)通,開關(guān)Q2自行關(guān)斷。同理,后級開關(guān)逐級關(guān)斷。當(dāng)各級開關(guān)均關(guān)斷時,系統(tǒng)處于截止?fàn)顟B(tài),電源將不再對負(fù)載放電。

圖1 單信號觸發(fā)的固態(tài)脈沖源

1.1 充電模型

圖2為單信號驅(qū)動的固態(tài)脈沖源的主電容充電回路示意圖,直流電源DC經(jīng)過充電電阻對各級主電容進行并聯(lián)充電,充電電阻可防止在系統(tǒng)放電時脈沖高壓沖擊直流電源,同時也可在放電時起到隔離作用。但由于充電電阻的存在限制了充電電流的大小,也限制了各級主電容的充電速度。通過設(shè)置直流電源DC的充電電壓可改變各級主電容兩端的電壓,進而可輸出不同幅值的脈沖高壓。

圖2 單信號的固態(tài)脈沖源的主電容充電回路

圖3為單信號驅(qū)動的固態(tài)脈沖源的單信號導(dǎo)通回路的示意圖。當(dāng)導(dǎo)通信號觸發(fā)開關(guān)Q1開通時,由于主電容C1電容值遠(yuǎn)大于開關(guān)Q2門級電容Ciss1的電容值,此時電容C1會充當(dāng)直流電源對電容Ciss1進行充電,充電回路為C1—Q1—Ctr1—Ciss1—C1,如圖3(a)紅色實線所示。與此同時,電容C1經(jīng)過C1—Q1—R1對電阻R1放電,但該回路與Ciss1充電回路是并聯(lián)關(guān)系,兩個回路獨立并不會互相影響。當(dāng)Ciss1兩端電壓達到開關(guān)Q2的閾值電壓時,開關(guān)Q2自行導(dǎo)通。同理,開關(guān)Q2導(dǎo)通后,主電容C1和C2串聯(lián)等效為直流電源對Ciss2進行充電,Ciss2兩端電壓達到開關(guān)Q3的閾值電壓時,開關(guān)Q3自行導(dǎo)通。充電回路如圖3(b)紅色實線所示,充電路徑為C1—Q1—Ctr2—Ciss2—C2。同理,電容C1和C2并聯(lián)也會對電阻R4放電,但該回路與電容Ciss2充電回路為并聯(lián)關(guān)系,二者互相獨立。當(dāng)開關(guān)Q1、Q2、Q3均觸發(fā)導(dǎo)通時,系統(tǒng)會進入放電狀態(tài),此時可通過測試是否有輸出電壓來確定各級開關(guān)是否完全導(dǎo)通。

(a)一級自觸發(fā)導(dǎo)通回路

(b)二級自觸發(fā)導(dǎo)通回路圖3 單信號的固態(tài)脈沖源的單信號導(dǎo)通回路

1.2 放電模型

圖4為單信號驅(qū)動的固態(tài)脈沖源的放電回路示意圖。當(dāng)各級開關(guān)全部導(dǎo)通時,系統(tǒng)進入放電狀態(tài),主電容C1、C2、C3將會串聯(lián)對負(fù)載放電,實現(xiàn)電壓的疊加。通過改變DC直流電源的充電電壓可改變系統(tǒng)輸出脈沖電壓的幅值,通過調(diào)節(jié)開關(guān)Q1的導(dǎo)通信號脈寬,可使系統(tǒng)輸出不同脈寬的脈沖電壓。

圖4 單信號的固態(tài)脈沖源的放電回路

圖5為單信號驅(qū)動的固態(tài)脈沖源的第二級單信號關(guān)斷回路示意圖。提供信號觸發(fā)開關(guān)Q1關(guān)斷時,門極電容Ciss1和Ciss2都將停止充電,同時門極電容Ciss1和Ciss2都將分別對電阻R2和R4進行能量泄放,放電回路如圖中綠色實線所示。當(dāng)門極電容Ciss1和Ciss2兩端電壓低于開關(guān)閾值時,開關(guān)Q2和Q3斷開,系統(tǒng)進入截止?fàn)顟B(tài)。根據(jù)一階電路的零輸入響應(yīng)原理,電阻R2和電阻R4的阻值決定了開關(guān)Q2和開關(guān)Q3的下降沿,阻值越大其下降沿越慢。但對系統(tǒng)輸出脈沖的下降沿幾乎沒有影響,這是由于開關(guān)Q1一旦斷開,整個系統(tǒng)對負(fù)載的放電回路就處于開路狀態(tài)。因此系統(tǒng)輸出脈沖的下降沿取決于開關(guān)Q1的信號。

圖5 單信號的固態(tài)脈沖源的自觸發(fā)關(guān)斷回路

2 仿真實驗

為驗證單信號驅(qū)動的固態(tài)脈沖源的工作原理,通過通用電路分析(PSPICE)仿真了10級電路拓?fù)?,如圖6所示。直流充電源工作電壓設(shè)置為800 V,負(fù)載為500 Ω純電阻負(fù)載,每級主電容的容量為1 μF,各級開關(guān)的選型為CREE公司的C2M0080120D,耐壓1200 V,門極電容為950 pF,導(dǎo)通閾值電壓為3.2 V,門源極電壓范圍為-10~25 V。由于級數(shù)越大,驅(qū)動電容的充電電壓越大。因此根據(jù)電容分壓關(guān)系,隨著級數(shù)的增加,驅(qū)動電容Ctri的取值越小。Ctr1—Ctr9的電容取值依次為330 pF、160 pF、105 pF、80 pF、65 pF、55 pF、45 pF、40 pF、30 pF。驅(qū)動電容參數(shù)的選擇可參考文獻[21]。表1為仿真電路實驗參數(shù)。

表1 實驗參數(shù)

圖6 單信號的固態(tài)脈沖源的仿真電路

為比較自觸發(fā)驅(qū)動電壓和第一級信號的電壓差異,測試了第一級開關(guān)Q1和第二級開關(guān)Q2的門源極電壓,測試結(jié)果如圖7所示。從圖中可明顯看出Q1的驅(qū)動電壓為完整的方波,幅值為20 V。而Q2的自觸發(fā)驅(qū)動電壓有一個明顯的欠阻尼震蕩,這是由于自觸發(fā)過程中Q2門極電容Ciss2充電回路中的電阻電容參數(shù)引起的,可在各級開關(guān)門源極并聯(lián)瞬態(tài)二極管得到一定的抑制。同時,從圖中可看出Q2自觸發(fā)驅(qū)動電壓幅值約為17.2 V,已達到開關(guān)Q2的閾值電壓,能可靠導(dǎo)通開關(guān)Q2。

圖7 開關(guān)Q1和Q2驅(qū)動電壓對比

為驗證單信號驅(qū)動的固態(tài)脈沖源可輸出不同幅值和不同脈寬的脈沖電壓,分別測試了DC直流充電源工作在500 V、600 V、700 V、800 V時的輸出電壓,如圖8(a)所示,此時第一級開關(guān)驅(qū)動信號脈寬為200 ns,負(fù)載為500 Ω。從圖中可明顯看出不同幅值的輸出電壓波形頂寬約為200 ns,這是由于電源對負(fù)載放電回路必須經(jīng)過開關(guān)Q1,而后級開關(guān)由于門極串聯(lián)電阻導(dǎo)致開通速度變慢,會導(dǎo)致后級開關(guān)的脈寬變寬。因此脈寬最窄的開關(guān)Q1決定了電源輸出電壓脈沖頂寬。同時,可看出電源輸出5 kV、6 kV、7 kV、8 kV的脈沖電壓的上升沿分別約為81 ns、65 ns、54 ns、49 ns,輸出電壓越高上升沿越短,這是由于輸出電壓的幅值取決于直流充電源的工作電壓,工作電壓越大,各級主電容的電壓越大,自觸發(fā)回路電流越大,觸發(fā)上升沿越窄,促使電源對負(fù)載輸出的脈沖電壓上升沿越窄。如圖8(b)測試了該電源工作電壓在800 V,負(fù)載為500 Ω,第一級開關(guān)Q1的驅(qū)動信號脈寬分別為200 ns、400 ns、600 ns、800 ns的輸出脈沖電壓波形,從圖中可明顯看出各輸出脈沖波形頂寬接近開關(guān)Q1的驅(qū)動信號脈寬,進一步驗證了該電源可輸出不同脈寬的脈沖電壓。

(a)輸出不同電壓

(b)輸出不同脈寬圖8 單信號驅(qū)動的固態(tài)脈沖源脈寬可調(diào)和電壓可調(diào)波形

為驗證該電源可應(yīng)用不同阻值負(fù)載的功能,測試了工作電壓為800 V,Q1信號脈寬為200 ns,負(fù)載分別為500 Ω和2 kΩ的輸出脈沖波形,如圖9所示。從圖中可明顯看出,負(fù)載為500 Ω和2 kΩ的輸出波形脈沖頂寬與Q1驅(qū)動信號脈寬保持一致,下降沿分別為352 ns和903 ns,負(fù)載阻值越大,下降沿越大,這是由于在相同幅值的電壓下,阻值越大,放電電流越小,因此負(fù)載越大輸出脈沖的下降沿越大。

圖9 不同阻值負(fù)載單信號驅(qū)動的固態(tài)脈沖源輸出波形

3 結(jié) 論

上面提出的單信號驅(qū)動的固態(tài)脈沖源只需單個驅(qū)動信號即可控制整套電源的開通和關(guān)斷,通過控制第一級開關(guān)的導(dǎo)通狀態(tài),自行導(dǎo)通和關(guān)斷其余開關(guān),極大簡化驅(qū)動電路,大幅縮減系統(tǒng)的體積和質(zhì)量,最終輸出幅值高達8 kV、脈寬200~800 ns的脈沖電壓,對于生物醫(yī)學(xué)應(yīng)用、腫瘤消融以及污水處理有重大意義。但該技術(shù)由于充電電阻的存在造成系統(tǒng)的充電速度較慢,充電損耗較大且輸出脈沖頻率會受到限制,今后將圍繞這些問題展開研究工作。

猜你喜歡
導(dǎo)通固態(tài)電容
新型接地導(dǎo)通測試流程分析策略分析
基于Petri網(wǎng)的無刷直流電機混合導(dǎo)通DSP控制方法
低壓電容器電容值衰減原因分析及改造
固態(tài)Marx發(fā)生器均流技術(shù)研究
Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
透明陶瓷在固態(tài)照明中的應(yīng)用進展
串聯(lián)晶閘管同步導(dǎo)通設(shè)計研究
淺析投射式多點觸控電容觸摸屏
現(xiàn)代傳感器中的微電容檢測技術(shù)
L波段kw級固態(tài)功放測試技術(shù)
小金县| 丹东市| 桂东县| 光泽县| 淮南市| 天祝| 随州市| 左权县| 平南县| 镇原县| 乌拉特后旗| 台东县| 广德县| 增城市| 湄潭县| 河津市| 呼和浩特市| 共和县| 张北县| 调兵山市| 齐齐哈尔市| 永新县| 铁岭市| 大兴区| 阿克陶县| 蓬溪县| 枝江市| 梧州市| 淄博市| 响水县| 河西区| 洪湖市| 武邑县| 资阳市| 分宜县| 平凉市| 乌拉特中旗| 遵化市| 龙江县| 昌图县| 宣武区|