各種上皮細(xì)胞以及內(nèi)皮細(xì)胞之間的相鄰面主要由細(xì)胞連接構(gòu)成,這些細(xì)胞連接是細(xì)胞旁轉(zhuǎn)運(yùn)的重要組成部分,除了維持細(xì)胞屏障的完整性,還限制分子的細(xì)胞旁路轉(zhuǎn)運(yùn),其主要分為緊密連接(tight junction,TJ)、橋粒、中間連接和縫隙連接等.TJ是主要位于細(xì)胞膜最頂端的連接裝置,在細(xì)胞連接中占主要部分,由3種跨膜蛋白,緊密連接蛋白(Claudins)、閉合蛋白、連接黏附分子以及閉合小環(huán)蛋白ZO-1、ZO-2、ZO-3等組成,其中主要結(jié)構(gòu)為Claudins.肝臟緊密連接主要由Claudin-1、-2、-3、-12和-25組成,其中Claudin-3是肝膽系統(tǒng)中含量最多的緊密連接蛋白
.肝臟Claudin-3的表達(dá)失調(diào)會(huì)導(dǎo)致肝膽系統(tǒng)中的緊密連接破壞,代謝功能、屏障功能、增殖能力和分子傳遞功能受損,與多種肝膽系統(tǒng)疾病的發(fā)生發(fā)展密切相關(guān).本文就Claudin-3在肝膽疾病中的研究進(jìn)展進(jìn)行綜述.
團(tuán)場學(xué)校、幼兒園通過每周一次的雙語口語學(xué)習(xí)培訓(xùn)、民族團(tuán)結(jié)主題班會(huì)、學(xué)習(xí)傳統(tǒng)文化主題隊(duì)會(huì)等系列活動(dòng)415場次,把民族團(tuán)結(jié)的種子播撒到了孩子幼小的心靈中。醫(yī)院組成醫(yī)療隊(duì)伍遠(yuǎn)赴離團(tuán)場300多公里以外的青河縣,為阿熱勒鄉(xiāng)達(dá)巴特村的村民進(jìn)行免費(fèi)義診。元旦春節(jié)、肉孜節(jié)、古爾邦節(jié)期間,團(tuán)場黨員干部開展了“走親戚慶節(jié)日”活動(dòng)。通過活動(dòng)的開展,加深了彼此間的了解與認(rèn)識,增進(jìn)了彼此間的友誼和感情。
Claudins由Furuse等
于1998年首次發(fā)現(xiàn),相對分子質(zhì)量20 kDa-34 kDa,是緊密連接中最重要的骨架蛋白,也是緊密連接發(fā)揮維持細(xì)胞屏障完整性功能和限制物質(zhì)運(yùn)輸?shù)囊粋€(gè)關(guān)鍵分子,它的表達(dá)數(shù)量和分布結(jié)構(gòu)的變化直接影響TJ的結(jié)構(gòu)和功能.Claudins蛋白家族是一種至少擁有27個(gè)家族成員的蛋白
,根據(jù)功能的差異可將其分為兩類
:一類與形成屏障功能有關(guān),如Claudin-1、-3、-4和-5等;另一類則與構(gòu)成特定的通道有關(guān),可通過分子大小及電荷選擇決定物質(zhì)的細(xì)胞旁轉(zhuǎn)運(yùn),如 Claudin-2、-7、-10和-16等.Claudins是一種跨膜蛋白
,在結(jié)構(gòu)上,Claudins由面向細(xì)胞質(zhì)的N’末端、C’末端,2個(gè)細(xì)胞外環(huán)、4個(gè)跨膜結(jié)構(gòu)域組成,其中面向胞漿的C’末端還含有由80-90個(gè)氨基酸殘基組成的PDZ結(jié)構(gòu)域,它與ZO1、ZO2、ZO3和多PDZ結(jié)構(gòu)域蛋白1(MUPP1)相互作用,這是緊密連接蛋白復(fù)合體與其他多種蛋白的結(jié)合位點(diǎn)
.在該結(jié)構(gòu)域還包含與蛋白質(zhì)翻譯后修飾相關(guān)的氨基酸殘基,如絲氨酸-蘇氨酸磷酸化、酪氨酸磷酸化、小泛素化(sumoylation,SUMO)化和棕櫚?;?這些都可能影響著Claudins的定位和功能
.同時(shí),Claudins調(diào)節(jié)相鄰細(xì)胞的離子選擇性主要是由于Claudins的細(xì)胞外環(huán)所攜帶的氨基酸的帶電性質(zhì),形成電荷選擇性通道
.例如,Claudin-2的過度表達(dá)顯著增加了上皮細(xì)胞的離子電導(dǎo),形成陽離子選擇性的細(xì)胞旁通道
.Claudin-1、-6、-9的細(xì)胞外鏈可能是丙型肝炎病毒的結(jié)合位點(diǎn)
.Claudin-1缺失可能導(dǎo)致罕見的遺傳性疾病(新生兒魚鱗病)和硬化性膽管炎,由于緊密連接中Claudin-1的缺乏,肝細(xì)胞和膽管細(xì)胞會(huì)出現(xiàn)膽汁的滲漏,這會(huì)導(dǎo)致患者出現(xiàn)膽汁淤積,谷草轉(zhuǎn)氨酶(aspartate transaminase,AST)、谷丙轉(zhuǎn)氨酶(alanine transaminase,ALT)、血清γ-谷氨酰轉(zhuǎn)移酶活性和膽紅素明顯升高
.而Claudin-3作為肝臟中表達(dá)最多的TJ蛋白,主要在肝細(xì)胞和膽管細(xì)胞中表達(dá)
.在先天性膽道閉鎖的小兒患者中,肝臟內(nèi)的Claudin-3含量無明顯變化,而周圍肝細(xì)胞和肝臟膽管管腔表面的Claudin-3排列明顯紊亂
.因此,Claudin-3在肝細(xì)胞和膽管細(xì)胞屏障功能、分泌功能、物質(zhì)代謝等多個(gè)方面發(fā)揮重要作用,進(jìn)而影響肝臟生理,一旦Claudin-3表達(dá)失調(diào),則會(huì)導(dǎo)致多種肝臟疾病的發(fā)生發(fā)展.
緊密連接蛋白Claudin-3定位于7q11.23,是參與血腦屏障、腸道屏障、血睪屏障構(gòu)成的重要組成部分
.同時(shí)Claudin-3不僅在人體前列腺、胰腺細(xì)胞、肝細(xì)胞等多種腺細(xì)胞,同時(shí)還在乳腺導(dǎo)管上皮、子宮內(nèi)膜、食管黏膜、肺泡上皮、和膽管上皮細(xì)胞等多種上皮細(xì)胞內(nèi)均有表達(dá)
.Claudin-3是TJ的主要跨膜蛋白之一,是細(xì)胞間黏附功能的結(jié)構(gòu)基礎(chǔ),并在細(xì)胞間的傳輸轉(zhuǎn)運(yùn)中發(fā)揮著重要的接頭作用.除此之外,Claudin-3在維持上皮細(xì)胞極性、基因轉(zhuǎn)錄、抑制腫瘤、細(xì)胞增殖分化、新陳代謝相關(guān)的基因和炎癥免疫反應(yīng)等方面有著重大的作用.上皮TJ蛋白組成的復(fù)雜變化會(huì)影響細(xì)胞極性,如Claudin-3的減少與極性復(fù)合蛋白(partition defective-3,PAR-3)和絲氨酸/蘇氨酸磷酸酶(protein phosphatase-1,PP-1)的定位和表達(dá)改變有關(guān)
.有研究表明
,Claudin-3在不同的腫瘤組織中表達(dá)不同,作用也不盡相同.Claudin-3在乳腺癌、前列腺癌、卵巢癌、胃癌等腫瘤中表達(dá)增多,而在結(jié)直腸癌、食管 癌等腫瘤中的表達(dá)則下降
.Claudin-3在胃癌組織中的表達(dá)高于癌旁正常組織,但在胃癌黏膜下侵襲的表面表達(dá)較低,胃癌腫瘤晚期合并遠(yuǎn)處淋巴轉(zhuǎn)移的患者其Claudin-3表達(dá)也低
.在增生期子宮內(nèi)膜進(jìn)展成為子宮內(nèi)膜癌的疾病演變過程中,Claudin-3的表達(dá)明顯升高,并且其遞增與子宮肌層的浸潤密切相關(guān)
.Claudin-3除了與腫瘤及增殖相關(guān)之外,還與機(jī)體的代謝有著密不可分的關(guān)系.在Claudin-3敲除的小鼠,其脂肪酸、氨基酸以及脂質(zhì)的代謝相關(guān)基因在肝臟的表達(dá)顯著下調(diào),而炎癥免疫相關(guān)基因表達(dá)明顯上調(diào).Claudin-3的敲除也會(huì)降低肝臟內(nèi)相關(guān)膽汁酸代謝基因(Cyp27a1、Ces1b和Akr1c6)的表達(dá)
.膽汁酸是脂肪生成的重要調(diào)節(jié)因子,膽汁酸代謝改變可能對肝臟能量代謝產(chǎn)生負(fù)面影響
.所以,可以推測膽汁酸組成的改變可能是Claudin-3敲除小鼠脂肪酸、脂質(zhì)等明顯下調(diào)的一個(gè)重要因素.
3.1 Claudin-3與肝膽系統(tǒng)惡性腫瘤 肝膽系統(tǒng)惡性腫瘤主要包括原發(fā)性肝癌(hepatocellular carcinoma,HCC)、膽管癌(cholangiocarcinoma,CCA)等,其中HCC是肝內(nèi)最常見的惡性腫瘤,其在我國的發(fā)病率以及死亡率居高不下
.目前HCC患者術(shù)后5年生存率僅為30%左右,這主要與HCC的高侵襲性和高轉(zhuǎn)移率密切相關(guān)
.E-鈣粘蛋白(E-cadherin)的缺失是上皮-間質(zhì)轉(zhuǎn)化(epithelialmesenchymal transition,EMT)的標(biāo)志,通過EMT,腫瘤細(xì)胞獲得了突破基底膜侵入周圍組織或轉(zhuǎn)移到遠(yuǎn)處器官的能力
.Lin等
的研究表明,抑制Claudin-3表達(dá)可以促進(jìn)腫瘤體內(nèi)生長,其中Claudin-3可能通過維持E-cadherin的表達(dá)和限制β-連環(huán)蛋白(β-catenin)信號轉(zhuǎn)導(dǎo),介導(dǎo)了與體內(nèi)其他細(xì)胞的相互作用,從而抑制了生長和轉(zhuǎn)移潛能.Che等
研究表明,Claudin-3能夠抑制Wnt/β-catenin途徑,進(jìn)而抑制腫瘤細(xì)胞的上皮轉(zhuǎn)移.Jiang等
研究表明,Claudin-3能夠通過下調(diào)糖原合成酶激酶3B(glycogen synthase kinase 3B,GSK3B)、鈣黏蛋白相關(guān)蛋白(catenin beta1,CTNNB1)、鋅指家族轉(zhuǎn)錄抑制因子2(snail family transcriptional repressor 2,SNAI2)和血管鈣黏蛋白(cadherin-2,CDH2)的表達(dá),使Wnt/β-catenin-EMT轉(zhuǎn)移軸失活,從而顯著抑制肝癌的轉(zhuǎn)移.基質(zhì)金屬蛋白酶2(matrix metalloproteinase-2,MMP-2)是基質(zhì)金屬蛋白家族中的重要一員,其可能通過降解腫瘤細(xì)胞周圍的細(xì)胞外基質(zhì),從而促進(jìn)腫瘤的深層浸潤,這其實(shí)本質(zhì)上就是EMT過程
.李娟
等通過臨床病例對照研究發(fā)現(xiàn),與腫瘤周邊正常的肝組織相比,HCC 組織中Claudin-3陽性表達(dá)率降低,MMP-2陽性表達(dá)率升高,HCC組織中Claudin-3與MMP-2呈負(fù)相關(guān),這可能是因?yàn)镠CC組織中的MMP-2的表達(dá)升高,使上皮組織細(xì)胞外基質(zhì)降解、上皮表型丟失,導(dǎo)致Claudin-3下降,最終促進(jìn)HCC的EMT過程及腫瘤浸潤.Bodnar等
的研究表明,HCC患者Claudin-3的表達(dá)與腫瘤的臨床分期密切相關(guān),表明Claudin-3影響了HCC患者的細(xì)胞穩(wěn)定性及腫瘤的演進(jìn)過程.Claudin-3在HCC組織中的異常表達(dá)和分布,有望成為靶向治療HCC的新方向.同時(shí),既往有研究表明Claudin-3與CCA同樣密切相關(guān),Németh
等通過研究發(fā)現(xiàn),CCA患者Claudin-3的表達(dá)明顯降低.最近,在Ikeda
等的研究中發(fā)現(xiàn),CCA患者組的膽汁細(xì)胞外小泡(extracellular vesicles,EVS)中的Claudin-3較結(jié)石組相比顯著升高,其敏感性為87.5%,特異性為87.5%,AUC值為0.945(95%可信區(qū)間:0.84-1).這表明了人膽汁來源的EVS中的Claudin-3可能是膽管癌的一種新的生物標(biāo)志物,具有重大的臨床意義.
治療結(jié)束后,觀察組患者治療總有效率為92.9%,對照組患者治療總有效率為67.9%,觀察組患者治療總有效率顯著高于對照組,數(shù)據(jù)間比較;差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表1。
賽前,省聯(lián)社黨委副書記殷青作了熱情洋溢的致辭。經(jīng)過激烈角逐,最終昆明代表隊(duì)榮獲一等獎(jiǎng),科技結(jié)算中心代表隊(duì)、曲靖代表隊(duì)、文山代表隊(duì)榮獲二等獎(jiǎng),玉溪代表隊(duì)、楚雄代表隊(duì)、保山代表隊(duì)、昭通代表隊(duì)、臨滄代表隊(duì)榮獲三等獎(jiǎng),版納、德宏、大理、麗江、怒江、普洱、紅河、迪慶、省聯(lián)社機(jī)關(guān)獲優(yōu)秀組織獎(jiǎng)。
3.2 Claudin-3與膽固醇結(jié)石 膽囊結(jié)石是消化系統(tǒng)常見的一種疾病,其主要分為膽固醇結(jié)石(cholesterol gallstone disease,GSD)、膽色素結(jié)石和磷酸鹽結(jié)石等.既往的研究表明,膽固醇的過飽和為GSD的主要原因,在GSD形成的過程中,膽固醇結(jié)石核心發(fā)現(xiàn)的磷酸鈣沉淀也促進(jìn)了GSD的形成
.Tanaka等
研究表明,Claudin-3在小鼠的GSD的形成中起著重要的作用.Claudin-3特異性敲除會(huì)明顯增加小鼠的膽汁流量,稀釋膽汁中膽固醇、磷脂、膽汁酸、膽紅素的濃度,其主要通過增加肝上皮細(xì)胞TJ對水的細(xì)胞旁通透性.同時(shí),Claudin-3的缺乏會(huì)影響小鼠肝膽管上皮中磷酸根離子(PO
)的細(xì)胞旁轉(zhuǎn)運(yùn),同時(shí)增加膽汁中鈣離子(Ca
)的濃度,導(dǎo)致磷酸鈣核心形成,誘發(fā)GSD形成.Claudin-3敲除的小鼠會(huì)自發(fā)的形成黑色的磷酸鹽結(jié)石,用紅外吸收分光光度法分析膽結(jié)石的成分發(fā)現(xiàn)其超過98%為磷酸鈣的組成
.在高膽固醇致石飲食的飼養(yǎng)條件下,Claudin-3特異性敲除的小鼠形成的膽囊結(jié)石,主要成分同樣為過飽和的膽固醇結(jié)晶形成的膽固醇結(jié)石,但是通過紅外吸收分光光度法分析發(fā)現(xiàn)結(jié)石核心仍為磷酸鈣沉淀
.所以,Claudin-3影響著GSD的形成,同時(shí)Claudin-3在小鼠肝臟中的表達(dá)隨著年齡的增加而逐漸降低,這有助于我們更好地理解GSD的發(fā)病率與年齡之間的關(guān)系
.
3.3 Claudin-3與肝部分切除術(shù)后 在臨床診治中,部分肝內(nèi)外膽管結(jié)石的患者以及原發(fā)性肝癌患者,行肝臟部分切除手術(shù)(partial hepatectomy,PHX)是有必要的
.除了術(shù)中的精細(xì)操作,術(shù)前患者的肝功能情況、以及患者的基礎(chǔ)身體條件之外,肝臟部分切除術(shù)后肝功能的恢復(fù)以及殘肝的再生對于患者的恢復(fù)同樣也起著至關(guān)重要的作用.Claudin-3是識別肝干細(xì)胞的標(biāo)志物之一,Claudin-3在肝細(xì)胞增殖再生中的起著不可或缺的作用
.Zhang
等研究表面,層粘連蛋白α-3(laminin alpha-3)和血小板反應(yīng)蛋白-1(thrombospondin-1)通過影響Claudin-3來改變局部組織微環(huán)境,促進(jìn)患病肝臟的再生.Ando等
研究表明,PHX術(shù)后的大鼠,在機(jī)械應(yīng)力作用下,肝細(xì)胞和Kupffer細(xì)胞立即釋放細(xì)胞外ATP,促進(jìn)肝再生.這表明在行PHX術(shù)后,肝臟的增殖能力會(huì)代償性的升高,其增殖分?jǐn)?shù)會(huì)明顯升高.Baier等
的研究表明,野生小鼠在肝臟部分切除(PHX)后,Claudin-3mRNA和蛋白的表達(dá)在術(shù)后3-6 h后下降,并在24 h后開始高于初始水平.而Claudin-3敲除的小鼠行PHX術(shù)后,相比于正常野生型PHX小鼠,其增殖指數(shù)(Ki67)明顯降低.在PHX小鼠中,與細(xì)胞分裂、細(xì)胞周期調(diào)節(jié)、膽固醇合成和葡萄糖代謝相關(guān)的基因在Claudin-3敲除小鼠肝中的表達(dá)水平較低,而與晝夜節(jié)律、代謝負(fù)調(diào)控、脂質(zhì)分解代謝、鈣離子結(jié)合以及其他相關(guān)基因的表達(dá)上調(diào).所以,在肝再生以及再生肝代謝調(diào)節(jié)中,Claudin-3起著重要的作用
.針對Claudin-3這一靶點(diǎn)治療,可能成為肝部分切除患者術(shù)后恢復(fù)治療的一個(gè)非常重要的治療方式.
3.4 Claudin-3與慢性肝病 慢性肝病主要是由于一種或者多種病因,長期、反復(fù)刺激導(dǎo)致肝臟引起的,其中包括以肝臟彌漫性纖維化、假小葉和再生結(jié)節(jié)形成為組織學(xué)特征的肝硬化(liver cirrhosis,LC),以肝功能不全、全身炎性反應(yīng)綜合征、免疫麻痹為臨床特征的慢加急性肝衰竭(acute-on-chronic liver failure,ACLF)等.肝硬化在我國最常見的病因?yàn)槁砸倚筒《拘愿窝?在肝硬化的疾病演變過程中,門脈高壓、免疫功能的異常和腸黏膜屏障功能障礙會(huì)導(dǎo)致腸道細(xì)菌內(nèi)毒素入血,導(dǎo)致腸源性內(nèi)毒素血癥(intestinal endotoxemia,IETM),腸道細(xì)菌易位進(jìn)入腹腔,導(dǎo)致自發(fā)性腹膜炎等.同時(shí),腸道屏障功能還與多種慢性肝病密切相關(guān),例如非酒精性脂肪肝(nonalcoholic steatosis hepatitis,NASH)
.Claudin-3缺失被認(rèn)為是緊密連接斷裂和腸通透性(intestinal permeability,IP)改變的標(biāo)志
,血漿Claudin-3濃度升高提示腸上皮屏障功能障礙
.Wang的研究表明
,包括代償期LC、失代償性LC、LC導(dǎo)致的腸源性內(nèi)毒素血癥、ACLF等慢性肝病患者血漿Claudin-3水平均升高,且與血漿內(nèi)毒素水平呈正相關(guān).腸道黏膜的通透性與血漿Claudin-3的水平密切相關(guān),腸道黏膜的損傷會(huì)導(dǎo)致血漿Claudin-3的水平升高,最終可能導(dǎo)致IETM的發(fā)生.總之,血漿Claudin-3,是這各種肝病患者腸黏膜通透性的標(biāo)志物.臨床干預(yù)保護(hù)腸道機(jī)械屏障免受損傷可能會(huì)減少IETM造成的損傷,應(yīng)該作為肝病的治療方法進(jìn)行研究.
目前的研究發(fā)現(xiàn)Claudin-3在維持機(jī)體正常屏障、代謝、增殖等功能中發(fā)揮重要作用.一旦Claudin-3的表達(dá)出現(xiàn)異常,則可能導(dǎo)致多種疾病的發(fā)生發(fā)展,尤其是在肝膽系統(tǒng)相關(guān)疾病.本文主要介紹了Claudin-3在原發(fā)性肝癌、膽固醇結(jié)石、慢性肝病腸道菌群失調(diào)等疾病中的致病機(jī)制,膽管癌中的生物標(biāo)志物作用,以及對肝部分切除術(shù)后增殖代謝影響,這表明研究Claudin-3與肝膽系統(tǒng)疾病發(fā)生、發(fā)展的過程密切相關(guān),在診斷、特異治療和預(yù)后判斷等方面有著廣泛的應(yīng)用前景.對Claudin-3的表達(dá)情況和其調(diào)節(jié)因子對肝膽系統(tǒng)其他疾病的作用機(jī)制的深入探索,尋找或設(shè)計(jì)與其特異性結(jié)合的靶向因子,干擾細(xì)胞表型從而達(dá)到治療目的,有待進(jìn)一步研究和探討.
1 Rahner C,Mitic LL,Anderson JM.Heterogeneity in expression and subcellular localization of claudins 2,3,4,and 5 in the rat liver,pancreas,and gut.
2001;120:411-422[PMID:11159882 DOI:10.1053/gast.2001.21736]
2 Ionescu Popescu C,Liliac L,Ceau?u RA,Balan R,Grigora? A,C?runtu ID,Am?linei C.CLDN3 expression and significance-breast carcinoma versus ovarian carcinoma.
2013;54:99-106 [PMID:23529315]
3 Furuse M,Fujita K,Hiiragi T,Fujimoto K,Tsukita S.Claudin-1 and -2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.
1998;141:1539-1550 [PMID:9647647 DOI:10.1083/jcb.141.7.1539]
4 Mineta K,Yamamoto Y,Yamazaki Y,Tanaka H,Tada Y,Saito K,Tamura A,Igarashi M,Endo T,Takeuchi K,Tsukita S.Predicted expansion of the claudin multigene family.
2011;585:606-612 [PMID:21276448 DOI:10.1016/j.febslet.2011.01.028]
5 Krause G,Winkler L,Mueller SL,Haseloff RF,Piontek J,Blasig IE.Structure and function of claudins.
2008;1778:631-645 [PMID:18036336 DOI:10.1016/j.bbamem.2007.10.018]
6 Ding L,Lu Z,Lu Q,Chen YH.The claudin family of proteins in human malignancy:a clinical perspective.
2013;5:367-375 [PMID:24232410 DOI:10.2147/CMAR.S38294]
7 Huo L,Wen W,Wang R,Kam C,Xia J,Feng W,Zhang M.Cdc42-dependent formation of the ZO-1/MRCKβ complex at the leading edge controls cell migration.
2011;30:665-678 [PMID:21240187 DOI:10.1038/emboj.2010.353]
8 Capaldo CT,Koch S,Kwon M,Laur O,Parkos CA,Nusrat A.Tight function zonula occludens-3 regulates cyclin D1-dependent cell proliferation.
2011;22:1677-1685[PMID:21411630 DOI:10.1091/mbc.E10-08-0677]
9 Tabariès S,Siegel PM.The role of claudins in cancer metastasis.
2017;36:1176-1190 [PMID:27524421 DOI:10.1038/onc.2016.289]
10 González-Mariscal L,Tapia R,Chamorro D.Crosstalk of tight junction components with signaling pathways.
2008;1778:729-756 [PMID:17950242 DOI:10.1016/j.bbamem.2007.08.018]
11 Tsukita S,Furuse M,Itoh M.Multifunctional strands in tight junctions.
2001;2:285-293 [PMID:11283726 DOI:10.1038/35067088]
12 Van Itallie CM,Gambling TM,Carson JL,Anderson JM.Palmitoylation of claudins is required for efficient tight-junction localization.
2005;118:1427-1436 [PMID:15769849 DOI:10.1242/jcs.01735]
13 Van Itallie CM,Mitic LL,Anderson JM.SUMOylation of claudin-2.
2012;1258:60-64 [PMID:22731716 DOI:10.1111/j.1749-6632.2012.06541.x]
14 Van Itallie CM,Tietgens AJ,LoGrande K,Aponte A,Gucek M,Anderson JM.Phosphorylation of claudin-2 on serine 208 promotes membrane retention and reduces trafficking to lysosomes.
2012;125:4902-4912 [PMID:22825868 DOI:10.1242/jcs.111237]
15 Suzuki H,Tani K,Tamura A,Tsukita S,Fujiyoshi Y.Model for the architecture of claudin-based paracellular ion channels through tight junctions.
2015;427:291-297 [PMID:25451028 DOI:10.1016/j.jmb.2014.10.020]
16 Yu AS,Cheng MH,Angelow S,Günzel D,Kanzawa SA,Schneeberger EE,Fromm M,Coalson RD.Molecular basis for cation selectivity in claudin-2-based paracellular pores:identification of an electrostatic interaction site.
2009;133:111-127 [PMID:19114638 DOI:10.1085/jgp.200810154]
17 Meertens L,Bertaux C,Cukierman L,Cormier E,Lavillette D,Cosset FL,Dragic T.The tight junction proteins claudin-1,-6,and-9 are entry cofactors for hepatitis C virus.
2008;82:3555-3560 [PMID:18234789 DOI:10.1128/JVI.01977-07]
18 Hadj-Rabia S,Baala L,Vabres P,Hamel-Teillac D,Jacquemin E,Fabre M,Lyonnet S,De Prost Y,Munnich A,Hadchouel M,Smahi A.Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis:a tight junction disease.
2004;127:1386-1390 [PMID:15521008 DOI:10.1053/j.gastro.2004.07.022]
19 Matsumoto K,Imasato M,Yamazaki Y,Tanaka H,Watanabe M,Eguchi H,Nagano H,Hikita H,Tatsumi T,Takehara T,Tamura A,Tsukita S.Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice.
2014;147:1134-45.e10 [PMID:25068494 DOI:10.1053/j.gastro.2014.07.033]
20 Zhou Y,Ji H,Xu Q,Zhang X,Cao X,Chen Y,Shao M,Wu Z,Zhang J,Lu C,Yang J,Shi Y,Bu H.Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver.
2021;11:7262-7275[PMID:34158849 DOI:10.7150/thno.49116]
21 Günzel D,Yu AS.Claudins and the modulation of tight junction permeability.
2013;93:525-569 [PMID:23589827 DOI:10.1152/physrev.00019.2012]
22 Schumann M,Günzel D,Buergel N,Richter JF,Troeger H,May C,Fromm A,Sorgenfrei D,Daum S,Bojarski C,Heyman M,Zeitz M,Fromm M,Schulzke JD.Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease.
2012;61:220-228 [PMID:21865402 DOI:10.1136/gutjnl-2011-300123]
23 Morin PJ.Claudin proteins in human cancer:promising new targets for diagnosis and therapy.
2005;65:9603-9606[PMID:16266975 DOI:10.1158/0008-5472.CAN-05-2782]
24 Szade J,Kunc M,Pieczyńska-Uzi?b?o B,?wierblewski M,Biernat W,Jassem J,Senkus E.Comparison of claudin-3 and claudin-4 expression in bilateral and unilateral breast cancer.
2021;68:283-289 [PMID:33147053 DOI:10.4149/neo_2020_200816N867]
25 Ye X,Zhao L,Kang J.Expression and significance of PTEN and Claudin-3 in prostate cancer.
2019;17:5628-5634[PMID:31186785 DOI:10.3892/ol.2019.10212]
26 Yuan M,Chen X,Sun Y,Jiang L,Xia Z,Ye K,Jiang H,Yang B,Ying M,Cao J,He Q.ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression.
2020;10:1426-1439 [PMID:32963941 DOI:10.1016/j.apsb.2020.03.008]
27 Okugawa T,Oshima T,Chen X,Hori K,Tomita T,Fukui H,Watari J,Matsumoto T,Miwa H.Down-regulation of claudin-3 is associated with proliferative potential in early gastric cancers.
2012;57:1562-1567 [PMID:22290341 DOI:10.1007/s10620-012-2043-5]
28 Ahmad R,Kumar B,Chen Z,Chen X,Müller D,Lele SM,Washington MK,Batra SK,Dhawan P,Singh AB.Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling.
2017;36:6592-6604 [PMID:28783170 DOI:10.1038/onc.2017.259]
29 Takala H,Saarnio J,Wiik H,Soini Y.Claudins 1,3,4,5 and 7 in esophageal cancer:loss of claudin 3 and 4 expression is associated with metastatic behavior.
2007;115:838-847[PMID:17614851 DOI:10.1111/j.1600-0463.2007.apm_656.x]
30 Zhang Z,Yu W,Chen S,Chen Y,Chen L,Zhang S.Methylation of the claudin-3 promoter predicts the prognosis of advanced gastric adenocarcinoma.
2018;40:49-60 [PMID:29749528 DOI:10.3892/or.2018.6411]
31 Pan XY,Wang B,Che YC,Weng ZP,Dai HY,Peng W.Expression of claudin-3 and claudin-4 in normal,hyperplastic,and malignant endometrial tissue.
2007;17:233-241 [PMID:17291259 DOI:10.1111/j.1525-1438.2006.00748.x]
32 Baier FA,Sánchez-Taltavull D,Yarahmadov T,Castellà CG,Jebbawi F,Keogh A,Tombolini R,Odriozola A,Dias MC,Deutsch U,Furuse M,Engelhardt B,Zuber B,Odermatt A,Candinas D,Stroka D.Loss of Claudin-3 Impairs Hepatic Metabolism,Biliary Barrier Function,and Cell Proliferation in the Murine Liver.
2021;12:745-767[PMID:33866021 DOI:10.1016/j.jcmgh.2021.04.003]
33 Herrema H,Meissner M,van Dijk TH,Brufau G,Boverhof R,Oosterveer MH,Reijngoud DJ,Müller M,Stellaard F,Groen AK,Kuipers F.Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor-and liver X receptor alpha-controlled metabolic pathways in mice.
2010;51:806-816 [PMID:19998408 DOI:10.1002/hep.23408]
34 Wei KR,Yu X,Zheng RS,Peng XB,Zhang SW,Ji MF,Liang ZH,Ou ZX,Chen WQ.Incidence and mortality of liver cancer in China,2010.
2014;33:388-394 [PMID:25104174 DOI:10.5732/cjc.014.10088]
35 Kulik L,El-Serag HB.Epidemiology and Management of Hepatocellular Carcinoma.
2019;156:477-491.e1[PMID:30367835 DOI:10.1053/j.gastro.2018.08.065]
36 Tania M,Khan MA,Fu J.Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer.
2014;35:7335-7342 [PMID:24880591 DOI:10.1007/s13277-014-2163-y]
37 Yeung KT,Yang J.Epithelial-mesenchymal transition in tumor metastasis.
2017;11:28-39 [PMID:28085222 DOI:10.1002/1878-0261.12017]
38 Lin X,Shang X,Manorek G,Howell SB.Regulation of the Epithelial-Mesenchymal Transition by Claudin-3 and Claudin-4.
2013;8:e67496 [PMID:23805314 DOI:10.1371/journal.pone.0067496]
39 Che J,Yue D,Zhang B,Zhang H,Huo Y,Gao L,Zhen H,Yang Y,Cao B.Claudin-3 Inhibits Lung Squamous Cell Carcinoma Cell Epithelial-mesenchymal Transition and Invasion via Suppression of the Wnt/β-catenin Signaling Pathway.
2018;15:339-351 [PMID:29511369 DOI:10.7150/ijms.22927]
40 Jiang L,Yang YD,Fu L,Xu W,Liu D,Liang Q,Zhang X,Xu L,Guan XY,Wu B,Sung JJ,Yu J.CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma.
2014;5:7663-7676 [PMID:25277196 DOI:10.18632/oncotarget.2288]
41 Ren T,Zhu L,Cheng M.CXCL10 accelerates EMT and metastasis by MMP-2 in hepatocellular carcinoma.
2017;9:2824-2837 [PMID:28670372]
42 李娟,胡曉松,周方方,李帥.肝細(xì)胞癌組織中Claudin-3、MMP-2表達(dá)觀察.山東醫(yī)藥 2017;57:45-47
43 Bodnar M,Szylberg ?,Kazmierczak W,Marszalek A.Tumor progression driven by pathways activating matrix metalloproteinases and their inhibitors.
2015;44:437-443 [PMID:25244188 DOI:10.1111/jop.12270]
44 Németh Z,Szász AM,Tátrai P,Németh J,Gyorffy H,Somorácz A,Szíjártó A,Kupcsulik P,Kiss A,Schaff Z.Claudin-1,-2,-3,-4,-7,-8,and -10 protein expression in biliary tract cancers.
2009;57:113-121 [PMID:18854598 DOI:10.1369/jhc.2008.952291]
45 Ikeda C,Haga H,Makino N,Inuzuka T,Kurimoto A,Ueda T,Matsuda A,Kakizaki Y,Ishizawa T,Kobayashi T,Sugahara S,Tsunoda M,Suda K,Ueno Y.Utility of Claudin-3 in extracellular vesicles from human bile as biomarkers of cholangiocarcinoma.
2021;11:1195 [PMID:33441949 DOI:10.1038/s41598-021-81023-y]
46 Lammert F,Gurusamy K,Ko CW,Miquel JF,Méndez-Sánchez N,Portincasa P,van Erpecum KJ,van Laarhoven CJ,Wang DQ.Gallstones.
2016;2:16024 [PMID:27121416 DOI:10.1038/nrdp.2016.24]
47 Tanaka H,Imasato M,Yamazaki Y,Matsumoto K,Kunimoto K,Delpierre J,Meyer K,Zerial M,Kitamura N,Watanabe M,Tamura A,Tsukita S.Claudin-3 regulates bile canalicular paracellular barrier and cholesterol gallstone core formation in mice.
2018;69:1308-1316 [PMID:30213590 DOI:10.1016/j.jhep.2018.08.025]
48 D’Souza T,Sherman-Baust CA,Poosala S,Mullin JM,Morin PJ.Age-related changes of claudin expression in mouse liver,kidney,and pancreas.
2009;64:1146-1153 [PMID:19692671 DOI:10.1093/gerona/glp118]
49 Yagi S,Hirata M,Miyachi Y,Uemoto S.Liver Regeneration after Hepatectomy and Partial Liver Transplantation.
2020;21 [PMID:33182515 DOI:10.3390/ijms21218414]
50 Schmelzer E,Wauthier E,Reid LM.The phenotypes of pluripotent human hepatic progenitors.
2006;24:1852-1858 [PMID:16627685 DOI:10.1634/stemcells.2006-0036]
51 Zhang S,Sharaf Eldin HE,Gu WL,Li TS.Laminin alpha-3 and thrombospondin-1 differently regulate the survival and differentiation of hepatocytes and hepatic stem cells from neonatal mice.
2021;13:12684-12693 [PMID:34956483]
52 Ando T,Ito H,Kanbe A,Hara A,Seishima M.Deficiency of NALP3 Signaling Impairs Liver Regeneration After Partial Hepatectomy.
2017;40:1717-1725 [PMID:28656530 DOI:10.1007/s10753-017-0613-6]
53 Sakai Y,Arie H,Ni Y,Zhuge F,Xu L,Chen G,Nagata N,Suzuki T,Kaneko S,Ota T,Nagashimada M.Lactobacillus pentosus strain S-PT84 improves steatohepatitis by maintaining gut permeability.
2020;247:169-181 [PMID:33032263 DOI:10.1530/JOE-20-0105]
54 Garcia-Hernandez V,Quiros M,Nusrat A.Intestinal epithelial claudins:expression and regulation in homeostasis and inflammation.
2017;1397:66-79 [PMID:28493289 DOI:10.1111/nyas.13360]
55 Assun??o R,Alvito P,Kleiveland CR,Lea TE.Characterization of in vitro effects of patulin on intestinal epithelial and immune cells.
2016;250-251:47-56 [PMID:27067107 DOI:10.1016/j.toxlet.2016.04.007]
56 Typpo KV,Larmonier CB,Deschenes J,Redford D,Kiela PR,Ghishan FK.Clinical characteristics associated with postoperative intestinal epithelial barrier dysfunction in children with congenital heart disease.
2015;16:37-44 [PMID:25162512 DOI:10.1097/PCC.0000000000000256]
57 Yuan B,Zhou S,Lu Y,Liu J,Jin X,Wan H,Wang F.Changes in the Expression and Distribution of Claudins,Increased Epithelial Apoptosis,and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis.
2015;9:734-740 [PMID:25717051 DOI:10.5009/gnl14155]
58 Volynets V,Rings A,Bárdos G,Ostaff MJ,Wehkamp J,Bischoff SC.Intestinal barrier analysis by assessment of mucins,tight junctions,and α-defensins in healthy C57BL/6J and BALB/cJ mice.
2016;4:e1208468 [PMID:27583194 DOI:10.1080/21688370.2016.1208468]
59 Wang Z,Wang A,Gong Z,Biviano I,Liu H,Hu J.Plasma claudin-3 is associated with tumor necrosis factor-alphainduced intestinal endotoxemia in liver disease.
2019;43:410-416 [PMID:31053499 DOI:10.1016/j.clinre.2018.11.014]