鄧皇根
(山西省交通規(guī)劃勘察設(shè)計院有限公司 太原市 030032)
隧道開挖進程中,圍巖初始地應力將受到多次擾動,圍巖分級較低代表力學物理性質(zhì)較差,局部超越土體彈性極限,洞周圍巖會出現(xiàn)塑性變形產(chǎn)生塑性區(qū),除去塑性變形區(qū)外仍處于彈性狀態(tài),由于塑性流動出現(xiàn),圍巖出現(xiàn)破壞現(xiàn)象,造成圍巖塌方掉塊等工程災害,評價隧道穩(wěn)定狀態(tài)與圍巖-支護安全狀態(tài)成為有待解決的問題,非等壓隧道圍巖變形與塑性區(qū)發(fā)展情況將直接反映出地下隧道安全穩(wěn)定性。
國內(nèi)外學者們對隧道圍巖塑性區(qū)邊界進行分析研究,得出卡斯特納公式、修正芬納公式、魯賓涅依特解、鄭穎人近似解均適用于求解等壓圓形隧道的塑性區(qū)邊界,卡斯特納公式、魯賓涅依特解、鄭穎人近似解也適用于求解非等壓圓形隧道的塑性區(qū)邊界,魯賓涅依特解求解等壓時將退化為修正芬納公式[1-2]。但已有研究均假定一支護力(徑向力),得出有無支護的塑性區(qū)邊界近似解,但并不適用于所有支護,于是多個學者均改變支護力修正經(jīng)典解,并沒有統(tǒng)一解[3-4]。具體工程具體分析,不同支護不僅提供徑向壓力,也會對剪切起一定抵御作用,實際工程可通過經(jīng)典解與模擬結(jié)果進行修正分析,通過經(jīng)驗總結(jié)出合理范圍,對隧道穩(wěn)定性作出評價。
由于隧道復雜的初始地應力,不能僅靠解析解進行解答,數(shù)值算法由解析解轉(zhuǎn)化而來,也需要數(shù)值模擬進行修正,而模擬中常設(shè)置不同側(cè)壓力系數(shù)進行模擬,使隧道塑性區(qū)呈現(xiàn)圓環(huán)形或蝴蝶形塑性區(qū)。利用軟件FLAC3D進行數(shù)值模擬,設(shè)置不同側(cè)壓力系數(shù)實現(xiàn)不同初始地應力,在有無支護下對非等壓圓形隧道塑性區(qū)進行詳細分析,為非等壓圓形隧道設(shè)計及施工穩(wěn)定性提供參考意見。
以圓形隧道為分析對象,直徑10m,最大埋深約100m。隧道區(qū)局部褶皺發(fā)育,隧道圍巖主要由綠泥云母片巖、片巖組成,巖土體完整性較差易導致圍巖穩(wěn)定性變差。在隧道掘進中拱頂易發(fā)生變形,圍巖與支護共同受力,初支變形較大出現(xiàn)裂縫等導致返工或停工,嚴重影響隧道施工穩(wěn)定性,在工程設(shè)計資料中,此隧道區(qū)圍巖等級為V級。
初支為厚度28cm的C25噴射混凝土,型鋼拱架H20b布置間距0.6m,二襯為45cm的C30鋼筋混凝土,為便于初支統(tǒng)一計算,采取提高參數(shù)將鋼拱架等支護等效為噴射混凝土,計算如公式(1)[5]:
E=E0+A1E1/A2
(1)
式中:E為等效彈性模量(GPa);E0為混凝土彈性模量(GPa);E1為鋼拱架等彈性模量(GPa);A1為鋼拱架橫截面面積(m2);A2為混凝土橫截面面積(m2)。
隧道洞半徑5m,據(jù)圣維南原理確定影響范圍為35倍洞直徑[6],建立長100m、寬100m、軸向1m模型,采用M-C理想彈塑性本構(gòu)模型,上部采取自由邊界,左右、前后和下部均采取固定法向約束。考慮到錨桿及提前加固等措施,周邊形成一定加固區(qū),通過提高巖體參數(shù)實現(xiàn),初支、加固圈與二襯采用實體單元模擬,圍巖物理參數(shù)與支護參數(shù)取值如表1。針對V級圍巖段,軟件中設(shè)置側(cè)壓力系數(shù)(為0.4、0.5、0.6、0.7、0.8、1.0),對圓形隧道開挖塑性區(qū)分布以及發(fā)展規(guī)律進行研究。
表1 V級圍巖力學參數(shù)以及支護結(jié)構(gòu)參數(shù)取值
設(shè)置拱頂、拱腰及仰拱監(jiān)測點對圍巖塑性區(qū)進行監(jiān)測。塑性區(qū)發(fā)展是由于圍巖發(fā)生變形產(chǎn)生塑性流動造成的,塑性區(qū)發(fā)展可反映出周邊圍巖體位移大小,數(shù)值模擬可較快了解地下結(jié)構(gòu)是否失穩(wěn)破壞及隧道結(jié)構(gòu)是否局部失穩(wěn)或整體失穩(wěn),對施工及設(shè)計而言意義非凡,由于圓形隧道為對稱結(jié)構(gòu),研究對象可僅選擇右半部分。
3.1.1有無支護隧道塑性區(qū)分布圖對比分析
隧道開挖后會形成一定范圍塑性區(qū),可分為開挖未支護及開挖支護兩種,經(jīng)眾多學者研究證明隧道開挖支護后塑性區(qū)一般會減小,隧道整體也會變得穩(wěn)定。處于不同初始地應力的塑性區(qū)由于水平應力與豎向應力差距呈現(xiàn)出不同狀態(tài),設(shè)置不同側(cè)壓力系數(shù)(為0.4、0.5、0.6、0.7、0.8、1.0)得出開挖后塑性區(qū),僅列出其中部分圖片,如圖1~圖3所示。
圖1 側(cè)壓力系數(shù)0.4的圍巖塑性區(qū)
圖2 側(cè)壓力系數(shù)0.7的圍巖塑性區(qū)
圖3 側(cè)壓力系數(shù)1.0的圍巖塑性區(qū)
對圖1~圖3塑性區(qū)進行分析,得出以下觀點:
(1)隧道經(jīng)開挖后會產(chǎn)生塑性區(qū),隨隧道掘進及施工進行,塑性區(qū)變化對隧道穩(wěn)定性造成影響,充分發(fā)揮圍巖自我承載能力前提下,為保障隧道穩(wěn)定性應及時支護。
(2)隧道開挖后若未支護,其塑性區(qū)較支護后塑性區(qū)大,無論拱頂、拱腰或仰拱,支護后各部位塑性區(qū)均會減小,隧道也變得更加穩(wěn)定,滿足設(shè)計及施工要求。
(3)不同初始地應力情況下,隧道開挖未支護與開挖后塑性區(qū)情況不同,當側(cè)壓力系數(shù)比較小時,拱腰塑性區(qū)較大,當側(cè)壓力系數(shù)由0.4到1.0,塑性區(qū)先由蝴蝶形向橢圓形發(fā)展,再向圓形發(fā)展,拱腰塑性區(qū)向內(nèi)收縮,說明水平壓力相對于豎向壓力較小,拱腰易發(fā)生破壞。
(4)隧道支護過后,塑性區(qū)迅速減小,拱腰位置尤其明顯,支護應按規(guī)范進行及時施工,以防塑性區(qū)迅速發(fā)展導致隧道失穩(wěn),造成坍塌。當側(cè)壓力系數(shù)為0.4,塑性區(qū)為蝴蝶形,拱腰塑性區(qū)向圍巖內(nèi)部迅速延伸,易發(fā)生局部失穩(wěn),如處于富水條件下,拱腰可能會發(fā)生涌水突泥;當側(cè)壓力系數(shù)為1.0,塑性區(qū)分布大體呈圓形,各部位塑性區(qū)較為均勻,支護后塑性區(qū)減小,隧道不易發(fā)生局部破壞,如未及時支護,塑性區(qū)發(fā)展較大,有發(fā)生整體破壞的可能。
3.1.2有無支護隧道塑性區(qū)分布圖半徑對比分析
對開挖未支護及開挖支護后監(jiān)測點的塑性區(qū)半徑進行分析,得出結(jié)果評估隧道穩(wěn)定性。相關(guān)文章總結(jié)出隧道各部位塑性區(qū)(塑性區(qū)范圍=塑性區(qū)半徑-隧道半徑)不大于洞直徑20%,則可判斷隧道處于穩(wěn)定,若局部塑性區(qū)范圍超過安全值,極有可能發(fā)生局部破壞,如各位置均超過安全值,則有可能發(fā)生整體破壞。
表2 隧道未支護與支護后塑性區(qū)半徑 m
表2為隧道開挖未支護塑性區(qū)半徑與隧道開挖支護后塑性區(qū)半徑,由此可以看出:
(1)不同側(cè)壓力系數(shù)下,拱腰塑性區(qū)半徑最大,仰拱與拱頂塑性區(qū)半徑較相近。拱腰塑性區(qū)半徑隨側(cè)壓力系數(shù)增大而減小,與拱腰不同,拱頂與仰拱塑性區(qū)半徑隨側(cè)壓力系數(shù)增大而增大。支護后各部位塑性區(qū)均有所減小,說明圍巖塑性變形減小,隧道結(jié)構(gòu)穩(wěn)定性逐漸提升。
(2)隧道開挖后未支護前,側(cè)壓力系數(shù)由0.4變化為1.0,拱頂塑性區(qū)半徑由5.4m變?yōu)?.3m;仰拱塑性區(qū)半徑由5.4m變?yōu)?.3m;拱腰塑性區(qū)半徑由8.5m減小為7.3m。拱腰塑性區(qū)變形較大,在拱腰應力集中時,會發(fā)生擠入塌方等災害,拱頂與仰拱雖塑性區(qū)半徑不大,但其塑性區(qū)一般為拉伸剪切塑性區(qū),與拱腰剪切塑性區(qū)不同,處于拱頂有掉塊等風險,仰拱有拱底隆起等現(xiàn)象。
(3)隧道支護后,塑性區(qū)半徑明顯減小,拱腰塑性區(qū)變化最為迅速,當側(cè)壓力為0.4,未支護拱腰塑性區(qū)半徑為8.5m,支護后減為7.7m;當側(cè)壓力為1.0,未支護拱腰塑性區(qū)半徑為7.3m,支護后減為6.6m。仰拱與拱頂有明顯變化,但相對變化較之拱腰不明顯。
圖4 隧道未支護與支護后塑性區(qū)半徑(單位:m)
由圖4對隧道圍巖塑性區(qū)半徑進行分析:
(1)無論有無支護拱腰塑性區(qū)半徑隨側(cè)壓力系數(shù)增大而減??;與之相反,拱頂與仰拱塑性區(qū)半徑隨側(cè)壓力系數(shù)增大而增大。
(2)無論有無支護,當側(cè)壓力系數(shù)為1.0,表明隧道處于等壓狀態(tài),圍巖塑性區(qū)呈現(xiàn)大致圓形,與數(shù)值模擬存在誤差,但基本滿足卡斯特納公式、修正芬納公式,拱腰、拱頂與仰拱塑性區(qū)半徑基本相同。
(3)在不同側(cè)壓力系數(shù)下,總體而言側(cè)壓力系數(shù)越小,隧道發(fā)生局部失穩(wěn)幾率越大,是由于拱腰塑性區(qū)半徑較大,短時間即可產(chǎn)生大范圍變形,隧道開挖后應采取早支護、強支護、早封閉原則。
(4)預測側(cè)壓力系數(shù)小于0.4,拱腰塑性區(qū)半徑會持續(xù)增加,有可能發(fā)生塑性區(qū)貫通;側(cè)壓力系數(shù)大于1.0后,由于水平壓力大于豎向壓力,預計塑性區(qū)發(fā)展會如側(cè)壓力系數(shù)0.4到1.0發(fā)生90°偏轉(zhuǎn),拱頂與仰拱塑性區(qū)半徑會明顯增大??紤]到側(cè)壓力系數(shù)重要性,工程中應對水平地應力與垂直地應力進行勘測,明確側(cè)壓力系數(shù)實際值。
隧道穩(wěn)定性以塑性區(qū)范圍(塑性區(qū)范圍=塑性區(qū)半徑-隧道半徑)小于隧道洞直徑20%為安全值,本文隧道洞直徑為10m,所以安全塑性區(qū)范圍為2m,超過安全值則判斷為失穩(wěn)。失穩(wěn)分為局部失穩(wěn)和整體失穩(wěn),失穩(wěn)并不意味著破壞,可通過加強支護進行解決。
圖5 隧道塑性區(qū)范圍安全判據(jù)
由圖5對隧道圍巖穩(wěn)定性進行分析(水平黑粗線為安全值):
(1)隧道開挖后未支護前,隧道拱腰在側(cè)壓力系數(shù)0.4到0.8時,塑性區(qū)范圍均超過安全值,隧道可能存在局部失穩(wěn)情況;側(cè)壓力系數(shù)為1.0,拱頂、拱腰以及仰拱塑性區(qū)范圍均超過安全值,隧道可能處于整體失穩(wěn)狀態(tài)。
(2)進行支護后,隧道塑性區(qū)范圍得到一定限制,隧道僅在側(cè)壓力系數(shù)0.4到0.8時,拱腰可能局部失穩(wěn),側(cè)壓力系數(shù)為1.0時,塑性區(qū)范圍為1.6m,小于2.0m,滿足安全要求,不再發(fā)生整體失穩(wěn)。為徹底解決這類情況,需對支護結(jié)構(gòu)進行優(yōu)化,限制塑性區(qū)發(fā)展,使其在安全值范圍內(nèi),保證施工階段穩(wěn)定性。
利用FLAC3D軟件對某圓形隧道進行分析,在軟件設(shè)置不同側(cè)壓力系數(shù)模擬圍巖處于不同初始地應力,實現(xiàn)非等壓,對圓形隧道開挖后,有無支護塑性區(qū)進行研究分析,得到以下結(jié)論:
(1)隧道掘進過程中如未及時支護,塑性區(qū)將迅速發(fā)展,及時支護后的拱頂、拱腰與仰拱塑性區(qū)均會相對減小,拱腰尤其明顯,使隧道結(jié)構(gòu)變得越發(fā)穩(wěn)定。不同側(cè)壓力系數(shù)下,有無支護的塑性區(qū)發(fā)展情況有所不同,當側(cè)壓力系數(shù)越小,拱腰塑性區(qū)越大,當側(cè)壓力系數(shù)由0.4到1.0,塑性區(qū)由蝴蝶形向圓形發(fā)展。
(2)有無支護拱腰塑性區(qū)半徑隨側(cè)壓力系數(shù)增大而減?。慌c之相反,拱頂與仰拱塑性區(qū)半徑隨側(cè)壓力系數(shù)增大而增大。側(cè)壓力系數(shù)越小,隧道局部失穩(wěn)幾率越大,側(cè)壓力系數(shù)小于0.4,拱腰塑性區(qū)半徑持續(xù)增加,有可能發(fā)生塑性區(qū)貫通;側(cè)壓力系數(shù)大于1.0后,拱頂與仰拱塑性區(qū)半徑將會明顯增大。
(3)在側(cè)壓力系數(shù)0.4到0.8時,未支護前拱腰塑性區(qū)范圍均超過安全值,存在局部失穩(wěn)風險;側(cè)壓力系數(shù)為1.0,未支護前拱頂、拱腰及仰拱塑性區(qū)范圍均超過安全值,存在整體失穩(wěn)風險。支護施工后,僅側(cè)壓力系數(shù)0.4到0.8時,拱腰可能局部失穩(wěn),其余情況均滿足安全要求。