李煜,楊紹佳,唐驍,王安城,安建峰
(1.中國電建集團華東勘測設計研究院有限公司,浙江 杭州,311122;2.國網(wǎng)新源浙江縉云抽水蓄能有限公司,浙江 麗水,321400;3.南京水利科學研究院,江蘇 南京,210024)
某抽水蓄能電站尾水洞內(nèi)徑6.2 m,阻抗式調(diào)壓室設置在尾水岔管下游20.0 m處,調(diào)壓室大井直徑13.0 m,高度76 m,阻抗孔直徑5.0 m。尾水洞與連接管通過直角岔管和彎道連接,岔管支臂中心高程低于尾水洞中心高程0.6 m,彎道內(nèi)徑5.0 m,中心轉(zhuǎn)彎半徑5.0 m,連接管長度約66.0 m。
考慮到帶長連接管的阻抗式調(diào)壓室布置復雜性和工程建設實際情況,重點研究與該抽水蓄能電站尾水調(diào)壓室類似的三種典型布置型式(方案一、二、三)下的調(diào)壓室底部流態(tài)及流量系數(shù)。其中,原方案(見圖1)連接管直徑為5.0 m;方案一連接管直徑為6.2 m,與隧洞直徑相同;方案二連接管直徑為4.0 m,洞徑比40%;方案三連接管直徑與隧洞直徑相同,但在連接管和大井連接處采用阻抗板型式,孔口直徑4.0 m,斷面面積有所減小。
圖1 原方案示意圖Fig.1 The original plan
針對各典型方案建立三維數(shù)學模型進行計算分析。本研究數(shù)值計算采用有限體積法離散控制方程,并采用具有二階精度且絕對穩(wěn)定的二階迎風格式插值求解控制體邊界上的物理量及其導數(shù),通過基于壓力修正法的SIMPLIC 算法迭代求解代數(shù)方程組[1-10]。
各方案下水流全部流入調(diào)壓室時的調(diào)壓室底部流速分布情況見圖2~9。由圖可看出,各典型布置型式下水流總體流態(tài)與原方案類似。當水流全部流入調(diào)壓室時,隧洞內(nèi)水流先在平面上90°偏轉(zhuǎn)進入岔管支管,支管內(nèi)主流集中于迎水面,并在背水面形成剪切回流。在回流擾動作用下,支管內(nèi)主流紊動較強。支管水流經(jīng)彎道進入連接管,主流同樣集中于迎水面,而在背水面上發(fā)生邊界層分離,形成回流。同時,由于水流的紊動和壁面約束,連接管內(nèi)水流出現(xiàn)振蕩,呈螺旋式流動。水流自連接管進入大井后,發(fā)生擴散,并逐步再次附著于大井邊壁,大井內(nèi)水流相對穩(wěn)定。
圖2 水流全部流入調(diào)壓室時底部隧洞和岔管水流流速(原方案)Fig.2 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under original plan
圖3 水流全部流入調(diào)壓室時連接管和大井水流流速(原方案)Fig.3 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under original plan
圖4 水流全部流入調(diào)壓室時底部隧洞和岔管水流流速(方案一)Fig.4 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan A
圖5 水流全部流入調(diào)壓室時連接管和大井水流流速(方案一)Fig.5 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under plan A
圖6 水流全部流入調(diào)壓室時底部隧洞和岔管水流流速(方案二)Fig.6 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan B
圖7 水流全部流入調(diào)壓室時連接管和大井水流流速(方案二)Fig.7 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under plan B
圖8 水流全部流入調(diào)壓室時底部隧洞和岔管水流流速(方案三)Fig.8 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan C
圖9 水流全部流入調(diào)壓室時連接管和大井水流流速(方案三)Fig.9 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under plan C
對比各方案水流流動情況發(fā)現(xiàn),岔管內(nèi)水流流態(tài)與洞徑比密切相關(guān)。當連接管直徑和隧洞直徑相同時,水流自隧洞進入連接管后,連接管有效過水斷面面積約占總面積的50%;當連接管直徑與隧洞直徑比為65%(原方案)時,連接管有效過水斷面面積約占總面積的45%;當連接管直徑與隧洞直徑比為40%(方案二)時,連接管有效過水斷面面積所占比例進一步縮小。因此,連接管直徑與隧洞直徑比越小,則連接管有效過水斷面面積占比越小,連接管內(nèi)水流局部流速越大,背水面回流強度和紊動強度均有所增大。受岔管支臂內(nèi)強旋流影響,連接管轉(zhuǎn)彎處水流流態(tài)亦有所不同。當連接管直徑與隧洞直徑比減小時,連接管彎道局部水流均勻性劣化,主流向迎水面集中程度越高,彎道內(nèi)水流越紊亂,連接管內(nèi)水流均勻化所需距離越長。
各方案下水流全部流出調(diào)壓室時的調(diào)壓室底部流速分布情況見圖10~17。由圖可看出,各典型布置型式下水流總體流態(tài)與原方案類似。
圖10 水流全部流出調(diào)壓室時底部隧洞和岔管水流流速(原方案)Fig.10 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under original plan
圖11 水流全部流出調(diào)壓室時連接管和大井水流流速(原方案)Fig.11 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under original plan
圖12 水流全部流出調(diào)壓室時底部隧洞和岔管水流流速(方案一)Fig.12 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under plan A
圖13 水流全部流出調(diào)壓室時連接管和大井水流流速(方案一)Fig.13 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under plan A
圖14 水流全部流出調(diào)壓室時底部隧洞和岔管水流流速(方案二)Fig.14 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under plan B
圖15 水流全部流出調(diào)壓室時連接管和大井水流流速(方案二)Fig.15 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under plan B
圖16 水流全部流出調(diào)壓室時底部隧洞和岔管水流流速(方案三)Fig.16 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under plan C
圖17 水流全部流出調(diào)壓室時連接管和大井水流流速(方案三)Fig.17 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under plan C
對比各方案水流流動情況,水流自大井進入連接管后較為平順,不同連接管直徑下流態(tài)差別很小。較為特殊的是,方案三連接管頂部采用收縮布置,水流經(jīng)阻抗孔進入連接管后形成局部射流,并在連接管中部再附著于邊壁。
各方案下水流全部流入調(diào)壓室時的調(diào)壓室底部壓力分布情況見圖18~25。由圖可看出,各典型布置型式下調(diào)壓室底部壓力分布與原方案差別不大,壓力與流速直接相關(guān)。當水流全部流入調(diào)壓室時,支管、連接管和大井內(nèi)各個回流區(qū)壓力較主流區(qū)更低??傮w而言,部分水流進入調(diào)壓室連接管、大井和岔管內(nèi)時的壓力分布較全流入時更為均勻,部分水流進入調(diào)壓室隧洞內(nèi)時的流態(tài)則較全流入時更為紊亂,回流區(qū)更長,壓力梯度更明顯。
圖18 水流全部流入調(diào)壓室時底部隧洞和岔管壓力(原方案)Fig.18 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under original plan
圖19 水流全部流入調(diào)壓室時連接管和大井壓力(原方案)Fig.19 The pressure in connecting pipe and surge tank when all water flows into the surge tank under original plan
圖20 水流全部流入調(diào)壓室時底部隧洞和岔管壓力(方案一)Fig.20 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan A
圖21 水流全部流入調(diào)壓室時連接管和大井壓力(方案一)Fig.21 The pressure in connecting pipe and surge tank when all water flows into the surge tank under plan A
圖22 水流全部流入調(diào)壓室時底部隧洞和岔管壓力(方案二)Fig.22 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan B
圖23 水流全部流入調(diào)壓室時連接管和大井壓力(方案二)Fig.23 The pressure in connecting pipe and surge tank when all water flows into the surge tank under plan B
圖24 水流全部流入調(diào)壓室時底部隧洞和岔管壓力(方案三)Fig.24 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan C
圖25 水流全部流入調(diào)壓室時連接管和大井壓力(方案三)Fig.25 The pressure in connecting pipe and surge tank when all water flows into the surge tank under plan C
隧洞水流全部流入和流出調(diào)壓室時,計入大井與連接管之間能量損失后的水頭損失及水損系數(shù)三維數(shù)值模擬結(jié)果見表1。
表1 不同布置型式下水流進出調(diào)壓室流量系數(shù)Table 1 Coefficients of inflow and outflow with different layout patterns
對于帶長連接管的調(diào)壓室,在水力過渡過程計算分析時,大井與連接管之間的水頭損失往往作為管段之間的局部損失單獨考慮。
利用三維流場數(shù)值模擬方法研究不同布置方案下調(diào)壓室底部水流流速分布、壓力分布和進出流流量系數(shù)的變化規(guī)律,研究結(jié)果表明:
(1)連接管直徑與隧洞直徑比越小,則連接管內(nèi)有效過水斷面面積越小,連接管內(nèi)水流局部流速越大,背水面回流強度和紊動強度均有所增大。
(3)對于帶長連接管的阻抗式調(diào)壓室,在水力過渡過程計算分析時,大井與連接管之間的水頭損失往往作為管段之間的局部損失單獨考慮。該情況下,各方案水流進出調(diào)壓室時流量系數(shù)略大。■