国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

A NONSMOOTH THEORY FOR A LOGARITHMIC ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY*

2023-01-09 10:57:36ChunyuLEI雷春雨
關(guān)鍵詞:春雨

Chunyu LEI(雷春雨)

School of Sciences,GuiZhou Minzu University,Guiyang 550025,China E-mail: leichygzu@sina.cn

Jiafeng LIAO(廖家鋒)+

College of Mathematics Education,China West Normal University,Nanchong 631002,China E-mail: liaojiafeng@163.com

Changmu CHU(儲昌木)Hongmin SUO(索洪敏)

School of Sciences,GuiZhou Minzu University,Guiyang 550025,China E-mail: gzmychuchangmu@sina.com; gzmysxx88@sina.com

1 Introduction and Main Result

We study the existence of multiple positive solutions for the following logarithmic elliptic equation with singular terms:

Here Ω ?RN(N ≥3) is a bounded domain with a smooth boundary, 0 <γ <1 and λ is a positive constant.

Regarding the singular semilinear elliptic equation on a bounded domain, many papers have studied the problem

For the elliptic equation with logarithmic nonlinearity, we can refer to [17-26] and the references therein. In particular, [24] considered the following semilinear elliptic equation with logarithmic nonlinearity:

Here 0 <p <2?and b ∈C(Ω).

Inspired by the above works, we study problem (1.1). Compared with problem (1.2), the logarithmic term u log u2is indefinite. Compared with problem (1.3), we consider the case of-1 <p <0 and discuss the existence of positive solutions. Thanks to the critical point theory for nonsmooth functionals, we prove that problem (1.1) has at least two positive solutions.

for any u ∈H10(Ω). The singular term leads to the fact that the functional I does not belong to C1(H10(Ω),R). The sign of the logarithmic integral term is indefinite, which brings about some difficulties in terms of studying the existence of positive solutions to problem (1.1). Our main result is as follows:

Theorem 1.1 Assume that 0 <γ <1. Then there exists Λ0>0 such that problem(1.1)has at least two positive solutions for any 0 <λ <Λ0.

2 Preliminaries

With the help of [27] and[28], we first recall some concepts adapted from the critical point theory for nonsmooth functionals, especially the concept of a concrete Palais-Smale sequence.We then prove the existence of the negative energy solution of problem(1.1)in the next section.

Let (X,d) be a complete metric space, and let f :X →R be a continuous functional in X.Denote by |df|(u) the supremum of δ in [0,∞) such that there exist r > 0 and a continuous map σ :Br(u)×[0,r] satisfying

for (v,t)∈Br(u)×[0,r].

A sequence {un} of X is called a concrete Palais-Smale sequence of the functional f if|df|(un) →0 and f(un) →c <+∞as n →∞. In this paper, however, we use another concept instead: the so-called concrete Palais-Smale sequence for the functional I. Since we are looking for positive solutions of problem (1.1), we consider the functional I defined on the closed positive cone P of H10(Ω); that is,

Here P is a complete metric space and I is a continuous functional on P. We now introduce the following definition: a sequence {un} of P is called a concrete Palais-Smale sequence of the functional I if |dI|(un) →0 and I(un) is bounded. The functional I is said to satisfy the concrete Palais-Smale condition at the level c if any concrete Palais-Smale sequence {un} with I(un)→c possesses a convergent subsequence.

It turns out that if |dI|(u)<+∞, then we have the following lemma:

By the arbitrariness of the sign of φ, we can deduce that(2.12)holds. The proof of Lemma 2.3 is complete. □

3 Proof of Theorem 1.1

In this section, we first prove that problem (1.1) has a negative energy solution.

Lemma 3.1 There exist constants r,ρ,Λ0>0 such that the functional I satisfies

which implies that I(tu)<0 for t suitably small. Therefore, for ‖u‖ sufficiently small, one has that d ?infu∈BρI(u)<0. The proof is complete. □

According to Lemma 3.1, we can obtain that d is attained at some u?∈Bρ. Furthermore,by Lemmas 2.1 and 2.3, we obtain

Theorem 3.2 For 0 <λ <Λ0,problem(1.1)has a positive solution u?with I(u?)=d <0.

which implies that d ≥I(u?). Since Bρis closed and convex, one has that u?∈Bρ. Thus, we obtain that I(u?)=d <0 and u?/≡0 in Ω.

Second, we prove that u?is a nonzero and nonnegative solution of problem(1.1). From the information above,we know that u?is a local minimizer of I. Then,for v ∈P and a sufficiently small t>0 such that u?+t(v-u?)∈Bρ, one has that I(u?)≤I(u?+t(v-u?)). In a manner similar to the proof of Lemma 2.1, we obtain that

猜你喜歡
春雨
春雨
春雨
春雨一去夏花開
春雨
無聲的春雨
青年歌聲(2018年3期)2018-10-20 03:25:18
春雨
春雨
快樂語文(2016年10期)2016-11-07 09:44:57
你那里有沒有春雨紛飛
春雨隨想曲
小主人報(2015年3期)2015-02-28 20:41:55
《春雨早雷》
火花(2015年3期)2015-02-27 07:41:25
堆龙德庆县| 开化县| 宣武区| 清河县| 满洲里市| 延安市| 偏关县| 沂源县| 谢通门县| 饶阳县| 肇源县| 柘荣县| 鹤壁市| 济源市| 巴楚县| 永德县| 共和县| 绥德县| 南丹县| 石台县| 临汾市| 广汉市| 莲花县| 东港市| 凤翔县| 青阳县| 江华| 曲松县| 新闻| 湖北省| 石家庄市| 青龙| 荣昌县| 运城市| 泌阳县| 广水市| 阳西县| 阿图什市| 黄冈市| 章丘市| 淄博市|