陳冰潔 張富糧 楊 碩 李曉立 何堂慶 張晨曦 田明慧 吳 梅 郝曉峰 張學(xué)林
不同形態(tài)氮肥下叢枝菌根真菌對(duì)玉米灌漿期生理特性及產(chǎn)量和品質(zhì)的影響
陳冰潔 張富糧 楊 碩 李曉立 何堂慶 張晨曦 田明慧 吳 梅 郝曉峰 張學(xué)林*
河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 / 省部共建小麥玉米作物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室 / 2011河南糧食作物協(xié)同創(chuàng)新中心 / 作物生長(zhǎng)發(fā)育調(diào)控教育部重點(diǎn)實(shí)驗(yàn)室, 河南鄭州 450002
明確不同形態(tài)氮肥條件下叢枝菌根真菌(Arbuscular Mycorrhizal Fungi, AMF)對(duì)灌漿期玉米生理特性及籽粒產(chǎn)量和品質(zhì)的影響, 為合理配施農(nóng)田生物肥料、提高產(chǎn)量和改善籽粒品質(zhì)提供理論依據(jù)。2018年和2019年2個(gè)玉米生育季, 采用分室(生長(zhǎng)室和菌絲室)箱體裝置, 設(shè)置氮肥形態(tài)和叢枝菌根真菌雙因素試驗(yàn), 測(cè)定灌漿期籽粒和穗位葉氮代謝關(guān)鍵酶活性以及籽粒產(chǎn)量、植株生物量、植株氮素積累量和根系特性等性狀。結(jié)果表明, AMF可增加玉米灌漿期葉片葉綠素含量和葉面積, 促進(jìn)光合作用進(jìn)行, 調(diào)節(jié)氮代謝關(guān)鍵酶活性, 從而提高玉米產(chǎn)量, 改善籽粒品質(zhì), 且在不同氮肥形態(tài)下影響不同。與M0處理均值相比, 銨態(tài)氮肥處理下M1產(chǎn)量和籽粒氮素積累量分別增加85%和140%; 硝態(tài)氮肥處理下產(chǎn)量和籽粒氮素積累量分別增加36%和81%。與M0處理均值相比, 銨態(tài)氮肥處理下M1粗蛋白含量、粗淀粉含量和賴氨酸含量分別增加9%、6%和7%, 粗脂肪含量減少19%; 硝態(tài)氮肥處理下粗蛋白含量和賴氨酸含量分別增加10%和8%, 粗脂肪含量減少32%。本研究表明, 在不同氮肥形態(tài)下接種AMF均能夠提高玉米產(chǎn)量, 增加玉米籽粒粗蛋白含量和賴氨酸含量, 改善玉米籽粒品質(zhì)。
叢枝菌根真菌; 氮肥形態(tài); 玉米產(chǎn)量; 籽粒品質(zhì)
玉米是我國(guó)重要的糧食作物, 其種植面積已躍居第一位[1]。氮素是玉米生長(zhǎng)所需的重要營(yíng)養(yǎng)元素, 氮肥形態(tài)是影響作物產(chǎn)量和品質(zhì)的重要因素[2]。Bloom等[3]研究發(fā)現(xiàn), 與硝態(tài)氮肥相比, 銨態(tài)氮肥更能促進(jìn)玉米根系生長(zhǎng)并提高葉片葉綠素含量, 顯著促進(jìn)作物生長(zhǎng); 姜佰文和高強(qiáng)[4]采用長(zhǎng)期定位試驗(yàn)發(fā)現(xiàn), 不同銨態(tài)氮肥配施顯著改善春玉米生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì); 李學(xué)俊等[5]研究發(fā)現(xiàn), 在沙培條件下硝態(tài)氮肥通過促進(jìn)玉米側(cè)根生長(zhǎng)顯著增加玉米葉片光合強(qiáng)度和蒸騰速率; 而尹彩霞等[6]則認(rèn)為不同形態(tài)氮肥對(duì)玉米產(chǎn)量無顯著影響。
叢枝菌根真菌(Arbuscular Mycorrhizal Fungi, AMF)廣泛分布于陸地生態(tài)系統(tǒng), 能與絕大多數(shù)陸地植物建立共生體[7], 并通過多種途徑影響植物生理代謝和光合作用[8], 促進(jìn)養(yǎng)分吸收和增加生物量。Hodge等[9]研究發(fā)現(xiàn)AMF根外菌絲能吸收多種簡(jiǎn)單形態(tài)的氮, 顯著促進(jìn)作物養(yǎng)分吸收; 張學(xué)林等[10]采用分室箱體裝置發(fā)現(xiàn)不同氮肥用量條件下AMF均能顯著改善玉米穗部性狀, 增加籽粒產(chǎn)量; 金海如等[11]采用大田試驗(yàn)發(fā)現(xiàn)AMF和有機(jī)物料可協(xié)同影響甜玉米籽粒品質(zhì)。
國(guó)內(nèi)外學(xué)者廣泛研究證明了AMF在氮素吸收過程中的重要作用, 發(fā)現(xiàn)AMF具有吸收NH4+和NO3?的能力[12]。Pan等[13]研究指出AMF可增加植物寄主從土壤中吸收氮素, 氮素形態(tài)在一定程度上影響AMF的吸收作用。普遍認(rèn)為AMF更傾向于從土壤中獲得NH4+而不是NO3? [14], 但不同共生系統(tǒng)中通過菌根途徑對(duì)氮素吸收的貢獻(xiàn)相差很大[15]。Seck-Mbengue等[16]采用分室盆栽試驗(yàn)發(fā)現(xiàn), AMF在銨態(tài)氮肥處理下吸收并轉(zhuǎn)運(yùn)給植物的氮素是硝態(tài)氮肥的兩倍。最近一項(xiàng)采用隔室生長(zhǎng)系統(tǒng)的研究表明AMF能夠顯著促進(jìn)水稻對(duì)氮的吸收, NO3?為氮源時(shí)菌根途徑對(duì)總氮吸收的貢獻(xiàn)超過40%[17]; 且這種影響可能存在于玉米[15]。灌漿期是玉米產(chǎn)量形成和籽粒物質(zhì)積累的關(guān)鍵時(shí)期[18-19], 且受氮肥影響顯著[20]。鄧胤等[21]研究了不同氮素形態(tài)比例條件下接種AMF對(duì)玉米生長(zhǎng)前期氮同化關(guān)鍵酶的影響; 張學(xué)林等[8]研究了AMF對(duì)玉米灌漿前期籽粒產(chǎn)量和品質(zhì)的影響。目前從灌漿期生理特性出發(fā), 研究不同氮肥形態(tài)下AMF對(duì)玉米籽粒產(chǎn)量和品質(zhì)影響的研究還非常少。本文采用分室箱體裝置, 通過對(duì)玉米灌漿期SPAD、光合作用和氮代謝關(guān)鍵酶活性等生理指標(biāo)的測(cè)定, 確定AMF在不同形態(tài)氮肥條件下對(duì)玉米籽粒產(chǎn)量和品質(zhì)的影響, 以期為充分發(fā)揮AMF在提高作物產(chǎn)量、改善籽粒品質(zhì)方面的作用提供理論依據(jù)。
試驗(yàn)于2018年和2019年5月至10月在河南省西平縣二郎鄉(xiāng)張堯村(33°20′N, 114°02′E, 平均海拔49 m)室外開展, 供試土壤類型為沙姜黑土, 取自于長(zhǎng)期定位試驗(yàn)不施肥處理0~20 cm土層, 自然風(fēng)干后過2 mm篩備用。土壤基本理化性質(zhì)為: 全氮2.43 gkg–1, 有機(jī)質(zhì)9.47 g kg–1, 堿解氮130 mg kg–1, 速效磷0.02 g kg?1, 速效鉀0.33 g kg–1, pH 6.3, 沙粒39.56%, 粉粒32.35%, 黏粒39.2%。
供試菌種為摩西球囊霉(),購(gòu)于北京市農(nóng)林科學(xué)院植物營(yíng)養(yǎng)與資源研究所AMF種質(zhì)資源庫(kù)(Bank of Glomeromycota in China, BGC), 以玉米為寄主植物進(jìn)行擴(kuò)繁, 產(chǎn)生的菌劑包括相應(yīng)的培養(yǎng)基質(zhì)、孢子、根外菌絲以及植物根段等, 其中土壤菌劑孢子密度為30個(gè) g–1。供試玉米品種為鄭單958, 購(gòu)自河南金苑種業(yè)有限公司。
本試驗(yàn)為不同形態(tài)氮肥和AMF雙因素設(shè)計(jì), 氮肥用量為180 kg N hm–2, 氮肥形態(tài)處理為銨態(tài)氮肥(NH4+-N)和硝態(tài)氮肥(NO3–-N), 銨態(tài)氮肥采用硫酸銨, 硝態(tài)氮肥采用硝酸鉀, 其中銨態(tài)氮肥處理中加入一定量的硫酸鉀, 以排除鉀離子對(duì)試驗(yàn)的影響。盆栽裝置為有機(jī)玻璃制成的分室箱體, 箱體規(guī)格為30 cm × 20 cm × 15 cm, 中間用擋板隔開, 擋板中間有孔徑為10 cm的方形鏤空, 覆以薄膜, 以此分為生長(zhǎng)室和菌絲室, 生長(zhǎng)室一側(cè)種植玉米并接種100 g AMF菌劑混合物; 菌絲室用于測(cè)定和驗(yàn)證菌根的功能。根據(jù)中間擋板薄膜孔徑大小, 將菌根因素分為2個(gè)水平, 即對(duì)照(M0): 生長(zhǎng)室和菌絲室之間用網(wǎng)孔0.45 μm薄膜隔離, 玉米根和AMF不能通過擋板進(jìn)入菌絲室, 只能在生長(zhǎng)室生長(zhǎng); 菌處理(M1): 生長(zhǎng)室和菌絲室之間用網(wǎng)孔20 μm薄膜隔開, 只允許AMF菌絲通過擋板進(jìn)入菌絲室。共計(jì)4個(gè)處理, 4次重復(fù)。試驗(yàn)開始前, 按照每公頃土壤2,000,000 kg、土壤容重1.2 g cm–3, 每個(gè)箱體裝風(fēng)干土8 kg。播種前, 挑選大小均勻一致的玉米種子, 經(jīng)10%的H2O2浸泡10 min消毒后, 用蒸餾水沖洗干凈, 于每年5月播種, 每個(gè)生長(zhǎng)室播種3粒種子, 于三葉期間苗, 留2株長(zhǎng)勢(shì)健康的幼苗, 于六葉期定苗留1株。按照氮肥180 kg N hm–2水平, 分別于拔節(jié)期和大喇叭口期按照1∶1比例追肥。玉米成熟期(9月20日)收獲, 并進(jìn)行相關(guān)參數(shù)的測(cè)定分析。
玉米灌漿期穗位葉葉綠素含量的測(cè)定使用SPAD-502手持式葉綠素儀(Soil-plant Analysis Development Section, Minolta Camera Co, Osaka, Japan),用SPAD值表示, 分別于吐絲后15 d (S1)、吐絲后25 d (S2)、吐絲后35 d (S3)進(jìn)行測(cè)定, 同時(shí)測(cè)量植株葉面積。
玉米灌漿期光合參數(shù)采用LI-6400 (LI-COR, 美國(guó))手持式光合測(cè)定儀測(cè)定, 于取樣前一周選擇晴朗的上午(09:00—11:00)測(cè)定穗位葉的凈光合速率(n)、蒸騰速率(r)、氣孔導(dǎo)度(s)和胞間CO2濃度(i)等參數(shù)。
2018年玉米吐絲后15 d (S1)、25 d (S2)、35 d (S3)取穗位葉; 2019年相同時(shí)期取果穗籽粒。采用試劑盒法分別測(cè)定穗位葉與果穗籽粒中的硝酸還原酶(nitrate reductase, NR)、亞硝酸還原酶(nitrite reductase, NiR)、谷氨酰胺合成酶(glutamine synthase, GS)和谷氨酸合成酶(glutamate synthetase, GOGAT)。每個(gè)處理的穗位葉隨機(jī)選取3處約6 g, 籽粒隨機(jī)選取6粒, 迅速采集, 錫紙包裹, 采樣后暫置于液氮罐保存, 隨后轉(zhuǎn)移至–80℃冰箱。具體測(cè)定方法為: 先稱取樣本(葉片和籽粒各1 g), 放入研缽, 迅速倒入液氮并將其充分研磨, 加入9 g pH 7.2~7.4的1′PBS緩沖液沖洗研缽, 直至無殘留。研磨均勻后于Eppendorf Centrifuge 5810R高速冷凍離心機(jī)(Eppendorf, 德國(guó))進(jìn)行離心20 min (3000轉(zhuǎn)min–1), 收集上清液。用上海酶聯(lián)生物試劑盒測(cè)定NR、NiR、GS和GOGAT酶活性, 以空白孔調(diào)零, 在450 nm波長(zhǎng)下用酶標(biāo)儀(Rayto, RT-6100)依序測(cè)量各孔的吸光度(OD值), 所有測(cè)定均在加終止液15 min內(nèi)進(jìn)行。
玉米成熟期對(duì)果穗進(jìn)行考種, 同時(shí)將成熟期植株分為根、莖、葉、籽粒和其他部分, 105℃殺青30 min, 75℃烘干至恒重, 稱重后粉碎, 用H2SO4-H2O2進(jìn)行聯(lián)合消煮, 流動(dòng)分析(AA3, SEAL-Analytical, 德國(guó))測(cè)定各器官全氮含量, 并計(jì)算各器官氮素積累量。玉米成熟期根系用水沖洗干凈后, 采用EPSON EXPRESSION 10000XL根系掃描儀(Seiko Epson Corp, 日本)與WinRHIZO軟件(Pro 2013e, Regent Instruments Inc, 加拿大)掃描和分析玉米根系總長(zhǎng)、根系表面積、平均根系直徑和根體積。采用近紅外光譜儀(MATRIX-1)測(cè)定成熟期籽粒粗蛋白、粗脂肪、粗淀粉和賴氨酸含量。
玉米吐絲后15 d (S1)、25 d (S2)、35 d (S3)取根系樣品, 采用Phillips等[22]方法測(cè)定根系侵染率, 簡(jiǎn)要步驟為: 洗凈根系并用去離子水沖洗, 取部分根切成0.5~0.1 cm小段, 先用10% KOH對(duì)其進(jìn)行透明處理, 之后用1% HCl酸化, 再用0.05%曲利苯藍(lán)染色, 然后從每個(gè)樣品中隨機(jī)抽取30根, 置于載玻片上, 于100倍光鏡下采用交叉法觀察計(jì)數(shù), 以侵染根段數(shù)在總根段數(shù)中百分比計(jì)算菌根侵染率,于電子光學(xué)顯微鏡(OM)下觀察侵染效果。
采用GLM-ANOVA分析氮肥形態(tài)和菌根真菌處理之間玉米籽粒產(chǎn)量、植株生物量、氮素積累量、光合參數(shù)、籽粒品質(zhì)及穗部性狀的差異顯著性, 并采用LSD (least significant difference)進(jìn)行多重比較。所有數(shù)據(jù)均采用SPSS 25.0進(jìn)行統(tǒng)計(jì)分析, 并采用SigmaPlot 14作圖。
由圖1可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌均顯著影響玉米籽粒產(chǎn)量及其氮素積累量。與銨態(tài)氮肥處理均值相比, 硝態(tài)氮肥處理下玉米籽粒產(chǎn)量均值增加14% (表1)。與M0處理均值相比, 銨態(tài)氮肥處理下M1產(chǎn)量和籽粒氮素積累量分別增加85%和140%; 硝態(tài)氮肥處理下分別增加36%和81%。表明不同形態(tài)氮肥條件下AMF均可以提高玉米產(chǎn)量和籽粒氮素積累量, 其中銨態(tài)氮肥處理下AMF的貢獻(xiàn)量高于硝態(tài)氮肥。
圖1 氮肥形態(tài)和叢枝菌根真菌對(duì)玉米籽粒產(chǎn)量及其氮素積累量的影響
M0、M1分別代表對(duì)照、菌絲室只有AMF菌絲2個(gè)處理; NH4+-N、NO3–-N分別代表銨態(tài)氮肥和硝態(tài)氮肥處理。同一年度中, 柱上不同小寫字母表示處理間0.05水平差異顯著性。
M0: the control, M1: only AMF hyphae can enter the hyphal chamber from the growth chamber;NH4+-N and NO3–-N represent ammonium nitrogen fertilizer and nitrate nitrogen fertilizer treatments, respectively. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level.
表1 氮肥形態(tài)和叢枝菌根真菌對(duì)灌漿期玉米籽粒、葉、莖、根生物量及其氮素積累量的影響
M0NH4+-N代表銨態(tài)氮肥對(duì)照處理; M1NH4+-N代表銨態(tài)氮肥菌絲室只有AMF菌絲處理; M0NO3?-N代表硝態(tài)氮肥對(duì)照處理; M1NO3?-N代表硝態(tài)氮肥菌絲室只有AMF菌絲處理。同一列不同字母表示處理之間< 0.05水平的差異顯著性。N、M、N × M為檢驗(yàn)統(tǒng)計(jì)量;*、**和***分別表示0.05、0.01和0.001水平差異顯著性。
M0NH4+-N represents the control with NH4+-N fertilizer input; M1NH4+-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NH4+-N fertilizer input; M0NO3?-N represents the control with NO3?-N fertilizer input; M1NO3–-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NO3?-N fertilizer input. Different lowercase letters in the same column indicate significant difference among the treatments at< 0.05. N, M, N × M are statistics of-test;*,**, and***indicate significant difference at the 0.05, 0.01, and 0.001 levels, respectively.
由圖2可知, 玉米接種AMF后能在玉米根系中形成侵染。由圖3可知, 2年灌漿期, 氮肥形態(tài)和叢枝菌根真菌均顯著影響玉米根系侵染率。與M0處理均值相比, 銨態(tài)氮肥處理下M1根系侵染率增加1563%;硝態(tài)氮肥處理下增加1687%。
由圖4可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌均能增加玉米灌漿期葉綠素含量及其葉面積。與M0處理均值相比, 銨態(tài)氮肥處理下M1的葉綠素含量和葉面積分別增加20%和18%; 硝態(tài)氮肥處理下葉綠素含量和葉面積分別增加24%和13%。表明不同形態(tài)氮肥條件下AMF均可以增加玉米葉綠素含量及其葉面積。
由表2可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌對(duì)玉米凈光合速率和氣孔導(dǎo)度有顯著影響。相同氮肥形態(tài)處理下接種AMF能夠提高凈光合速率、氣孔導(dǎo)度、胞間二氧化碳濃度和蒸騰速率, 其中硝態(tài)氮肥處理?xiàng)l件下凈光合速率、氣孔導(dǎo)度2個(gè)試驗(yàn)?zāi)甓染稻哂阡@態(tài)氮肥處理。
圖2 玉米灌漿期叢枝菌根真菌對(duì)不同處理(M0NH4+-N; M1NH4+-N; M0NO3–-N; M1NO3–-N)根系的侵染
M0NH4+-N代表銨態(tài)氮肥對(duì)照處理; M1NH4+-N代表銨態(tài)氮肥菌絲室只有AMF菌絲處理; M0NO3–-N代表硝態(tài)氮肥對(duì)照處理; M1NO3–-N代表硝態(tài)氮肥菌絲室只有AMF菌絲處理。
M0NH4+-N represents the control with NH4+-N fertilizer input; M1NH4+-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NH4+-N fertilizer input; M0NO3–-N represents the control with NO3–-N fertilizer input; M1NO3–-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NO3–-N fertilizer input.
圖3 氮肥形態(tài)和叢枝菌根真菌對(duì)灌漿期玉米根系侵染率的影響
M0、M1分別代表對(duì)照、菌絲室只有AMF菌絲2個(gè)處理; NH4+-N、NO3–-N分別代表銨態(tài)氮肥和硝態(tài)氮肥處理; S1、S2、S3分別代表吐絲后15 d, 吐絲后25 d和吐絲后35 d。同一年度中, 柱上不同字母表示處理間< 0.05水平差異顯著性。
M0NH4+-N represents the control with NH4+-N fertilizer input; M1NH4+-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NH4+-N fertilizer input; M0NO3–-N represents the control with NO3–-N fertilizer input; M1NO3–-N represents that only AMF hyphae can enter the hyphal chamber from the growth chamber with NO3–-N fertilizer input; S1, S2, and S3 represent 15 days after silking, 25 days after silking, and 35 days after silking, respectively. In the same year, different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level.
圖4 氮肥形態(tài)和叢枝菌根真菌對(duì)灌漿期玉米穗位葉葉綠素含量、葉面積的影響
處理同圖3。SPAD值表示葉綠素含量。同一年度中, 柱上不同小寫字母表示處理間0.05水平差異顯著性。
Treatments are the same as those given in Fig. 3. SPAD represents chlorophyll content. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level.
表2 氮肥形態(tài)和叢枝菌根真菌對(duì)灌漿期玉米光合參數(shù)的影響
處理同表1。同一列不同字母表示處理之間< 0.05水平的差異顯著性。N、M、N × M為檢驗(yàn)統(tǒng)計(jì)量;*、**和***分別表示0.05、0.01和0.001水平差異顯著性。
Treatments are the same as those given in Table 1. Different lowercase letters in the same column indicate significant difference among the treatments at< 0.05. N, M, N × M are statistics of-test;*,**, and***indicate significant difference at the 0.05, 0.01, and 0.001 levels, respectively.
由圖5可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌均顯著影響玉米灌漿期穗位葉(A、C、E、F)和籽粒(B、D、F、H)氮代謝相關(guān)酶活性。隨灌漿過程推進(jìn), 不同形態(tài)氮肥和AMF處理玉米穗位葉的NR、NiR、GS、GOGAT酶活性呈先升高后降低的趨勢(shì)。與M0處理均值相比, 銨態(tài)氮肥處理下M1穗位葉的NR、NiR、GS、GOGAT酶活性分別增加16%、20%、14%和26%; 硝態(tài)氮肥處理下玉米穗位葉的NR、NiR、GS、GOGAT酶活性分別增加21%、49%、31%和8%。表明不同形態(tài)氮肥條件下AMF均可以提高玉米穗位葉氮代謝相關(guān)酶的活性, 其中在硝態(tài)氮肥條件下, AMF更有利于穗位葉氮代謝關(guān)鍵酶的活性的增加。
圖5 氮肥形態(tài)和叢枝菌根真菌對(duì)玉米穗位葉(A, C, E, G)和籽粒(B, D, F, H)氮代謝相關(guān)酶活性的影響
處理同圖3。同一年度中, 柱上不同字母表示處理間< 0.05水平差異顯著性。
Treatments are the same as those given in Fig. 3. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level.
灌漿期玉米籽粒NR、NiR、GS、GOGAT酶活性在銨態(tài)氮肥條件下呈升高趨勢(shì), 在硝態(tài)氮肥條件下, NR和NiR酶活性呈逐漸升高趨勢(shì), GS和GOGAT酶活性先降低后升高(圖5)。與M0處理均值相比, 銨態(tài)氮肥處理下M1的NR、NiR酶活性分別減少4%和12%, 而GS、GOGAT酶活性分別增加4%和4%; 硝態(tài)氮肥處理下籽粒的NR、GOGAT酶活性分別減少6%和6%, 而GS酶活性增加4%。表明不同形態(tài)氮肥條件下AMF對(duì)玉米灌漿期籽粒氮代謝相關(guān)酶的活性影響不同。
由圖6可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌均顯著影響玉米根系性狀。與銨態(tài)氮肥處理均值相比, 硝態(tài)氮肥處理下玉米根表面積增加12%。與M0處理均值相比, 銨態(tài)氮肥處理下M1根總長(zhǎng)、根表面積、根體積分別增加87%、24%和9%, 而根直徑減少6%; 硝態(tài)氮肥處理下根總長(zhǎng)、根表面積、根體積分別增加34%、27%和10%, 而根直徑減少5%。表明不同形態(tài)氮肥條件下AMF均可以促進(jìn)玉米根系總根長(zhǎng)、根表面積和根體積的增加, 降低根系直徑, 且AMF在銨態(tài)氮肥條件下更有利于玉米根系性狀的改善。
圖6 氮肥形態(tài)和叢枝菌根真菌對(duì)玉米總根長(zhǎng)(A和B)、根表面積(C和D)、根直徑(E和F)、根體積(G和H)的影響
處理同圖1。同一年度中, 柱上不同字母表示處理間< 0.05水平差異顯著性。
Treatments are the same as those given in Fig. 1. In the same year, different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level.
由表3可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌顯著影響玉米行粒數(shù)、百粒重和穗位葉干重。與銨態(tài)氮肥處理均值相比, 硝態(tài)氮肥處理下玉米行粒數(shù)和百粒重分別增加9%和7%, 而穗位葉干重減少12%。與M0處理均值相比, 銨態(tài)氮肥處理下M1行粒數(shù)、百粒重和穗位葉干重分別增加37%、5%和25%; 硝態(tài)氮肥處理下行粒數(shù)、百粒重和穗位葉干重分別增加17%、12%和59%。表明不同形態(tài)氮肥條件下AMF均可以增加玉米行粒數(shù)和百粒重, 其中銨態(tài)氮肥處理下AMF對(duì)玉米行粒數(shù)的貢獻(xiàn)量顯著高于硝態(tài)氮肥, 而對(duì)百粒重和穗位葉干重的貢獻(xiàn)量低于硝態(tài)氮肥。
由表4可知, 2018和2019兩個(gè)試驗(yàn)?zāi)甓? 氮肥形態(tài)和叢枝菌根真菌均顯著影響玉米粗蛋白含量、粗脂肪含量(2018年氮肥處理除外)、粗淀粉含量和賴氨酸含量。與M0處理均值相比, 銨態(tài)氮肥處理下M1粗蛋白含量、粗淀粉含量和賴氨酸含量分別增加9%、6%和7%, 粗脂肪含量減少19%; 硝態(tài)氮肥處理下粗蛋白含量、粗淀粉含量和賴氨酸含量分別增加10%、1%和8%, 粗脂肪含量減少32%。表明AMF在不同氮肥形態(tài)下都可增加玉米籽粒中粗蛋白含量和賴氨酸含量, 減少粗脂肪含量; 在銨態(tài)氮肥條件下AMF更有利于增加籽粒粗淀粉含量, 在硝態(tài)氮肥條件下AMF更有利于減少籽粒粗脂肪含量。
本研究發(fā)現(xiàn)不同形態(tài)氮肥條件下AMF均顯著增加玉米籽粒產(chǎn)量(圖1)、改善籽粒品質(zhì)(表4), 且在銨態(tài)氮肥下AMF更利于提高玉米產(chǎn)量和改善籽粒品質(zhì)。這種影響可能是AMF通過改善玉米根系性狀、灌漿期生理特性以及玉米穗部性狀實(shí)現(xiàn)的。玉米籽粒中的氮素主要來自根系吸收[23], 根系性狀顯著影響玉米產(chǎn)量和養(yǎng)分吸收[24]。Kohl等[25]認(rèn)為AMF通過侵染玉米根系形成根外菌絲擴(kuò)大根系養(yǎng)分吸收范圍和能力, 提高籽粒氮素吸收; Jabborova等[26]發(fā)現(xiàn)AMF通過增加總根長(zhǎng)、根表面積和根體積促進(jìn)養(yǎng)分吸收, 提高作物產(chǎn)量; Chen等[27]和Yang等[28]發(fā)現(xiàn)AMF能降低根系直徑, 擴(kuò)大根系吸收范圍, 提高生物量。本試驗(yàn)研究發(fā)現(xiàn), 玉米接種AMF后根系總根長(zhǎng)、根表面積和根體積均顯著增加, 而根系直徑降低, 這與前人的研究結(jié)果基本一致。
灌漿期是玉米籽粒物質(zhì)積累和產(chǎn)量形成的關(guān)鍵時(shí)期[19], 且受氮素影響顯著[20]。玉米灌漿期保持較高的光合速率是保證其高產(chǎn)的必要條件[29], 氮素在此生理生化過程中起著重要的作用[30]。Mathur等[31]發(fā)現(xiàn)高溫脅迫條件下接種AMF顯著增強(qiáng)了光合作用, 促進(jìn)了玉米的干物質(zhì)積累; Zhou等[32]采用室外盆栽試驗(yàn)發(fā)現(xiàn), 干旱條件下接種AMF可以提高小麥的光合速率、蒸騰速率和氣孔導(dǎo)度, 提高籽粒產(chǎn)量。葉片是玉米進(jìn)行光合作用的重要器官, 葉面積大小和葉綠素含量與玉米光合能力成正比, 提高葉片光合作用有利于增加玉米產(chǎn)量[33], 并影響作物的干物質(zhì)積累[34]。本研究也發(fā)現(xiàn), 不同氮肥形態(tài)條件下接種AMF, 均顯著提高玉米灌漿期光合速率, 增加了植株葉面積和葉綠素含量, 這可能是產(chǎn)量提高的主要原因。AMF與玉米形成共生關(guān)系后能夠改善穗部性狀、提高產(chǎn)量并改善籽粒品質(zhì)[11,35]。本研究發(fā)現(xiàn)銨態(tài)氮肥處理?xiàng)l件下AMF顯著增加玉米行粒數(shù), 這可能是銨態(tài)氮肥下AMF更利于提高玉米產(chǎn)量的原因之一。
玉米籽粒品質(zhì)主要取決于籽粒中的蛋白質(zhì)含量及其品質(zhì)[36]; 賴氨酸作為必需氨基酸, 同樣對(duì)籽粒品質(zhì)有著重要影響[37]。灌漿期籽粒良好的氮代謝反應(yīng)是玉米籽粒優(yōu)良品質(zhì)形成的必要條件[38]。作物氮代謝關(guān)鍵酶能調(diào)節(jié)植物體內(nèi)氨基酸的合成, 對(duì)玉米灌漿期氮代謝和籽粒發(fā)育起著不可或缺的作用[39]。張學(xué)林等[8]采用盆栽試驗(yàn)發(fā)現(xiàn)AMF能提高灌漿前期玉米籽粒氮代謝酶活性, 增加籽粒粗蛋白含量, 從而提高玉米籽粒品質(zhì)。呂鵬等[40]認(rèn)為合理施氮能提高玉米籽粒NR、GS、GOGAT等酶活性, 進(jìn)而促進(jìn)氮素吸收和籽粒品質(zhì)形成。氮素主要以硝態(tài)氮和銨態(tài)氮形態(tài)被植物吸收, 同樣對(duì)玉米產(chǎn)量尤其是籽粒品質(zhì)有顯著影響[41]。本研究發(fā)現(xiàn)不同形態(tài)氮肥處理下, AMF均能夠調(diào)節(jié)氮代謝酶活性, 增加籽粒粗蛋白含量和賴氨酸含量, 減少籽粒粗脂肪含量, 從而改善玉米籽粒品質(zhì)。
不同形態(tài)氮肥處理下, 玉米接種AMF均能夠顯著增加玉米產(chǎn)量和改善籽粒品質(zhì)。一方面AMF通過增加玉米根長(zhǎng)、根表面積等, 擴(kuò)大根系吸收范圍, 增強(qiáng)養(yǎng)分吸收能力, 進(jìn)而促進(jìn)養(yǎng)分吸收和產(chǎn)量提高。另一方面AMF通過增加玉米灌漿期SPAD、葉面積, 增強(qiáng)光合作用, 調(diào)節(jié)灌漿期葉片和籽粒氮代謝關(guān)鍵酶的活性, 優(yōu)化穗部性狀, 提高籽粒產(chǎn)量, 增加籽粒粗蛋白和賴氨酸含量。
[1] 張學(xué)林, 徐鈞, 安婷婷, 侯小畔, 李潮海. 不同氮肥水平下玉米根際土壤特性與產(chǎn)量的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49: 2687–2699.
Zhang X L, Xu J, An T T, Hou X P, Li C H. Relationship between rhizosphere soil properties and yield of maize at different nitrogen levels., 2016, 49: 2687–2699 (in Chinese with English abstract).
[2] 代新俊, 楊珍平, 陸梅, 李慧, 樊攀, 宋佳敏, 高志強(qiáng). 不同形態(tài)氮肥及其用量對(duì)強(qiáng)筋小麥氮素轉(zhuǎn)運(yùn)、產(chǎn)量和品質(zhì)的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2019, 25: 710–720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat., 2019, 25: 710–720 (in Chinese with English abstract).
[3] Bloom A J, Frensch J, Taylor A R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots., 2006, 97: 867–873.
[4] 姜佰文, 高強(qiáng), 王春宏, 張迪, 高飛, 鄧宏志, 徐赫男. 氮素形態(tài)調(diào)控對(duì)春玉米生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì)的影響. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 49(11): 35–41.
Jiang B W, Gao Q, Wang C H, Zhang D, Gao F, Deng H Z, Xu H N. Effect of nitrogen form regulations on growth and development, yield and quality of spring maize., 2018, 49(11): 35–41 (in Chinese with English abstract).
[5] 李學(xué)俊, 文建雷, 韓書成, 曹翠玲, 李生秀. 氮素形態(tài)對(duì)玉米幼苗生物機(jī)制及生物量的影響. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 36(3): 192–196.
Li X J, Wen J L, Han S C, Cao C L, Li S X. Effect of N form on physiological mechanism and biomass in corn seedlings.(Nat Sci Edn), 2008, 36(3): 192–196 (in Chinese with English abstract).
[6] 尹彩霞, 左竹, 李桂花. 不同形態(tài)氮肥對(duì)玉米產(chǎn)量和土壤浸提性有機(jī)質(zhì)的影響. 中國(guó)土壤與肥料, 2011, (3): 27–30.
Yin C X, Zuo Z, Li G H. Effect of nitrogen forms on maize yield and soil extractable organic matter., 2011, (3): 27–30 (in Chinese with English abstract).
[7] Veresoglou S D, Chen B D, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling., 2012, 46: 53–62.
[8] 張學(xué)林, 吳梅, 李曉立, 何堂慶, 張晨曦, 田明慧, 陳冰潔, 張富糧, 郝曉峰, 楊青華. 叢枝菌根真菌對(duì)灌漿前期玉米子粒氮代謝及產(chǎn)量和品質(zhì)的影響. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2021, 55: 647–653.
Zhang X L, Wu M, Li X L, He T Q, Zhang C X, Tian M H, Chen B J, Zhang F L, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on nitrogen metabolism, yield and quality of grain in early grain filling stage in maize., 2021, 55: 647–653 (in Chinese with English abstract).
[9] Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems., 2015, 386: 1–19.
[10] 張學(xué)林, 李曉立, 何堂慶, 張晨曦, 田明慧, 吳梅, 周亞男, 郝曉峰, 楊青華. 叢枝菌根真菌對(duì)玉米籽粒產(chǎn)量和氮素吸收的影響. 作物學(xué)報(bào), 2021, 47: 1603–1615.
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize., 2021, 47: 1603–1615 (in Chinese with English abstract).
[11] 金海如, 蔣湘艷, 夏婷婷. 不同有機(jī)物料及其菌根化對(duì)甜玉米產(chǎn)量與品質(zhì)的協(xié)同影響. 中國(guó)土壤與肥料, 2019, (6): 196–203.
Jin H R, Jiang X Y, Xia T T. Synergistic effect of different organic matters and mycorrhizal fungi on biomass and quality of sweet maize., 2019, (6): 196–203 (in Chinese with English abstract).
[12] Tanaka Y, Yano K. Nitrogen delivery to maizemycorrhizal hyphae depends on the form of N supplied., 2005, 28: 1247–1254.
[13] Pan S, Wang Y, Qiu Y P, Chen D M, Zhang L, Ye C L, Guo H, Zhu W X, Chen A Q, Xu G H, Zhang Y, Bai Y F, Hu S J. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi., 2020, 26: 6568–6580.
[14] Hodge A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil., 2001, 151: 725–734.
[15] Xie K, Ren Y H, Chen A Q, Yang C F, Zheng Q S, Chen J, Wang D S, Li Y T, Hu S J, Xu G H. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi., 2022, 269: 153591.
[16] Seck-Mbengue M F, Mueller A, Ngwene B, Neumann E, George E. Transport of nitrogen and zinc to Rhodes grass by arbuscular mycorrhiza and roots as affected by different nitrogen sources (NH4+-N and NO3?-N)., 2017, 73: 191–200.
[17] Wang S S, Chen A Q, Xie K, Yang X F, Luo Z Z, Chen J D, Zeng D C, Ren Y H, Yang C F, Wang L X, Feng H M, Lopez-Arredondo D L, Herrera-Estrella L R, Xu G H. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants., 2020, 117: 16649–16659.
[18] 張萍, 陳冠英, 耿鵬, 高雅, 鄭雷, 張沙沙, 王璞. 籽粒灌漿期高溫對(duì)不同耐熱型玉米品種強(qiáng)弱勢(shì)粒發(fā)育的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50: 2061–2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties., 2017, 50: 2061–2070 (in Chinese with English abstract).
[19] 陳傳永.王榮煥, 趙久然, 徐田軍, 王元東, 劉秀, 劉春閣, 裴志超, 成廣雷, 陳國(guó)平. 不同生育時(shí)期遮光對(duì)玉米籽粒灌漿特性及產(chǎn)量的影響. 作物學(xué)報(bào), 2014, 40: 1650–1657.
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y D, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading on grain-filling properties and yield of maize at different growth stages., 2014, 40: 1650–1657 (in Chinese with English abstract).
[20] 劉笑鳴, 顧萬榮, 李從鋒, 張立國(guó), 王明泉, 龔士琛, 陳喜昌, 李彩鳳, 魏湜, 李文華. 化學(xué)調(diào)控和氮肥對(duì)高密度下春玉米光熱水利用效率和產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53: 3083–3094.
Liu X M, Gu W R, Li C F, Zhang L G, Wang M Q, Gong S C, Chen X C, Li C F, Wei S, Li W H. Effects of chemical regulation and nitrogen fertilizer on radiation, heat and water utilization efficiency and yield of spring maize under dense planting condition., 2020, 53: 3083–3094 (in Chinese with English abstract).
[21] 鄧胤, 申鴻, 羅文倩, 郭濤. 不同氮素形態(tài)比例條件下接種AMF對(duì)玉米氮同化關(guān)鍵酶的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15: 1380–1385.
Deng Y, Shen H, Luo W Q, Guo T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios., 2009, 15: 1380–1385 (in Chinese with English abstract).
[22] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection., 1970, 55: 158–161.
[23] Zheng B C, Zhang X N, Chen P, Du Q, Zhou Y, Yang H, Wang X C, Yang F, Yong T W, Yang W Y. Improving maize’s N uptake and N use efficiency by strengthening roots’ absorption capacity when intercropped with legumes., 2021, 9: e11658.
[24] Ushio M, Fujiki Y, Hidaka A, Kitayama K. Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests., 2015, 29: 1235–1245.
[25] Kohl L, van der Heijden M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching., 2016, 94: 191–199.
[26] Jabborova D, Annapurna K, Paul S, Kumar S, Saad H A, Desouky S, Ibrahim M F M, Elkelish A. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities., 2021, 7: 571.
[27] Chen M L, Yang G, Sheng Y, Li P Y, Qiu H Y, Zhou X T, Huang L Q, Chao Z.inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquor ice under nutrient stress., 2017, 8: 931.
[28] Yang H S, Koide R T, Zhang Q. Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition., 2016, 404: 373–384.
[29] Uribelarrea M, Below F E. Stress control achieving high yields: the quest for 300 bushel per acre corn. In: Fazio G, eds. Proceedings of the 36th Annual Meeting of the Plant Growth Regulation Society of America. USA: Plant Growth Regulation Society of America, 2010. pp 45–52.
[30] Boussadia O, Steppe K, Zgallai H, El Hadj S B, Braham M, Lemeur R, Van Labeke M C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’., 2010, 123: 336–342.
[31] Mathur S, Sharma M P, Jajoo A. Improved photosynthetic efficacy of maize () plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress., 2018, 180: 149–154.
[32] Zhou Q, Ravnskov S, Jiang D, Wollenweber B. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (L.) subjected to a period of water deficit., 2015, 75: 751–760.
[33] 任佰朝, 張吉旺, 董樹亭, 趙斌, 劉鵬. 生育前期淹水對(duì)夏玉米冠層結(jié)構(gòu)和光合特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50: 2093–2103.
Ren B C, Zhang J W, Dong S T, Zhao B, Liu P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize., 2017, 50: 2093–2103 (in Chinese with English abstract).
[34] Ghosh P K, Bandyopadhyay A K K, Manna M C, Mandal K G, Misra A K, Hati K M. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics: II. Dry matter yield, nodulation, chlorophyll content and enzyme activity., 2004, 95: 85–93.
[35] Toljander J F, Santos-Gonzalez J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial., 2008, 65: 323–338.
[36] 李錦輝. 高蛋白玉米的品質(zhì)形成機(jī)理及關(guān)鍵技術(shù)研究. 河南農(nóng)業(yè)大學(xué)博士學(xué)位論文, 河南鄭州, 2007.
Li J H. Mechanism of Quality Formation and Key Cultural Technique of High-Protein Maize Cultivars. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2007 (in Chinese with English abstract).
[37] 李浩川. 不同生態(tài)條件下玉米籽粒蛋白和賴氨酸含量及主要農(nóng)藝性狀的遺傳研究. 河南農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 河南鄭州, 2007.
Li H C. Study on the Heredity of Kernel Protein and Lysine Content and Main Agronomic Characters in Maize in Different Ecological Conditions. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2007 (in Chinese with English abstract).
[38] 周衛(wèi)霞, 董朋飛, 王秀萍, 李潮海. 弱光脅迫對(duì)不同基因型玉米籽粒發(fā)育和碳氮代謝的影響. 作物學(xué)報(bào), 2013, 39: 1826–1834.
Zhou W X, Dong P F, Wang X P, Li C H. Effects of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize (L.) genotypes., 2013, 39: 1826–1834 (in Chinese with English abstract).
[39] 吳雅薇, 李強(qiáng), 豆攀, 馬曉君, 余東海, 羅延宏, 孔凡磊, 袁繼超. 氮肥對(duì)不同耐低氮性玉米品種生育后期葉綠素含量和氮代謝酶活性的影響. 草業(yè)學(xué)報(bào), 2017, 26(10): 188–197.
Wu Y W, Li Q, Dou P, Ma X J, Yu D H, Luo Y H, Kong F L, Yuan J C. Effects of nitrogen fertilizer on leaf chlorophyll content and enzyme activity at late growth stages in maize cultivars with contrasting tolerance to low nitrogen., 2017, 26(10): 188–197 (in Chinese with English abstract).
[40] 呂鵬, 張吉旺, 劉偉, 楊今勝, 董樹亭, 劉鵬, 李登海. 施氮時(shí)期對(duì)高產(chǎn)夏玉米氮代謝關(guān)鍵酶活性及抗氧化特性的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23: 1591–1598.
Lyu P, Zhang J W, Liu W, Yang J S, Dong S T, Liu P, Li D H. Effects of nitrogen application period on the nitrogen metabolism key enzymes activities and antioxidant characteristics of high-yielding summer maize., 2012, 23: 1591–1598 (in Chinese with English abstract)
[41] 邢瑤, 馬興華. 氮素形態(tài)對(duì)植物生長(zhǎng)影響的研究進(jìn)展. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2015, 17: 109–117.
Xing Y, Ma X H. Research progress on effect of nitrogen form on plant growth., 2015, 17: 109–117 (in Chinese with English abstract).
Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms
CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, and ZHANG Xue-Lin*
Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops in 2011 / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450002, Henan, China
Clarifying the effect of arbuscular mycorrhizae fungi (AMF) on maize physiological characteristics and grain yield and their quality at grain filling stages could provide a theoretical basis for the reasonable application of biological fertilizer in farmland, which can increase maize yield and improve grain quality. In maize growing season of 2018 and 2019, the two-factors pot experiments were carried out by compartment box devices. The factors were nitrogen (N) fertilizer forms (NH4+-N: ammonium nitrogen fertilizer; NO3?-N: nitrate nitrogen fertilizer), and arbuscular mycorrhizal fungi (M0: neither root nor arbuscular mycorrhizal fungi could enter the hyphal chamber from the growth chamber; M1: only arbuscular mycorrhizal fungi could enter the hyphal chamber from the growth chamber). The key enzymes activities of N metabolism in grains and ear leaves, grain yield, plant biomass, plant N accumulation, and root characteristic parameters were measured. The results showed that AMF could increase leafchlorophyll content and leaf area, promote photosynthesis, and regulate the key enzymes activities of N metabolism at grain filling stage, thus improving maize yield and quality. This effect was different between N fertilizer forms. Compared with M0, maize yield and grain N accumulation of M1 for NH4+-N fertilizer treatment increased by 85% and 140%, respectively. For NO3–-N treatment, maize yield and grain N accumulation of M1 increased by 36% and 81%, respectively. Compared with M0, crude protein content, crude starch content, and lysine content of M1 for NH4+-N fertilizer treatment increased by 9%, 6%, and 7%, while crude fat content reduced by 19%, respectively. For NO3–-N treatment, crude protein content and lysine content of M1 increased by 10% and 8%, while crude fat content reduced by 32%, respectively. In conclusion, AMF could improve maize yield, increase crude protein content, and lysine content in maize grain, thus improving maize grain quality.
arbuscular mycorrhizal fungi; nitrogen fertilizer forms; maize yield; grain quality
10.3724/SP.J.1006.2023.23010
本研究由河南省自然科學(xué)基金項(xiàng)目(182300410013)和河南農(nóng)業(yè)大學(xué)科技創(chuàng)新基金項(xiàng)目(30500712)資助。
This study was supported by the Natural Science Foundation of Henan Province (182300410013) and the Science and Technology Innovation Fund of Henan Agricultural University (30500712).
通信作者(Corresponding author):張學(xué)林, E-mail: xuelinzhang1998@163.com; zxl1998@henau.edu.cn
E-mail: Yihao20201122@163.com
2022-01-18;
2022-05-05;
2022-05-16.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220512.1905.010.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).