韓 旭,杜 崇,陳嘉碩,唐思玉
河岸緩沖帶植被布局對氮流失的影響
韓 旭,杜 崇※,陳嘉碩,唐思玉
(黑龍江大學水利電力學院,哈爾濱 150006)
河岸緩沖帶(Rriver Buffer Strips,RBSs)已被證明能有效攔截水流并去除氮,該研究旨在揭示不同配置緩沖帶對脫氮效果的影響。實地布置河岸植被緩沖帶,開展地下徑流試驗。緩沖帶設(shè)置3種不同植物種類(水曲柳,五葉楓,楊樹),和不同寬度(0、5、10、20、30 m),河岸坡度為3%,樹木密度為540株/hm2。在此條件下,研究各類河岸植被緩沖帶對地下徑流銨態(tài)氮、硝態(tài)氮和總氮的截留效果。結(jié)果表明:20 m寬度河岸植被緩沖帶能很好地截留各形態(tài)氮素。30 m寬度下,河岸植被緩沖帶徑流水中的銨態(tài)氮、硝態(tài)氮和總氮的截留率最高,分別為70.4%、67.7%和69.1%。在不同植物種類緩沖帶比較中,楊樹可顯著降低徑流銨態(tài)氮和總氮濃度,水曲柳可顯著降低徑流硝態(tài)氮濃度。在寬度與不同植物種類的交互關(guān)系中,20 m寬度楊樹緩沖帶對銨態(tài)氮和硝態(tài)氮的截留率最高,30 m寬度楊樹緩沖帶對總氮的截留率最高,為62.1%。研究結(jié)果可為東北地區(qū)中小型河流河岸緩沖設(shè)計最大化截留徑流氮污染物提供參考。
氮;植被;坡度;河岸;緩沖帶;截留率;寬度;地下徑流深度
由化肥和農(nóng)藥的過量施用引起的農(nóng)業(yè)非點源污染是全世界河流水質(zhì)退化的主要原因之一[1]。河岸緩沖系統(tǒng)是用來控制農(nóng)業(yè)非點源污染和保護河流環(huán)境的主要措施之一。河岸生態(tài)森林系統(tǒng)具有重要的生態(tài)意義,因為與非河岸生態(tài)森林系統(tǒng)相比,河岸森林具有更加豐富的植物,可以更加有效地保護河流水質(zhì)和水生動物[2]。在各種非點源污染中,農(nóng)田排放的氮污染物已成為當前水環(huán)境治理部門需要解決的一個基本難題。河岸植被緩沖帶作為陸地生態(tài)系統(tǒng)與水生生態(tài)系統(tǒng)的連接,可有效地攔截農(nóng)田地表徑流的輸入,并通過河岸緩沖帶的物理截留作用或微生物轉(zhuǎn)化作用有效地截留徑流中的氮污染物[3-5]。河岸植被緩沖帶寬度是決定河岸緩沖帶氮素截留效率的一個重要因素。王芳等[6]發(fā)現(xiàn)河岸緩沖帶的寬度決定了緩沖帶是否能夠充分發(fā)揮生態(tài)服務(wù)的功能。一般認為河岸緩沖帶攔截氮的能力與寬度成正相關(guān)[7]。一個5 m寬的河岸緩沖帶從地表徑流中截留總氮和硝態(tài)氮的速率分別為40.2%和37.2%[8]。9.1 m和13 m寬的林草河岸緩沖帶可分別截留78%和85%地表徑流中的懸浮顆粒物[9]。中國巢湖流域23 m的草本和木本混合的河岸緩沖帶對總氮的截留率達到50%[10]。有研究表明[11],12~15 m寬的河岸植被緩沖帶是截留農(nóng)田地表徑流中氮素的最佳寬度。目前,許多研究就河岸緩沖帶最佳寬度問題并未達成一致意見。在農(nóng)田地表徑流輸入河岸緩沖帶的過程中,河岸植被緩沖帶主要通過滲透、過濾、吸收、滯留和沉積等[12]作用來有效地截留農(nóng)田地表徑流中的氮污染物,具體包括土壤和植物的吸附[13],反硝化和微生物固化等[14]。而最重要的截留機制之一就是植物攔截截留。河岸緩沖帶的大型植物可以從地表徑流中吸收氮污染物[15]。其中河岸緩沖帶截留污染物的效果很大程度上取決于植物種類,因此如何確定河岸緩沖帶的最佳植被類型尤為重要[16]。研究發(fā)現(xiàn)河岸落葉林緩沖區(qū)可以使地表徑流中的氮含量降低68%[17]。然而,適當?shù)闹脖慌渲茖τ谟行p少污染物也很重要。
本文在松花江一級支流何家溝設(shè)計5種不同寬度、3種東北常見闊葉林樹木類型的河岸植被緩沖帶,在恒定的河岸坡度和植被密度下,研究農(nóng)田徑流中氮素截留情況,以獲得使河岸帶對氮素截留效果最佳的植被配置,以期為東北中小型河流選擇最佳氮素截留的植被河岸緩沖帶模式提供參考。
本試驗在黑龍江省哈爾濱市西南部何家溝靠山屯段進行(126°15E′~126°34′E,45°42N′~45°44′N),研究地無霜期為168 d,年平均氣溫4.2 ℃,年均日照數(shù)為2 714.4 h,作物生長季積溫為2 845.1 ℃。研究區(qū)內(nèi)降水集中在夏秋兩季,夏季為雨季,該地區(qū)平均降水天數(shù)為70.2 d,年平均降水量為524.7 mm。受河道保護政策影響以及隨著河長制的全面推廣,2015年春季在試驗地先后人工種植了3種不同類型的樹木,同時還留有1塊裸地。3個地塊的樹木密度相同,為540株/hm2,試驗地土壤為黑鈣土,土壤糙度為1.14,在植樹后立即測量4個地塊40 cm深處土壤銨態(tài)氮、硝態(tài)氮和總氮的本底值,測量結(jié)果分別為1.15 mg/kg、2.84 mg/kg和2.68 g/kg。
試驗地點共有4塊長15 m×寬30 m的人工林河岸地塊,如圖1所示。從左往右依次為裸地、水曲柳林、五葉楓林和楊樹林,其基本特征見表1。4種河岸植被緩沖帶地塊各設(shè)置5個寬度(0、5、10、20、30 m),各個寬度與農(nóng)田徑流流入方向平行。淋溶水收集裝置是利用內(nèi)徑為10 cm的聚氯乙烯三通管和60目(0.25 mm)濾網(wǎng)制成的試驗淋溶管(圖2),將聚氯乙烯三通管分別截成高35 cm和高55 cm,左側(cè)淋溶水收集管道距離底部15 cm,左側(cè)管出口和底部管出口用蓋子封死,水孔的直徑為4 mm,且水孔用濾網(wǎng)包裹緊密,淋溶管在鋪設(shè)河岸種植樹木的過程中進行埋設(shè),在每個地塊不同寬度處分別交叉埋設(shè)2組聚氯乙烯淋溶管,每組2個,每組淋濾管的深度分別為20和40 cm,用于地下徑流水樣的采集。每個淋濾管之間的距離為3 m,且各組之間用PVC擋水板隔開,擋水板插入深度為50 cm(圖3)。利用施肥機在每個地塊前0~0.5 m處均勻施肥,依據(jù)當?shù)剞r(nóng)田施肥量61 kg/hm2,所施氮磷鉀復合肥比率為24∶6∶35,在降雨前施肥,降雨產(chǎn)流后采樣,施肥與采樣間隔8 d。試驗樣品在當?shù)赜昙? —9月采集,3次采樣時間分別為2021年6月23日—6月25日,2021年8月6日—8月7日,2021年9月19日—21日。采樣前8天平均降水量分別為63.1、85.3和76.5 mm。
圖1 試驗地示意圖
1.3.1 徑流收集方法
使用小型抽水器抽取淋濾管中的徑流水清液,并將其裝入300 mL的塑料瓶中,將樣本帶回實驗室存儲在-4~0 ℃的冰箱內(nèi),快速測定水樣中不同形態(tài)的氮,在每次取樣后,將淋濾管中的水排干,并在遠離采樣區(qū)的地方排空。
表1 林型基本特征
圖2 PVC淋溶管
圖3 各地塊試驗布置圖
1.3.2 水樣中氮素分析方法
水樣先經(jīng)過0.45m濾膜抽濾預(yù)處理,然后,利用納氏試劑分光光度法[18]測量水樣銨態(tài)氮(NH4+-N),利用紫外分光光度法[19]測量水樣硝態(tài)氮(NO3--N),利用堿性過硫酸鉀消解紫外分光光度法[20]測量水樣總氮(Total N,TN)。759MC型號紫外分光光度計生產(chǎn)廠家為上海高致精密公司,精度±5 nm,EFD-NH型精密銨態(tài)氮測定儀生產(chǎn)廠家合肥恩帆儀器設(shè)備公司,精度≤±5%。
氮截留率采用式(1)計算:
R=(0-C)/0×100% (1)
式中是河岸植被緩沖帶寬度,m;R是寬度下的氮累積截留率,%;C是寬度下的氮濃度,mg/L;0是寬度為0處徑流水的氮濃度,mg/L。
取3次數(shù)據(jù)采樣平均值進行分析。 Origin2018對數(shù)據(jù)進行統(tǒng)計繪圖,利用SPSS23.0版軟件對數(shù)據(jù)進行統(tǒng)計分析,采用單因素方差分析(One way ANOVA)并利用最小二乘(Least Significant Difference,LSD)、鄧肯(Duncan’s Multiple Range Test)多重比較方法對平均值進行差異顯著性檢驗,差異在小于0.05時具有統(tǒng)計意義。
2015年開始試驗布置,2021年采樣測定各小區(qū)土壤理化性質(zhì)如表2。由表可知,種植6 a不同植被后,4個緩沖帶地塊40cm深土壤的pH差異不顯著(0.05)。水曲柳、五葉楓和楊樹緩沖帶土壤的容重小于裸地土壤的容重(0.05)。水曲柳、五葉楓和楊樹緩沖帶土壤的總孔隙度和土壤貯水量大于裸地土壤的總孔隙度和土壤貯水量(0.05)。在裸地緩沖帶中,土壤的銨態(tài)氮和硝態(tài)氮質(zhì)量分別為5.47和7.86 mg/kg,總氮的質(zhì)量為4.73 g/kg,高于銨態(tài)氮、硝態(tài)氮和總氮的本底值,這可能是因為6 a中在施有過量氮肥的農(nóng)田在多次降雨形成下形成農(nóng)田徑流,含有氮素的農(nóng)田地表徑流在流經(jīng)裸地緩沖帶后,使得裸地緩沖帶土壤中氮素質(zhì)量升高。由于植被類型的不同,植被在吸收氮素方面存在差異。水曲柳、五葉楓和楊樹河岸緩沖帶土壤中銨態(tài)氮、硝態(tài)氮和總氮質(zhì)量與裸地緩沖帶差異顯著(<0.05),這說明在裸地上種植植被可有效降低氮素含量。而楊樹河岸緩沖帶銨態(tài)氮含量顯著低于水曲柳和五葉楓河岸緩沖帶(<0.05),這可能是由于楊樹的林齡相較于水曲柳和五葉楓的林齡要小,需要更多銨態(tài)氮含量來維持自身生長造成的。
表2 2021年土壤理化性質(zhì)
注:同行不同小寫字母表示各林型間氮素差異顯著(<0.05)。
Note: Different lowercase letters in the same row indicate significant differences among forest types (<0.05).
對植被類型、土壤深度和緩沖帶寬度因素進行方差分析,結(jié)果見表3。植被類型、緩沖帶寬度對銨態(tài)氮、硝態(tài)氮和總氮影響顯著;而各因素交互影響不顯著。又從表中看出,地下徑流深度與河岸緩沖帶寬度和植被類型無顯著交互影響,因而接下來的分析中將20和40 cm土壤深度的氮素值進行平均處理,重點分析不同寬度、不同植被類型和不同寬度×不同植被類型對氮素截留影響。
表3 不同因素對徑流氮影響的方差分析P值結(jié)果
注:<0.05,顯著。
Note: Significance (< 0.05).
2.3.1 不同寬度河岸帶對NH4+-N截留的影響
如圖4所示,銨態(tài)氮濃度隨著河岸植被緩沖帶寬度的增加而降低。寬度0、5、10 、20 m河岸植被緩沖帶徑流銨態(tài)氮濃度分別為0.681、0.375、0.270和0.214 mg/L,差異顯著(<0.05);寬度30 m河岸植被緩沖帶的徑流銨態(tài)氮截留率為70.4%,與20 m河岸植被緩沖帶截留率無顯著差異(>0.05),二者顯著高于5和10 m寬河岸植被緩沖帶銨態(tài)氮截留效率(<0.05)。5、10和20 m寬度河岸植被緩沖帶銨態(tài)氮截留率分別為48.9%、63.3%和69.6%,差異顯著(<0.05),而在20~30 m寬度河岸緩沖帶中,對銨態(tài)氮截留率相較于5~20 m來說截留效率放緩。
a. 銨態(tài)氮濃度a. Ammonium nitrogen concentrationb. 銨態(tài)氮截留率b. Ammonium nitrogen retention rate
注:不同字母代表差異顯著(<0.05)。下同。
Note: Different letters represent significant differences (< 0.05). Same as below.
圖4 不同緩沖帶寬度對徑流中銨態(tài)氮的影響
Fig.4 Effects of different buffer zone widths on ammonium nitrogen in runoff
2.3.2 不同寬度河岸帶對NO3--N截留的影響
由圖5所示,寬度0、5、10和20 m的徑流硝態(tài)氮濃度分別為0.792、0.546、0.371和0.290 mg/L,差異顯著(<0.05),寬度5、10、20和30 m河岸植被緩沖帶的硝態(tài)氮截留率分別為34.7%、53.7%、64.2%和67.7%,30 m與20 m河岸植被緩沖帶硝態(tài)氮截留率無顯著差異(>0.05),但顯著高于5 和10 m寬河岸植被緩沖帶硝態(tài)氮截留效率(<0.05)。隨著寬度的增加,硝態(tài)氮的濃度降低,截留率上升[21-22],寬度30 m的河岸植被緩沖帶具有最高的地下徑流硝態(tài)氮截留率,這樣的結(jié)果與銨態(tài)氮類似。
a. 硝態(tài)氮濃度a. Nitrate nitrogen concentrationb. 硝態(tài)氮截留率b. Nitrate nitrogen retention rate
2.3.3 不同寬度河岸帶對總氮(TN)截留的影響
如圖6所示,在徑流水中,總氮濃度隨著河岸植被緩沖帶寬的增加而降低,這說明土壤在農(nóng)田徑流水下滲的過程中截留吸附了徑流中的部分氮污染物,這與黃玲玲[23]研究中的土壤的吸附作用使得徑流中氮濃度降低相一致。寬度0、5、10、20和30 m緩沖帶徑流總氮濃度分別為4.137、2.581、2.343、1.486和1.371 mg/L,其中寬度20和30 m緩沖帶徑流總氮濃度與寬度0、5和10 m緩沖帶徑流總氮濃度差異顯著(<0.05)。寬度5、10、20 和30 m緩沖帶徑流總氮截留率分別為39.8%、42.1%、64.7%和69.1%,并且20和30 m緩沖帶徑流總氮截留率與10和20 m緩沖帶徑流截留率差異顯著(<0.05)。
a. 總氮濃度a. Total nitrogen concentrationb. 總氮截留率b. Total nitrogen retention rate
結(jié)合河岸植被緩沖帶3種氮素分析表明:徑流中銨態(tài)氮,硝態(tài)氮和總氮的濃度隨著河岸植被緩沖帶寬度的增加而逐漸減少,這與朱曉成等[24-25]研究的結(jié)果基本一致,這可能是當河岸緩沖帶的寬度逐漸增大時,使得徑流氮污染物與植被緩沖帶的作用時間邊長,促進了地表徑流下滲,進而促進土壤和植物對氮素的截留和吸收。在氮素的截留率方面,20和30 m寬的河岸植被緩沖帶的銨態(tài)氮,硝態(tài)氮和總氮的截留率差異不顯著(>0.05),可見,寬度20 m的河岸植被緩沖帶就能夠?qū)?種氮素進行很好截留。
如圖7所示,以裸地緩沖帶地塊為對照,來分析水曲柳、五葉楓和楊樹植被緩沖帶地塊在銨態(tài)氮、硝態(tài)氮和總氮截留差異。裸地、水曲柳、五葉楓和楊樹緩沖帶的銨態(tài)氮濃度分別為0.428、0.372、0.364和0.269 mg/L。水曲柳、五葉楓和楊樹緩沖帶的銨態(tài)氮濃度與裸地植被緩沖帶差異顯著(<0.05),其中楊樹緩沖帶的銨態(tài)氮濃度顯著低于水曲柳和五葉楓緩沖帶(<0.05),這可能是因為相對于水曲柳與五葉楓來說,楊樹的樹齡更小,維持自身生長所需吸收的銨態(tài)氮更多造成的。
由圖7b可知,裸地、水曲柳、五葉楓和楊樹緩沖帶的硝態(tài)氮濃度分別為0.476、0.322、0.414和0.392 mg/L。各植被緩沖帶硝態(tài)氮濃度與裸地緩沖帶硝態(tài)氮濃度差異顯著(<0.05),而水曲柳緩沖帶硝態(tài)氮濃度顯著低于五葉楓和楊樹緩沖帶(<0.05),這說明相對于五葉楓和楊樹緩沖帶,水曲柳緩沖帶具有吸收更多硝態(tài)氮的特性。
由圖7c可知,裸地、水曲柳、五葉楓和楊樹緩沖帶的總氮濃度分別為2.588、1.352、1.896和1.117 mg/L,水曲柳和楊樹緩沖帶總氮濃度顯著低于五葉楓河岸緩沖帶(<0.05),且水曲柳與楊樹緩沖帶總氮濃度差異不顯著(>0.05),這說明水曲柳與楊樹緩沖帶相比于五葉楓緩沖帶具有降低徑流總氮濃度的特性。
結(jié)合上述分析可知,水曲柳、五葉楓和楊樹河岸植被緩沖帶可有效降低徑流氮素濃度,楊樹緩沖帶在降低徑流銨態(tài)氮濃度方面效果最好,水曲柳緩沖帶在降低硝態(tài)氮濃度方面效果最好,水曲柳與楊樹緩沖帶相較于五葉楓緩沖帶在降低徑流總氮濃度方面效果更好,且水曲柳與楊樹緩沖帶在降低徑流總氮濃度方面效果類似。
圖8顯示了植被類型(水曲柳,五葉楓,楊樹)的河岸緩沖帶對地下徑流中銨態(tài)氮的截留效果。當徑流經(jīng)過河岸緩沖區(qū)后,徑流中銨態(tài)氮濃度顯著降低,在不同植被類型的河岸緩沖帶對銨態(tài)氮截留率存在明顯差異。在寬度5、10和20 m河岸植被緩沖帶下,楊樹河岸緩沖帶的銨態(tài)氮截留率分別為62.3%、75.7%和78.1%,與水曲柳、五葉楓和裸地河岸緩沖帶的銨態(tài)氮截留率差異顯著(<0.05)。而在30 m寬度的河岸植被緩沖帶下,楊樹與水曲柳河岸緩沖帶的銨態(tài)氮截留率差異不顯著(>0.05)。在各寬度河岸植被緩沖帶中,楊樹河岸緩沖帶是銨態(tài)氮截留效率最高的緩沖帶,這主要由于試驗樣地的楊樹處于幼年期,相較于五葉楓林和水曲柳林來說,幼年楊樹林需要吸收更多養(yǎng)分,可能對徑流水中的銨態(tài)氮有較高的截留率。20 m寬度的楊樹河岸緩沖帶銨態(tài)氮截留率最大為78.1%,比水曲柳,五葉楓和裸地河岸緩沖帶截留率分別高17.9%,26.8%和29.4%。
a. 銨態(tài)氮濃度a. Ammonium nitrogen concentrationb. 硝態(tài)氮濃度b. Nitrate nitrogen concentrationc. 總氮濃度c. Total nitrogen concentration
注:BL為裸地、AT為水曲柳、FLM為五葉楓、PL為楊樹。
Note: BL is bare land, AT is ashtree, FLM is five-leaf maple, PL is poplar.
圖7 不同緩沖帶植被類型對徑流中氮素濃度的影響
Fig.7 Effect of different buffer zone vegetation types on nitrogen concentration in runoff
a. 銨態(tài)氮a. Ammonium nitrogenb. 硝態(tài)氮b. Nitrate nitrogenc. 總氮c. Total nitrogen
不同植被類型的河岸緩沖帶對徑流中硝態(tài)氮的截留效果如圖8b所示,在寬度5和30 m的河岸緩沖帶中,水曲柳河岸緩沖帶對徑流硝態(tài)氮的截留率最高,分別為45%和65.3%,寬度10和20 m的楊樹河岸緩沖帶對徑流硝態(tài)氮的截留率分別為58.6%和64.2%,寬度20 m的五葉楓河岸緩沖帶的徑流硝態(tài)氮截留率為52.1%,相較于寬度10 m的五葉楓河岸緩沖帶的硝態(tài)氮截留率53.6%略有下降。楊樹河岸緩沖帶在20 m寬度時,徑流硝態(tài)氮截留率最大,為64.2%,與五葉楓和裸地河岸緩沖帶截留率差異顯著(<0.05),但與水曲柳差異不顯著(>0.05),其中楊樹河岸緩沖帶比水曲柳、五葉楓和裸地河岸緩沖帶硝態(tài)氮截留率分別高2.1%、12.1%和23.6%,截留率從高到低依次為楊樹林、水曲柳林、五葉楓林、裸地。30 m寬度下,水曲柳河岸緩沖帶與五葉楓河岸緩沖帶徑流硝態(tài)氮截留率分別為65.3%和54.1%,差異顯著(<0.05),而在其他寬度下,二者徑流硝態(tài)氮平均截留率并沒有顯著差異(>0.05)。在5和10 m寬的河岸緩沖帶上,水曲柳緩沖帶與五葉楓緩沖帶的徑流硝態(tài)氮平均截留率差異不顯著(>0.05)。
對于總氮來說,如圖8c所示,在寬度5 m河岸植被緩沖帶下,水曲柳、五葉楓和楊樹河岸緩沖帶的總氮截留率分別為39.7%、41.2%和47.6%,與裸地河岸緩沖帶差異顯著(<0.05)。在寬度5、20和30 m河岸植被緩沖帶中,楊樹河岸緩沖帶有著最高的徑流總氮截留率,分別為47.6%、60.5%和62.1%。在寬度10 m河岸植被緩沖帶下,楊樹河岸緩沖帶與水曲柳河岸緩沖帶的徑流總氮截留率相近,分別為54.6%和54.3%,并且差異不顯著(>0.05)。在30 m處,水曲柳、五葉楓和楊樹河岸緩沖帶的總氮截留率與裸地河岸緩沖帶總氮截留率存在顯著差異(<0.05)。在寬度10和20 m的河岸植被緩沖帶中,水曲柳林徑流總氮截留率與五葉楓林差異不顯著(>0.05)。
王金亮等[26]研究表明,在較緩坡度上,林地坡地相比于旱坡地來說,林地坡地阻力較大。所以,在一定坡度下,河岸緩沖帶的植被通過輸送和吸收溶解氧為微生物提供棲息地,降低徑流流速,疏松土壤等機制來預(yù)防和控制非點源污染[27-28]。這種機制在每個反應(yīng)中可能會因河岸植被緩沖帶的條件不同而有所不同,某種機制可能對某種的氮污染物非常有效[29]。不同類型的植被造成植物組織組成,根系類型和活動強度的差異,導致不同植被類型的河岸緩沖帶對氮污染物的吸收和轉(zhuǎn)化存在差異[30]。本研究中,3種河岸植被緩沖帶對銨態(tài)氮,硝態(tài)氮和總氮的截留能力均高于裸地,這表明不同植被類型的緩沖帶對徑流水中氮污染物有著很好的截留效果。楊樹林河岸緩沖帶對徑流水中銨態(tài)氮和總氮的平均截留率較高,除寬度30 m外,在其他寬度下,楊樹林河岸緩沖帶銨態(tài)氮的平均截留率與水曲柳林和五葉楓林河岸緩沖帶銨態(tài)氮平均截留率差異顯著(<0.05),對于總氮來說,各寬度下楊樹林總氮平均截留率與水曲柳林總氮平均截留率差異不顯著(>0.05)。各寬度楊樹林緩沖帶對徑流水中硝態(tài)氮平均截留率的總和略高于各寬度水曲柳林緩沖帶對徑流水中硝態(tài)氮平均截留率的總和,這可能是因為楊樹的根系比水曲柳的更深,能夠吸收更多淋溶到深層土壤中的硝態(tài)氮,且試驗點的樹種處于幼年期,對養(yǎng)分的需求量大。
布置3種不同植物種類(水曲柳,五葉楓,楊樹)和不同河岸植被緩沖帶寬度(5、10、20、30 m),開展地下徑流試驗,研究各類河岸植被緩沖帶對地下徑流銨態(tài)氮、硝態(tài)氮和總氮的截留效果,結(jié)果表明:有植被覆蓋的河岸緩沖帶截留氮素效果顯著高于無植被覆蓋的河岸緩沖帶(裸地),寬度20 m的河岸緩沖帶對由模擬農(nóng)田輸入徑流氮的污染物的截留效果顯著,滿足脫氮的預(yù)期目標。在3種不同河岸植被緩沖帶中,楊樹林對銨態(tài)氮的截留率最高,且與五葉楓林,水曲柳林截留差異顯著(<0.05)。對于硝態(tài)氮來說,寬度10和20 m的楊樹河岸緩沖帶對徑流硝態(tài)氮的平均截留效率與五葉楓林于水曲柳林的徑流硝態(tài)氮的平均截留效率差異顯著(<0.05),但在寬度5和30 m下,徑流硝態(tài)氮的平均截留效率差異不顯著(>0.05)。在總氮的情況下,除寬度10 m楊樹河岸緩沖帶徑流總氮的截留率略低于水曲柳河岸緩沖帶徑流總氮的截留率,其他寬度下,楊樹河岸緩沖帶徑流總氮的截留率均最高。綜合以上結(jié)果,結(jié)合東北地區(qū)生態(tài)經(jīng)濟條件來說,20 m寬度楊樹林河岸緩沖帶對于氮污染物的截留達到最大化的效果。
[1] Hénault-Ethier L, Gómes Marcelo Pedrosa, Lucotte M, et al. High yields of riparian buffer strips planted with Salix miyabena 'SX64' along field crops in Québec, Canada[J]. Biomass & Bioenergy, 2017, 10(5): 219-229.
[2] Luke S H, Slade E M, Gray C L, et al. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy[J]. Journal of Applied Ecology, 2019, 56(1): 85-92.
[3] 劉瑞霞,王立陽,孫菲,等. 以農(nóng)業(yè)面源污染阻控為目標的河流生態(tài)緩沖帶研究進展[J]. 環(huán)境工程學報,2022,16(1):25-39.
Liu Ruixia, Wang Liyang, Sun Fei, et al. Research progress in riverine ecological buffer zone for control of agricultural non-point source pollution[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 25-39. (in Chinese with English abstract)
[4] 劉贏男,楊帆,韓輝,等. 阿什河流域河岸植被緩沖帶寬度規(guī)劃[J]. 國土與自然資源研究,2018(6):46-48.
Liu Yingnan, Yang Fan, Han Hui, et al. Width planning of riparian vegetation buffer zone in Ashe River Basin[J]. Land and Natural Resources Research, 2018(6): 46-48. (in Chinese with English abstract)
[5] Dlamini J C, Cárdenas L, Tesfamariam E H, et al. Soil methane (CH4) fluxes in cropland with permanent pasture and riparian buffer strips with different vegetation[J]. Journal of Plant Nutrition and Soil Science, 2021, 185(1): 132-144.
[6] 王芳,汪耀龍,謝祥財. 生態(tài)學價值視角下的城市河流綠道寬度研究進展[J]. 中國城市業(yè),2019,17(1):57-61.
Wang Fang, Wang Yaolong, Xie Xiangcai. Research progress of urban river greenway width from the perspective of ecological value[J]. China Urban Industry, 2019, 17(1): 57-61. (in Chinese with English abstract)
[7] Lyu C J, Li X J, Yuan P, et al. Nitrogen retention effect of riparian zones in agricultural areas: A meta-analysis[J]. Journal of CleanerProduction, 2021, 315: 128143.
[8] 張鴻齡,李天嬌,趙志芳,等. 遼河河岸植被緩沖帶構(gòu)建及其對固體顆粒物和氮阻控能力[J]. 生態(tài)學雜志,2020,39(7):2185-2192.
Zhang Hongling, Li Tianjiao, Zhao Zhifang, et al. Construction of vegetation buffer zone along the Liaohe river bank and its resistance and control ability to solid particulate matter and nitrogen[J]. Chinese Journal of Ecology, 2020, 39(7): 2185-2192. (in Chinese with English abstract)
[9] 湯家喜,何苗苗,王道涵,等. 河岸緩沖帶對地表徑流及懸浮顆粒物的阻控效應(yīng)[J]. 環(huán)境工程學報,2016, 10(5):2747-2755.
Tang Jiaxi, He Miaomiao, Wang Daohan, et al. Effect of riparian buffer zone on surface runoff and suspended particulate matter[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2747-2755. (in Chinese with English abstract)
[10] Cao X, Song C, Xiao J, et al. The optimal width and mechanism of riparian buffers for storm water nutrient rem oval in the Chinese Eutrophic Lake Chaohu Watershed[J]. Water, 2018, 10(10): 1-11.
[11] Kiffney P M, Bull R J P. Responses of periphyton and insects to experim ental manipulation of riparian buffer width along forest streams[J]. Journal of Applied Ecology, 2010, 40(6): 1060-1076.
[12] Li Y, Chen Z, Lou H, et al. Denitrification controls in urban riparian soils: Implications for reducing urban nonpoint source nitrogen pollution[J]. Environmental Science & Pollution Research, 2014, 21(17): 10174-10185.
[13] 胡海波,鄧文斌,王霞. 長江流域河岸植被緩沖帶生態(tài)功能及構(gòu)建技術(shù)研究進展[J]. 浙江農(nóng)林大學學報,2022,39(1):214-222.
Hu Haibo, Deng Wenbin, Wang Xia. Research progress on ecological function and construction technology of riparian vegetation buffer zone in the Yangtze River Basin[J]. Journal of Zhejiang A & F University, 2022, 39(1): 214-222. (in Chinese with English abstract)
[14] 孫金偉,許文盛. 河岸植被緩沖帶生態(tài)功能及其過濾機理的研究進展[J]. 長江科學院院報,2017,34(3):40-44.
Sun Jinwei, Xu Wensheng. Research progress on ecological function and filtration mechanism of riparian vegetation buffer zone[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(3): 40-44. (in Chinese with English abstract)
[15] Johnson R K, Burdon F J, et al. Forested riparian buffers change the taxonomic and functional composition of stream invertebrate communities in agricultural catchments[J]. Water, 2021, 13(8): 1-17.
[16] 紀欽陽. 九龍江北溪河岸植被緩沖帶構(gòu)建實驗區(qū)氮、磷削減研究[D]. 福州:福建師范大學,2016.
Ji Qinyang. Research on Nitrogen and Phosphorus Reduction in the Experimental Area of Constructing the Vegetation Buffer Zone on the North River Bank of Jiulong River[D]. Fuzhou: Fujian Normal University, 2016. (in Chinese with English abstract)
[17] Li R, Kuo Y M. Effects of shallow water table depth on vegetative filter strips retarding transport of nonpoint source pollution in controlled flume experiments[J]. 2021, 15(1): 163-175.
[18] 張臻宇. 連續(xù)流動分析法和納氏試劑分光光度法測定地表水氨氮的比較研究[J]. 環(huán)境與發(fā)展,2020,32(11):87-88.
Zhang Zhenyu. Comparative study on determination of ammonia nitrogen in surface water by continuous flow analysis and Nessler's reagent spectrophotometry[J]. Environment and Development, 2020, 32(11): 87-88. (in Chinese with English abstract)
[19] 李欣然,何巖,朱瑾,等. 丙烯基硫脲和鉬酸鈉對紫外分光光度法和酚二磺酸光度法測定硝態(tài)氮的影響[J]. 化學世界,2019,60(3):149-155.
Li Xinran, He Yan, Zhu Jin, et al. Effect of propylene thiourea and sodium molybdate on the determination of nitrate nitrogen by ultraviolet spectrophotometry and phenol disulfonic acid spectrophotometry[J]. Chemical World, 2019, 60(3): 149-155. (in Chinese with English abstract)
[20] 谷東杰,劉倩. 堿性過硫酸鉀消解紫外分光光度法測定水中總氮[J]. 山東化工,2020,49(11):103-105.
Gu Dongjie, Liu Qian. Determination of total nitrogen in water by ultraviolet spectrophotometry with alkaline potassium persulfate digestion[J]. Shandong Chemical Industry, 2020, 49(11): 103-105. (in Chinese with English abstract)
[21] 王曉琪,姚媛媛,陳寶成,等. 淹水條件硝態(tài)氮和銨態(tài)氮配施對水稻生長與土壤養(yǎng)分的影響[J]. 土壤,2020,52(2):254-261.
Wang Xiaoqi, Yao Yuanyuan, Chen Baocheng, et al. Effects of combined application of nitrate and ammonium nitrogen on rice growth and soil nutrients under flooding conditions[J]. Soils, 2020, 52(2): 254-261. (in Chinese with English abstract)
[22] 李懷恩,鄧娜,楊寅群,等. 植被過濾帶對地表徑流中污染物的凈化效果[J]. 農(nóng)業(yè)工程學報,2010,26(7):81-86.
Li Huaien, Deng Na, Yang Yinqun, et al. Clarification efficiency of vegetative filter strips to several pollutants in surface runoff[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 81-86. (in Chinese with English abstract)
[23] 黃玲玲. 竹林河岸帶對氮磷截留轉(zhuǎn)化作用的研究[D]. 北京:中國林業(yè)科學研究院,2009.
Huang Lingling. Study on the Interception An Transformation of Nitrogen and Phosphorus in the Riparian Zone of Bamboo Forest[D]. Beijing: Chinese Academy of Forestry Sciences, 2009. (in Chinese with English abstract)
[24] 朱曉成,吳永波,余昱瑩,等. 太湖喬木林河岸植被緩沖帶截留氮素效率[J]. 浙江農(nóng)林大學學報,2019,36(3):565-572.
Zhu Xiaocheng, Wu Yongbo, Yu Yuying, et al. Nitrogen interception efficiency of riparian vegetation buffer zone of arbor forest in Taihu Lake[J]. Journal of Zhejiang A & F University, 2019, 36(3): 565-572. (in Chinese with English abstract)
[25] Lv J, Wu Y. Nitrogen removal by different riparian vegetation buffer strips with different stand densities and widths[J]. Water Science & Technology Water Supply, 2021, 11: 1-16.
[26] 王金亮,陳成龍,倪九派,等. 小流域農(nóng)業(yè)面源污染阻力評價及“源-匯”風險空間格局[J]. 農(nóng)業(yè)工程學報,2018,34(10):216-224.
Wang Jinliang, Chen Chenglong, Ni Jiupai, et al. Resistance evaluation and “source-sink” risk spatial pattern of agricultural non-point source pollution in small catchment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 216-224. (in Chinese with English abstract)
[27] 楊世琦,邢磊,劉宏元,等. 植物籬埂壟向區(qū)田技術(shù)對坡耕地水土和氮磷流失控制研究[J]. 農(nóng)業(yè)工程學報,2019,35(22):209-215.
Yang Shiqi, Xing Lei, Liu Hongyuan, et al. Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 209-215. (in Chinese with English abstract)
[28] 劉燕,夏品華,鄭鈞寧,等. 河岸緩沖帶植物配置模式對面源污染物的凈化效果[J]. 貴州農(nóng)業(yè)科學,2014(10):248-251.
Liu Yan, Xia Pinhua, Zheng Junning, et al. Purification effect of surface source pollutants by plant configuration mode in riparian buffer zone[J]. Guizhou Agricultural Science, 2014(10): 248-251. (in Chinese with English abstract)
[29] 孫東耀. 不同植被河岸緩沖帶系統(tǒng)對氮磷污染物的攔截過程研究[D]. 福建:福建師范大學,2018.
Sun Dongyao. Study on Interception Process of Nitrogen and Phosphorus Pollutants by Different Vegetation Riparian Buffer Zone Systems[D]. Fujian: Fujian Normal University, 2018. (in Chinese with English abstract)
[30] 孫東耀,仝川,紀欽陽,等.不同類型植被河岸緩沖帶對模擬徑流及總磷的消減研究[J].環(huán)境科學學報,2018,38(6):2393-2399.
Sun Dongyao, Tong Chuan, Ji Qinyang, et al. Reduction of simulated runoff and total phosphorus in different vegetation riparian buffer [J].Acta Scientiae Circumstantiae, 2018,38(6): 2393-2399. (in Chinese with English abstract)
Effects of riparian buffer zone vegetation layout on nitrogen loss
Han Xu, Du Chong※, Chen Jiashuo, Tang Siyu
(,,150006,)
To study the nitrogen retention efficiency of riparian vegetation buffers of small and medium-sized rivers, the common broad-leaved species in Northeast China were slected on the slope of Hejiagou, Harbin in Northeast China. Four riparian planted woodlots of 15 m long by 30 m wide were prepared for the different species experiment, namely bare ground, water willow or ash, five-leaf maple, and poplar riparian vegetation buffers. The bare ground riparian buffers served as controls. The effects of different riparian buffer widths (0, 5, 10, 20, and 30 m) and different plant species above on nitrogen retention in subsurface runoff at 20 and 40 cm depth were analyzed under the condition of riparian slope (3%) and tree density (540 trees/hm2). At the test sites, PVC pipes with a diameter of 10 cm and a 4-mm partial subsurface runoff intake hole on the left side were used to collect subsurface runoff at soil depths of 20 cm and 40 cm. The PVC pipes were buried when the trees were planted. At the four riparian buffer plots from 0 to 0.5 m, the compound fertilizer was evenly applied using a small fertilizer spreader to simulate nitrogen loss conditions. The fertilizer was applied before rainfall, and the ratio of flow-producing compound fertilizer collected after rainfall was 24:6:35 for nitrogen: phosphorus: potassium, with fertilizer application rate of 61 kg/hm2. When sampling, the upper clear liquid in the tube was pumped out with a small pump, and then all the turbid liquid in the tube was pumped out and drained at the far end of the test site to avoid affecting the experimental results, the clear liquid was sampled into 300 mL plastic bottles and stored in a -4-0 ℃ refrigerator for determination of the nitrogen content of the water samples. The ammonium nitrogen in the runoff was determined spectrophotometrically by the nano reagent, the nitrate nitrogen was determined by a UV spectrophotometry, and the total nitrogen was determined by a UV spectrophotometry using the alkaline potassium persulfate elimination method. The statistical analysis results showed that the depth of subsurface runoff did not significantly interact with riparian buffer width and vegetation type. Therefore, the nitrogen values at 20 and 40 cm soil depth were averaged for the followed analysis on the effects of different widths, different vegetation types and different widths × different vegetation types on nitrogen retention. The results showed that the concentrations of runoff ammonium and nitrate nitrogen gradually decreased in riparian vegetation buffers of 0, 5, 10, and 20 m in width. Thus, the riparian vegetation buffer with a width of 20 m could retain all forms of nitrogen well. The 30 m width riparian vegetation buffer had the highest retention of ammonium nitrogen, nitrate nitrogen, and total nitrogen in runoff with 70.4%, 67.7%, and 69.1%, respectively. in the comparison of different plant species buffer zones, poplar could significantly reduce the runoff ammonium nitrogen and total nitrogen concentrations, and water willow could significantly reduce the runoff, the poplar significantly reduced runoff ammonium and total nitrogen concentrations, and ash significantly reduced runoff nitrate-nitrogen concentrations. In the interaction between width and plant species, poplar buffer strips of 20 m width had the highest retention rate of ammonium nitrogen and nitrate nitrogen, and the poplar buffer strips of 30 m width had the highest retention rate of 62.1% for total nitrogen. The results of the study can provide valuable information for the design of riparian buffers to maximize the retention of runoff nitrogen pollutants in small and medium-sized rivers in Northeast China.
nitrogen; vegetation; slope; streambank; buffer zone; retention rate; width; depth of subsurface runoff
10.11975/j.issn.1002-6819.2022.16.019
S153.6
A
1002-6819(2022)-16-0172-08
韓旭,杜崇,陳嘉碩,等. 河岸緩沖帶植被布局對氮流失的影響[J]. 農(nóng)業(yè)工程學報,2022,38(16):172-179.doi:10.11975/j.issn.1002-6819.2022.16.019 http://www.tcsae.org
Han Xu, Du Chong, Chen Jiashuo, et al. Effects of riparian buffer zone vegetation layout on nitrogen loss[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 172-179. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.019 http://www.tcsae.org
2022-03-16
2022-07-26
黑龍江省高校基本科研業(yè)務(wù)費專項資金項目(2018-KYYWF-1570);國家自然科學基金(52109055)
韓旭,研究方向為生態(tài)水文。Email:1329626798@qq.com
杜崇,博士,副教授,研究方向為農(nóng)業(yè)水土資源與環(huán)境保護。Email:duchong@hlju.edu.cn