小波變換是一種新的變換分析方法,它繼承和發(fā)展了短時傅立葉變換局部化的思想,同時又克服了窗口大小不隨頻率變化等缺點,能夠提供一個隨頻率改變的“時間-頻率”窗口,是進行信號時頻分析和處理的理想工具。它的主要特點是通過變換能夠充分突出問題某些方面的特征,能對時間(空間)頻率的局部化分析,通過伸縮平移運算對信號(函數(shù))逐步進行多尺度細化,最終達到高頻處時間細分,低頻處頻率細分,能自動適應時頻信號分析的要求,從而可聚焦到信號的任意細節(jié),解決了Fourier變換的困難問題,成為繼Fourier變換以來在科學方法上的重大突破。
小波分析
與Fourier變換相比,小波變換是空間(時間)和頻率的局部變換,因而能有效地從信號中提取信息。通過伸縮和平移等運算功能可對函數(shù)或信號進行多尺度的細化分析,解決了Fourier變換不能解決的許多困難問題。小波變換聯(lián)系了應用數(shù)學、物理學、計算機科學、信號與信息處理、圖像處理、地震勘探等多個學科。數(shù)學家認為,小波分析是一個新的數(shù)學分支,它是泛函分析、Fourier分析、樣條分析、數(shù)值分析的完美結晶;信號和信息處理專家認為,小波分析是時間—尺度分析和多分辨分析的一種新技術,它在信號分析、語音合成、圖像識別、計算機視覺、數(shù)據(jù)壓縮、地震勘探、大氣與海洋波分析等方面的研究都取得了有科學意義和應用價值的成果。
應用
小波分析的應用領域十分廣泛,包括:數(shù)學領域的許多學科;信號分析、圖象處理;量子力學、理論物理;軍事電子對抗與武器的智能化;計算機分類與識別;音樂與語言的人工合成;醫(yī)學成像與診斷;地震勘探數(shù)據(jù)處理;大型機械的故障診斷等方面;例如,在數(shù)學方面,它已用于數(shù)值分析、構造快速數(shù)值方法、曲線曲面構造、微分方程求解、控制論等。在信號分析方面的濾波、去噪聲、壓縮、傳遞等。在圖象處理方面的圖象壓縮、分類、識別與診斷,去污等。在醫(yī)學成像方面的減少B超,CT,核磁共振成像的時間,提高分辨率等。
1)用于信號與圖象壓縮是小波分析應用的一個重要方面。它的特點是壓縮比高,壓縮速度快,壓縮后能保持信號與圖象的特征不變,且在傳遞中可以抗干擾。
2)小波在信號分析中的應用也十分廣泛。它可以用于邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數(shù)、信號的識別與診斷及多尺度邊緣檢測等。
3)在工程技術等方面的應用。包括計算機視覺、計算機圖形學、曲線設計、湍流、遠程宇宙的研究與生物醫(yī)學方面。(有修改)