王鈺婷,田廣麗,田雨雨,趙青青,甄 博,李會(huì)貞,周新國(guó)*
(1.中國(guó)農(nóng)業(yè)科學(xué)院 農(nóng)田灌溉研究所,河南 新鄉(xiāng) 453002;2.中國(guó)農(nóng)業(yè)科學(xué)院 研究生院,北京 100080)
生物質(zhì)炭添加量對(duì)鹽堿土壤特性及棉花苗期生長(zhǎng)的影響
王鈺婷1,2,田廣麗1,田雨雨1,2,趙青青1,2,甄 博1,李會(huì)貞1,周新國(guó)1*
(1.中國(guó)農(nóng)業(yè)科學(xué)院 農(nóng)田灌溉研究所,河南 新鄉(xiāng) 453002;2.中國(guó)農(nóng)業(yè)科學(xué)院 研究生院,北京 100080)
【目的】研究不同生物質(zhì)炭添加量對(duì)鹽堿土壤特性及棉花苗期生長(zhǎng)的影響,為生物質(zhì)炭在鹽堿地上的應(yīng)用提供科學(xué)的理論依據(jù)?!痉椒ā客ㄟ^(guò)桶栽試驗(yàn),以棉花(中S9612)為研究對(duì)象,設(shè)置添加生物質(zhì)炭量0%(BC0)、1%(BC1)、3%(BC3)和5%(BC5)4個(gè)處理,分析了生物質(zhì)炭對(duì)鹽堿土壤水鹽運(yùn)移、土壤基本理化指標(biāo)、土壤酶活性和棉花苗期生長(zhǎng)指標(biāo)的影響。【結(jié)果】與BC0處理相比,生物質(zhì)炭可以提高0~20 cm土層質(zhì)量含水率,質(zhì)量含水率的增加量與生物質(zhì)炭添加量成反比,但對(duì)20~30 cm土層質(zhì)量含水率無(wú)顯著影響;生物質(zhì)炭能夠降低0~20 cm土層土壤含鹽量;生物質(zhì)炭對(duì)土壤pH、全磷(TP)和速效磷無(wú)顯著影響;對(duì)土壤有機(jī)碳(SOC)、全氮(TN)、全鉀(TK)、速效鉀、過(guò)氧化物酶(POD)和纖維二糖苷酶(FTG)有顯著正影響,且BC1處理的POD和FTG活性增加最顯著;但對(duì)土壤堿解氮和多酚氧化酶(PPO)存在顯著負(fù)影響;BC1處理顯著增加苗期棉花的莖粗和地上部干物質(zhì)量,對(duì)株高無(wú)顯著影響,BC3處理對(duì)棉花株高、莖粗和地上部干物質(zhì)量都無(wú)顯著影響,BC5處理顯著降低了苗期棉花的株高、莖粗和地上部干物質(zhì)量;且添加生物質(zhì)炭引起棉花莖葉全氮量的減少。【結(jié)論】生物質(zhì)炭可以增加土壤養(yǎng)分,提高土壤部分酶活性,但只有1%生物質(zhì)炭添加量對(duì)棉花苗期生長(zhǎng)具有促進(jìn)作用,5%生物質(zhì)炭添加量反而會(huì)抑制作物生長(zhǎng)。
鹽堿土壤;生物質(zhì)炭;土壤基本理化特性;土壤酶活性;作物生長(zhǎng)
【研究意義】土壤鹽堿化會(huì)破壞土壤理化性質(zhì),降低土壤養(yǎng)分有效性,使得土壤板結(jié),耕地質(zhì)量下降甚至喪失耕種能力,導(dǎo)致作物減產(chǎn),造成農(nóng)業(yè)土地資源浪費(fèi)和農(nóng)業(yè)經(jīng)濟(jì)效益大幅下滑,進(jìn)而危害國(guó)家糧食安全。我國(guó)鹽堿地分布范圍廣、面積大、類型多,總面積約1億hm2[1],其中有80%的鹽堿土具有再生產(chǎn)的潛力。隨著耕種面積的減少,鹽堿地作為我國(guó)重要的后備耕地資源,對(duì)其修復(fù)治理是十分必要的?!狙芯窟M(jìn)展】傳統(tǒng)的鹽堿地改良方法主要有工程措施、化學(xué)措施和綜合措施[2]。近年來(lái),生物質(zhì)炭作為一種新興改良劑被廣泛研究并應(yīng)用于農(nóng)業(yè)領(lǐng)域中,其不僅對(duì)土壤生產(chǎn)功能的健康發(fā)展具有顯著的正效應(yīng)[3],同時(shí)也實(shí)現(xiàn)了大量秸稈的資源化利用,并緩解了秸稈焚燒帶來(lái)的環(huán)境問(wèn)題。生物質(zhì)炭通常是指用樹木和作物秸稈等有機(jī)材料在限制氧或無(wú)氧條件下高溫裂解炭化形成的固態(tài)物質(zhì)[4],自身富含C以及多種礦質(zhì)營(yíng)養(yǎng)元素,具有巨大的比表面積、多孔性、高吸附性以及長(zhǎng)期穩(wěn)定性。目前,諸多研究表明生物質(zhì)炭可以改善土壤理化性質(zhì)[5-7],增加土壤養(yǎng)分[8-9]和碳固存量[10-12],調(diào)節(jié)土壤酶活性及微生物群落結(jié)構(gòu)[13-14]。劉園等[15]通過(guò)2 a的小麥-玉米輪作試驗(yàn)表明,生物質(zhì)炭降低了土壤質(zhì)量,增加了土壤含水率,提高了作物產(chǎn)量。蔣雪洋等[16]研究發(fā)現(xiàn),生物質(zhì)炭可以提高稻田土壤團(tuán)聚體穩(wěn)定性,增加土壤有機(jī)碳量、全氮量和全磷量。Lehmann等[17]指出,生物質(zhì)炭通過(guò)吸附NO3-和NH4+,減少土壤的氨揮發(fā)與氮素流失,提高氮肥利用率。Feng等[18]針對(duì)棉花苗期的研究發(fā)現(xiàn),施入生物質(zhì)炭有利于土壤中的氨基酸代謝,對(duì)氮素同化效率有顯著影響,可以提高田間氮素利用率。高珊等[19]通過(guò)大麥-玉米輪作試驗(yàn)表明,生物質(zhì)炭提高土壤磷酸酶的活性,顯著促進(jìn)土壤磷素轉(zhuǎn)化,提升土壤磷肥利用率。吳濤等[20]研究發(fā)現(xiàn),生物質(zhì)炭通過(guò)提高土壤功能菌豐度及土壤碳氮等轉(zhuǎn)化酶活性,從而改善土壤養(yǎng)分供應(yīng)能力,促進(jìn)作物生長(zhǎng)。綜上所述,生物質(zhì)炭在土壤改良中表現(xiàn)出了巨大潛力,這使其在鹽堿地上的應(yīng)用也越來(lái)越受到關(guān)注。已有研究表明,在鹽堿土壤中添加生物質(zhì)炭可以增加土壤養(yǎng)分,減輕鹽脅迫,促進(jìn)作物生長(zhǎng)[21-23]。但也有研究指出,生物質(zhì)炭導(dǎo)致鹽堿土壤pH值和含鹽量顯著增加,降低養(yǎng)分有效性[24-25]?!厩腥朦c(diǎn)】由于生物質(zhì)炭本身呈堿性,其對(duì)鹽堿土壤的理化性質(zhì)及作物生長(zhǎng)是否具有積極效應(yīng)仍需進(jìn)一步探討。棉花是耐鹽作物,被喻為鹽堿地種植的先鋒作物[26],其對(duì)鹽堿地的開(kāi)發(fā)利用十分重要,但棉花在不同生長(zhǎng)階段對(duì)鹽分的敏感程度不同,棉花耐鹽能力隨著生育進(jìn)程而逐漸提高,苗期棉花對(duì)鹽分最敏感[27],保證棉花在苗期正常生長(zhǎng)對(duì)棉花冠層形成和后期生長(zhǎng)具有不可忽視的作用。【擬解決的關(guān)鍵問(wèn)題】因此,本研究通過(guò)桶栽試驗(yàn),研究和揭示生物質(zhì)炭對(duì)土壤理化性質(zhì)、土壤酶活性及棉花苗期生長(zhǎng)的影響,以期為生物質(zhì)炭在鹽堿地上的科學(xué)應(yīng)用提供理論支撐。
桶栽試驗(yàn)于2021年6—10月在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所新鄉(xiāng)綜合實(shí)驗(yàn)基地(35°18′N,113°54′E)的塑料避雨大棚下進(jìn)行。該試驗(yàn)區(qū)日照時(shí)間為2 399 h,年平均氣溫為14 ℃,無(wú)霜期為220 d。供試土壤選自新疆第一師阿拉爾市第十六團(tuán)(40°22′—40°57′N,80°30′—81°58′E)的膜下滴灌棉田,取土深度為0~20 cm,土壤類型屬沙壤土。經(jīng)碾壓、粉碎、風(fēng)干、過(guò)篩(5 mm)后,在干燥條件下保存?zhèn)溆?。土壤pH值為8.6,含鹽量為4.30 g/kg,有機(jī)碳為4.54 g/kg,銨態(tài)氮為0.392 mg/kg,硝態(tài)氮為19.080 mg/kg,有效磷為6.980 mg/kg,速效鉀為29.384 mg/kg,全鉀為13.036 g/kg。試驗(yàn)苗期氮肥用量為純氮0.06 g/kg,N∶P2O5∶K2O=2∶3∶4,化肥類型為尿素(含N 46%),過(guò)磷酸鈣(含P2O516%),硫酸鉀(含K2O 50%)?;示唧w用量:尿素為0.131 g/kg,過(guò)磷酸鈣為0.563 g/kg,硫酸鉀為0.240 g/kg,所有肥料均以固體形式均勻施于整桶。試驗(yàn)所用生物質(zhì)炭在河南立澤環(huán)??萍加邢薰举?gòu)買,由玉米秸稈在500~600 ℃的高溫下缺氧裂解炭化制得。該生物質(zhì)炭pH值為9,水分系數(shù)為1.025 5,有機(jī)碳量410.898 g/kg,全氮量8.354 g/kg,全磷量2.327 g/kg,全鉀量30.594 g/kg,P2O5量5.329 g/kg,K2O量19.156 g/kg。
試驗(yàn)于2021年6月14日播種,供試棉花種子是中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所提供的“中S9612”。試驗(yàn)用桶規(guī)格為(內(nèi)徑×高):20 cm×50 cm,采用分層裝土的方式,每桶裝土20 kg,裝土深度均為40 cm。試驗(yàn)以0~20 cm土層的生物質(zhì)炭添加量(占土壤干量的百分比)為試驗(yàn)因素,分別為不添加生物質(zhì)炭(BC0)、1%生物質(zhì)炭添加量(BC1)、3%生物質(zhì)炭添加量(BC3)和5%生物質(zhì)炭添加量(BC5),共計(jì)4個(gè)處理,每個(gè)處理15桶。每桶播種3粒,待棉花生長(zhǎng)至“兩葉一心”時(shí),定苗,即每桶各留一株長(zhǎng)勢(shì)與本處理相同的棉花幼苗。各處理灌水時(shí)間保持一致,均采用滴箭進(jìn)行灌水,滴箭插于土層5 cm處,滴頭流量為1 L/h,通過(guò)稱質(zhì)量法計(jì)算灌水量,使土壤質(zhì)量含水率保持在田間持水率的75%~90%。苗期具體灌水方案見(jiàn)表1。
表1 苗期灌水方案表Table 1 Seedling irrigation scheme
本試驗(yàn)于棉花苗期(2021年7月23日,灌水后2 d)進(jìn)行破環(huán)性取樣。株高(cm)采用直尺從土面垂直測(cè)量到棉株頂端;莖粗(mm)采用電子游標(biāo)卡尺測(cè)量子節(jié)葉以上第一主莖節(jié)位中間;之后將棉花莖和葉分別剪下、洗凈,放置于烘箱,在105 ℃下,殺青30 min,在75 ℃烘干48 h至恒質(zhì)量,測(cè)定莖和葉干物質(zhì)積累量;將棉花干莖和干葉分別磨細(xì),用濃H2SO4消煮,AA3型全自動(dòng)流動(dòng)分析儀測(cè)定莖葉全氮量。
試驗(yàn)采用3點(diǎn)取樣法隨機(jī)取土,取土深度分為0~10、10~20 cm和20~30 cm,將各層土樣分別混合均勻作為土壤樣品,之后用本試驗(yàn)用土分層回填。一部分鮮土樣品過(guò)2 mm篩后立即冷藏,用于測(cè)定土壤酶活性;一部分鮮土通過(guò)烘干法測(cè)定土壤質(zhì)量含水率;其余土壤樣品自然風(fēng)干,用于測(cè)定土壤基本理化特性。土壤理化性質(zhì)采用常規(guī)方法進(jìn)行測(cè)定[28]。土壤含鹽量采用質(zhì)量法測(cè)定;土壤pH值采用蒸餾水浸提(土水比1∶5),pH計(jì)測(cè)定;土壤有機(jī)碳量(SOC)采用外加熱重鉻酸鉀容量法測(cè)定;土壤全氮量(TN)采用開(kāi)氏消煮法提取,AA3型全自動(dòng)連續(xù)流動(dòng)分析儀測(cè)定;土壤全磷量(TP)采用HClO4-H2SO4消煮浸提,鉬銻抗比色法測(cè)定;土壤全鉀量(TK)采用NaOH熔融,火焰光度法測(cè)定;土壤堿解氮采用堿解擴(kuò)散法測(cè)定;土壤速效磷采用NaHCO3浸提,鉬銻抗比色法測(cè)定;土壤速效鉀采用NH4OAc浸提,火焰光度法測(cè)定;土壤過(guò)氧化物酶(POD)、纖維二糖苷酶(FTG)和多酚氧化酶(PPO)采用微孔板熒光法,Infinite F50酶標(biāo)分析儀測(cè)定。
試驗(yàn)數(shù)據(jù)使用Excel 2010和R4.0.2進(jìn)行處理和統(tǒng)計(jì)分析,采用Origin 2019進(jìn)行繪圖,采用單因素方差分析(one-way ANOVA)和Tukey’s HSD多重比較法進(jìn)行差異顯著性檢驗(yàn)(plt;0.05)。相關(guān)性分析采用皮爾遜(Pearson)相關(guān)分析法并用psych包進(jìn)行顯著性檢驗(yàn),p-value采用FDR法對(duì)其進(jìn)行修正。
圖1為生物質(zhì)炭對(duì)0~30 cm土層水鹽分布的影響。由圖1可知,與BC0處理相比,BC1、BC3、BC5處理0~20 cm土層質(zhì)量含水率分別增加了18.32%、12.10%、9.01%,說(shuō)明土壤質(zhì)量含水率的增加量與生物質(zhì)炭添加量成反比;而生物質(zhì)炭對(duì)20~30 cm土層質(zhì)量含水率無(wú)顯著影響。與BC0處理相比,BC1、BC3、BC5處理0~20 cm土層的土壤含鹽量分別降低了26.85%、45.38%、36.59%;BC3處理和BC5處理20~30 cm土層的土壤含鹽量分別增加了23.24%和41.85%,進(jìn)而說(shuō)明生物質(zhì)炭可以促進(jìn)土壤的鹽分淋洗。
圖1 生物質(zhì)炭對(duì)0~30 cm土層水鹽分布的影響Fig.1 Effects of biochar on water and salt distribution in 0-30 cm soil layer
生物質(zhì)炭對(duì)土壤pH、全磷量和速效磷量無(wú)顯著影響;對(duì)土壤有機(jī)碳量、全氮量、全鉀量和速效鉀量有顯著正向影響,但對(duì)土壤堿解氮存在顯著負(fù)向影響(圖2)。與BC0處理相比,BC1、BC3處理和BC5處理0~30 cm土層的土壤有機(jī)碳量分別增加了62.47%~169.15%、149.03%~524.25%和271.14%~540.85%。對(duì)于土壤全氮量而言,BC0處理和BC1處理土壤全氮量無(wú)顯著差異,但卻顯著低于BC3處理和BC5處理,BC3處理和BC5處理0~30 cm土層全氮量分別比BC0處理和BC1處理高了58.09%~134.71%和63.29%~140.34%。與BC0處理相比,BC1處理和BC3處理各土層土壤全鉀量無(wú)顯著變化,而BC5處理顯著增加0~30 cm土層土壤全鉀量33.68%~56.83%。與BC0處理相比,BC1、BC3處理和BC5處理0~30 cm土層的土壤速效鉀量分別增加了25.27%~42.94%、87.04%~97.60%和133.82%~165.66%。對(duì)于堿解氮,與BC0處理相比,BC1、BC3處理和BC5處理0~20 cm土層的土壤堿解氮量分別降低了19.14%~29.99%、30.00%~38.11%和24.45%~40.63%;但20~30 cm土層的土壤堿解氮量無(wú)顯著變化。
圖2 生物質(zhì)炭對(duì)鹽堿土各層土壤化學(xué)性質(zhì)的影響Fig.2 Effects of biochar on soil chemical properties of saline-alkaline soil
圖3為生物質(zhì)炭對(duì)鹽堿土壤酶活性的影響。由圖3可知,添加生物質(zhì)炭可以顯著提高POD和FTG的活性,且BC1處理的提高效果最為顯著;與BC0處理相比,BC1處理和BC3處理對(duì)PPO活性無(wú)顯著影響,而BC5處理顯著降低了PPO的活性。
表2為生物質(zhì)炭添加量與土壤特性的相關(guān)系數(shù)。由表2可知,生物質(zhì)炭添加量與土壤SOC、TN、TK和速效鉀顯著正相關(guān),與土壤堿解氮和PPO顯著負(fù)相關(guān);在各土壤特性之間,土壤SOC與土壤TN、速效鉀顯著正相關(guān),與土壤堿解氮顯著負(fù)相關(guān);土壤TN與土壤速效鉀顯著正相關(guān),與土壤堿解氮呈顯著負(fù)相關(guān);土壤TK與速效鉀顯著正相關(guān),與土壤PPO極顯著負(fù)相關(guān);土壤堿解氮與速效鉀顯著負(fù)相關(guān);土壤POD活性與FTG活性顯著正相關(guān)。
圖3 生物質(zhì)炭對(duì)鹽堿土壤酶活性的影響Fig.3 Effects of biochar on enzyme activity in saline-alkaline soil
表2 生物質(zhì)炭添加量與土壤特性的相關(guān)系數(shù)Table 2 Correlation coefficient table of biochar addition and soil properties
注 *,plt;0.05;**,plt;0.01;***,plt;0.001;n=12。
圖4為生物質(zhì)炭對(duì)棉花苗期生長(zhǎng)的影響。由圖4可知,與BC0處理相比,BC1處理和BC3處理棉花株高無(wú)顯著差異,但BC1處理棉花莖粗和地上部干物質(zhì)量分別顯著增加了19.93%和48.56%;而BC5處理棉花株高、莖粗和地上部干物質(zhì)量分別顯著降低了41.46%、34.46%和68.52%。另外,與BC0處理相比,BC1、BC3處理和BC5處理棉花莖全氮量分別顯著降低了27.98%、33.35%和53.84%;而BC1處理和BC3處理棉花葉全氮量無(wú)顯著差異,僅有BC5處理棉花葉全氮量顯著降低了40.01%。
圖4 生物質(zhì)炭對(duì)棉花苗期生長(zhǎng)的影響Fig.4 Effects of biochar on growth of cotton seedling stage
本研究表明,添加生物質(zhì)炭可以提高土壤含水率(圖1),這與Karhu等[29]和Haider等[30]研究結(jié)果一致。一方面,生物質(zhì)炭的多孔性和強(qiáng)吸附性,使其本身具有較強(qiáng)持水能力;另一方面,生物質(zhì)炭可以通過(guò)改善土壤團(tuán)粒結(jié)構(gòu)來(lái)增加土壤持水率,Duan等[31]研究表明,土壤團(tuán)粒結(jié)構(gòu)與土壤持水能力顯著正相關(guān)。另外,在本研究中,土壤含水率的增加幅度與生物質(zhì)炭添加量成反比(圖1),這可能是由于試驗(yàn)所用生物質(zhì)炭為粉末質(zhì)地,添加量越多,更多較小的顆粒會(huì)堵塞土壤孔隙或與土壤無(wú)機(jī)礦物結(jié)合減少土壤孔隙[32],從而使得土壤含水率的增加幅度呈下降趨勢(shì)。
生物質(zhì)炭可以改善鹽堿土壤化學(xué)性質(zhì),增加土壤養(yǎng)分量,有利于鹽堿土向健康方向發(fā)展。本研究表明,生物質(zhì)炭能夠降低鹽堿土壤含鹽量(圖1),但對(duì)土壤pH值影響不顯著(圖2),這與韓劍宏等[33]研究結(jié)果類似。生物質(zhì)炭巨大的比表面積和較多的官能團(tuán),使其具有高鹽吸附特性,從而降低土壤含鹽量[34];另外,本試驗(yàn)表明生物質(zhì)炭能夠促進(jìn)鹽分淋洗,進(jìn)而降低土壤表層含鹽量(圖1),這與高婧等[35]研究結(jié)果相似。Lashari等[36]認(rèn)為,生物質(zhì)炭通過(guò)降低土壤質(zhì)量,提高土壤滲透性,來(lái)促進(jìn)降水或灌溉對(duì)土壤鹽分的淋洗。但也有研究表明,生物質(zhì)炭過(guò)量施用會(huì)對(duì)堿性土壤有負(fù)面影響,這可能與生物質(zhì)炭含灰量高有關(guān)[7]。前人研究發(fā)現(xiàn),生物質(zhì)炭能夠增加鹽堿土的有機(jī)質(zhì)量、速效磷量、速效鉀量、全氮量、全磷量和全鉀量[8,37],其原因是生物質(zhì)炭含有多種礦質(zhì)營(yíng)養(yǎng)元素,另一個(gè)原因是生物質(zhì)炭表面眾多官能團(tuán),有利于土壤養(yǎng)分的保留[4]。在本試驗(yàn)中,添加生物質(zhì)炭與土壤有機(jī)碳量、全氮量、全鉀量和速效鉀量顯著正相關(guān),而對(duì)土壤全磷和速效磷量無(wú)顯著影響(圖2)。除全鉀外,有機(jī)碳量、全氮量和速效鉀量的增加量與生物質(zhì)炭添加量成正比,其中,有機(jī)碳的增加幅度最大,這和生物質(zhì)炭富含碳有關(guān);但有機(jī)碳量和全氮量在3%和5%生物質(zhì)炭添加量之間差異不顯著。本試驗(yàn)還表明,生物質(zhì)炭顯著降低了土壤堿解氮量(圖2),這與趙鐵民等[38]和冉成等[39]的研究結(jié)果相似,其中原因可能是生物質(zhì)炭對(duì)礦質(zhì)氮具有較強(qiáng)的吸附能力,導(dǎo)致土壤氮素被固化[20]。但侯艷艷等[40]通過(guò)對(duì)堿性灰漠土的研究發(fā)現(xiàn),添加棉稈炭提高了灰漠土堿解氮量,原因是添加棉桿炭后,土壤碳氮比提高,使得有效氮量降低,從而降低土壤氮素利用率。由此可見(jiàn),生物質(zhì)炭對(duì)土壤養(yǎng)分的影響與生物質(zhì)炭種類、用量及土壤類型有直接關(guān)系。
土壤酶活性在土壤有機(jī)質(zhì)分解和養(yǎng)分循環(huán)中起著重要作用,被認(rèn)為是土壤質(zhì)量的重要指標(biāo)[41]。有研究發(fā)現(xiàn),生物質(zhì)炭可以提高土壤酶活性,進(jìn)而促進(jìn)土壤養(yǎng)分轉(zhuǎn)化,提高土壤養(yǎng)分利用率[42-43]。但生物質(zhì)炭對(duì)土壤酶活性的作用變異很大,生物質(zhì)炭的結(jié)構(gòu)、顆粒大小、用量和施用時(shí)長(zhǎng)以及土壤類型都會(huì)對(duì)土壤酶活性產(chǎn)生不同影響[14,44]。在本試驗(yàn)中,主要分析了土壤中與氧化還原反應(yīng)有關(guān)的過(guò)氧化物酶、與碳轉(zhuǎn)化有關(guān)的纖維二糖苷酶及與土壤環(huán)境修復(fù)有關(guān)的多酚氧化酶活性(圖3),研究表明,生物質(zhì)炭可以顯著提高土壤過(guò)氧化物酶和纖維二糖苷酶的活性,這可以歸因于生物質(zhì)炭為土壤微生物提供了大量的營(yíng)養(yǎng)物質(zhì)和良好的生長(zhǎng)環(huán)境,改善了土壤理化性質(zhì),從而提高了相關(guān)酶活性[45]。但這2種酶活性的增加幅度并沒(méi)有隨生物質(zhì)炭添加量的增加而增加。對(duì)于土壤多酚氧化酶,1%和3%生物質(zhì)炭添加量對(duì)其活性無(wú)顯著影響,5%生物質(zhì)炭添加量抑制了其活性,這與Wang等[46]的研究結(jié)果相似。高水平生物質(zhì)炭導(dǎo)致土壤酶活性增加幅度降低或者抑制土壤酶活性,可能原因是生物質(zhì)炭中的穩(wěn)定性碳庫(kù),不易分解,從而使得高用量生物質(zhì)炭大幅度增加土壤C/N比,反而不易被微生物利用[47],或者隨著用量增加,生物質(zhì)炭的吸附能力更強(qiáng),掩蓋了酶活性位點(diǎn),使得土壤酶活性增加不明顯或者受到抑制作用[48]。Gul等[44]指出,有較大孔隙度或者表面積的生物質(zhì)炭可能會(huì)抑制土壤酶活性,這是由于這種生物質(zhì)炭表面的官能團(tuán)更傾向于結(jié)合底物或者土壤酶。
本研究表明,添加1%生物質(zhì)炭顯著增加棉花莖粗和地上部干物質(zhì)量,對(duì)株高無(wú)顯著影響,但隨著添加量的增加,生物質(zhì)炭對(duì)棉花生長(zhǎng)會(huì)產(chǎn)生一定的抑制作用,5%的添加量顯著降低了棉花的株高、莖粗和地上部干物質(zhì)量(圖4),這與秦蓓等[37]的研究結(jié)果相似。Asai等[49]和Rajkovich等[50]研究也分別表明,高用量生物質(zhì)炭導(dǎo)致旱稻和玉米減產(chǎn)。本研究還表明,添加生物質(zhì)炭顯著降低了棉花莖葉全氮含量(圖4)。生物質(zhì)炭對(duì)作物生長(zhǎng)的影響具有矛盾性,一方面其高吸附性,可以保留土壤中更多水分和養(yǎng)分,但另一方面也會(huì)降低部分營(yíng)養(yǎng)物質(zhì)的可用性,如對(duì)土壤氮素有固化作用[30]。在本試驗(yàn)中,相比3%和5%生物質(zhì)炭添加量,1%生物質(zhì)炭添加量降低棉花莖全氮量幅度較小,但其較大程度地提高了土壤含水率,減輕了鹽分對(duì)作物的脅迫效應(yīng),且1%生物質(zhì)炭添加量下的土壤過(guò)氧化物酶和土壤纖維二糖苷酶的活性最大,有利于土壤腐殖質(zhì)形成和碳素轉(zhuǎn)化,進(jìn)而促進(jìn)作物生長(zhǎng)。也就是說(shuō),1%生物質(zhì)炭添加量對(duì)作物生長(zhǎng)產(chǎn)生的優(yōu)勢(shì)大于劣勢(shì)。另外,生物質(zhì)炭的養(yǎng)分組成與其裂解溫度密切相關(guān),高裂解溫度會(huì)降低生物質(zhì)炭氮量和揮發(fā)性碳量,增加固定碳量[22]。本試驗(yàn)所用生物質(zhì)炭是在500~600 ℃的高溫條件下裂解產(chǎn)生的,過(guò)量施用反而導(dǎo)致土壤礦化率低,不利于作物生長(zhǎng)。
由于本試驗(yàn)為桶栽試驗(yàn),與大田試驗(yàn)存在一定不同,其結(jié)果需要在大田條件下進(jìn)一步驗(yàn)證才能應(yīng)用于實(shí)際生產(chǎn)中;且本研究主要關(guān)注生物質(zhì)炭對(duì)減輕幼苗鹽脅迫及苗期生長(zhǎng)的影響,后期應(yīng)結(jié)合不同生育期探討鹽堿土壤特性及棉花生長(zhǎng)對(duì)生物質(zhì)炭的響應(yīng)。另外,生物質(zhì)炭的制備條件及原料對(duì)其作用的發(fā)揮影響很大,在今后的研究中應(yīng)給予重視。
在貧瘠的鹽堿土壤中添加生物質(zhì)炭能夠改善其養(yǎng)分狀況,增加土壤有機(jī)質(zhì)量、全氮量、全鉀量和速效鉀量;但由于生物質(zhì)炭的高吸附性,短期添加會(huì)對(duì)土壤氮素有固化作用,導(dǎo)致苗期棉花在一定程度上出現(xiàn)全氮量降低的狀況。另外,添加生物質(zhì)炭促進(jìn)鹽分淋洗,從而降低了表層土壤含鹽量。生物質(zhì)炭增加了土壤含水率、過(guò)氧化物酶活性和纖維二糖苷酶活性,且相比3%和5%生物質(zhì)炭量,1%生物質(zhì)炭量對(duì)三者的促進(jìn)作用最明顯。由于1%生物質(zhì)炭量對(duì)土壤產(chǎn)生的優(yōu)勢(shì)大于其劣勢(shì),所以促進(jìn)了作物生長(zhǎng)。5%生物質(zhì)炭量抑制了多酚氧化酶活性,且明顯導(dǎo)致植物氮營(yíng)養(yǎng)供應(yīng)不足,土壤礦化率低,抑制作物生長(zhǎng)。綜上,生物質(zhì)炭具有矛盾性,在實(shí)際應(yīng)用中,選擇適宜的添加量將其優(yōu)勢(shì)最大限度發(fā)揮出來(lái),以取得應(yīng)用效果是十分重要的。
[1]李思平, 曾路生, 李旭霖, 等. 不同配方生物炭改良鹽漬土對(duì)小白菜和棉花生長(zhǎng)及光合作用的影響[J]. 水土保持學(xué)報(bào), 2019, 33(2): 363-368.
LI Siping, ZENG Lusheng, LI Xulin, et al. Amelioration of saline soil with different biochar fertilization formulas and its effects on growth and photosynthesis of brassica chinensis and cotton[J]. Journal of Soil and Water Conservation, 2019, 33(2): 363-368.
[2]于寶勒. 鹽堿地修復(fù)利用措施研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2021,37(7): 81-87.
YU Baole. Remediation measures of saline-alkali land: A review[J].Chinese Agricultural Science Bulletin, 2021, 37(7): 81-87.
[3]劉淼, 王志春, 楊福, 等. 生物炭在鹽堿地改良中的應(yīng)用進(jìn)展[J]. 水土保持學(xué)報(bào), 2021, 35(3): 1-8.
LIU Miao, WANG Zhichun, YANG Fu, et al. Application progress of biochar in amelioration of saline-alkaline soil[J]. Journal of Soil and Water Conservation, 2021, 35(3): 1-8.
[4]ALI S, RIZWAN M, QAYYUM M F, et al. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review[J].Environmental Science and Pollution Research International, 2017,24(14): 12 700-12 712.
[5]嚴(yán)陶韜, 丁子菊, 朱倩, 等. 生物質(zhì)炭對(duì)黃棕壤理化性質(zhì)及龍腦樟幼苗生長(zhǎng)的影響[J]. 土壤, 2018, 50(4): 681-686.
YAN Taotao, DING Ziju, ZHU Qian, et al. Effects of biochar on physicochemical properties of yellow-brown soil and growth of cinnamomum Camphora seedlings[J]. Soils, 2018, 50(4): 681-686.
[6]王昆艷, 官會(huì)林, 盧俊, 等. 生物質(zhì)炭施用量對(duì)旱地酸性紅壤理化性質(zhì)的影響[J]. 土壤, 2020, 52(3): 503-509.
WANG Kunyan, GUAN Huilin, LU Jun, et al. Effects of biochar on physicochemical properties of dry land acid red soil[J]. Soils, 2020,52(3): 503-509.
[7]ALBURQUERQUE J A, CALERO J M, BARRóN V, et al. Effects of biochars produced from different feedstocks on soil properties and sunflower growth[J]. Journal of Plant Nutrition and Soil Science, 2014,177(1): 16-25.
[8]孔祥清, 韋建明, 常國(guó)偉, 等. 生物炭對(duì)鹽堿土理化性質(zhì)及大豆產(chǎn)量的影響[J]. 大豆科學(xué), 2018, 37(4): 647-651.
KONG Xiangqing, WEI Jianming, CHANG Guowei, et al. Effect of biochar on the physical and chemical properties of saline-alkali soil and soybean yield[J]. Soybean Science, 2018, 37(4): 647-651.
[9]陳芳, 張康康, 谷思誠(chéng), 等. 不同種類生物質(zhì)炭及施用量對(duì)水稻生長(zhǎng)及土壤養(yǎng)分的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 38(5): 57-63.
CHEN Fang, ZHANG Kangkang, GU Sicheng, et al. Effects of kinds and application rates of biochar on rice growth and soil nutrients[J].Journal of Huazhong Agricultural University, 2019, 38(5): 57-63.
[10]YU K L, LAU B F, SHOW P L, et al. Recent developments on algal biochar production and characterization[J]. Bioresource Technology,2017, 246: 2-11.
[11] MCBEATH A V, WURSTER C M, BIRD M I. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis[J]. Biomass and Bioenergy, 2015, 73: 155-173.
[12]ZHENG H, WANG X, LUO X X, et al. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation[J]. Science of the Total Environment, 2018, 610/611: 951-960.
[13]屈忠義, 孫慧慧, 楊博, 等. 不同改良劑對(duì)鹽堿地土壤微生物與加工番茄產(chǎn)量的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2021, 52(4): 311-318, 350.
QU Zhongyi, SUN Huihui, YANG Bo, et al. Effects of different amendments on soil microorganisms and yield of processing tomato in saline alkali soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 311-318, 350.
[14] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota -A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1 812-1 836.
[15]劉園, M.Jamal Khan, 靳海洋, 等. 秸稈生物炭對(duì)潮土作物產(chǎn)量和土壤性狀的影響[J]. 土壤學(xué)報(bào), 2015, 52(4): 849-858.
LIU Yuan, KHAN M J, JIN Haiyang, et al. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols[J]. Acta Pedologica Sinica, 2015, 52(4): 849-858.
[16]蔣雪洋, 張前前, 沈浩杰, 等. 生物質(zhì)炭對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和微生物群落的影響[J]. 土壤學(xué)報(bào), 2021, 58(6): 1 564-1 573.
JIANG Xueyang, ZHANG Qianqian, SHEN Haojie, et al. Effects of biochar on soil aggregate stability and microbial community in paddy field[J]. Acta Pedologica Sinica, 2021, 58(6): 1 564-1 573.
[17]LEHMANN J, DA SILVA J J P, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: Fertilizer, manure and charcoal amendments[J].Plant and Soil, 2003, 249: 343-357.
[18]FENG L, XU W L, TANG G M, et al. Biochar induced improvement in root system architecture enhances nutrient assimilation by cotton plant seedlings[J]. BMC Plant Biology, 2021, 21(1): 269.
[19]高珊, 楊勁松, 姚榮江, 等. 改良措施對(duì)蘇北鹽漬土鹽堿障礙和作物磷素吸收的調(diào)控[J]. 土壤學(xué)報(bào), 2020, 57(5): 1 219-1 229.
GAO Shan, YANG Jinsong, YAO Rongjiang, et al. Effects of soil amelioration measures mitigating soil salinity and improving crop P uptake in coastal area of north Jiangsu[J]. Acta Pedologica Sinica, 2020,57(5): 1 219-1 229.
[20]吳濤, 馮歌林, 曾珍, 等. 生物質(zhì)炭對(duì)盆栽黑麥草生長(zhǎng)的影響及機(jī)理[J].土壤學(xué)報(bào), 2017, 54(2): 525-534.
WU Tao, FENG Gelin, ZENG Zhen, et al. Effect of biochar addition on ryegrass growth in a pot experiment and its mechanism[J]. Acta Pedologica Sinica, 2017, 54(2): 525-534.
[21]SUN J N, HE F H, SHAO H B, et al. Effects of biochar application on Suaeda salsa growth and saline soil properties[J]. Environmental Earth Sciences, 2016, 75(8): 1-6.
[22]SIAL T A, SHAHEEN S M, LAN Z L, et al. Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions, nutrients availability, and enzymes activity[J].Chemosphere, 2022, 293: 133 476.
[23]??? 孫亞喬, 馬衛(wèi)國(guó). 添加生物炭對(duì)降低冬小麥幼苗鹽害并促進(jìn)其生長(zhǎng)的效果研究[J]. 灌溉排水學(xué)報(bào), 2019, 38(11): 22-27.
XIAO Kang, SUN Yaqiao, MA Weiguo. Effects of biochar for abating salt stress and promoting seeding growth of winter wheat in a saline soil[J]. Journal of Irrigation and Drainage, 2019, 38(11): 22-27.
[24]代紅翠, 陳源泉, 王東, 等. 生物炭對(duì)堿性砂質(zhì)土壤小麥出苗及幼苗生長(zhǎng)的影響[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 23(4): 1-7.
DAI Hongcui, CHEN Yuanquan, WANG Dong, et al. Effect of biochar amendment on wheat emergence and seedling growth in alkaline soil[J].Journal of China Agricultural University, 2018, 23(4): 1-7.
[25]XU G, ZHANG Y, SUN J N, et al. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil[J]. Science of the Total Environment,2016, 568: 910-915.
[26]林蔚, 張雷, 張國(guó)偉, 等. 濱海鹽土棉田棉花水、鹽遙感監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 棉花學(xué)報(bào), 2012, 24(2): 114-119.
LIN Wei, ZHANG Lei, ZHANG Guowei, et al. Design and implementation of remote sensing monitoring system for water and salinity content of cotton in coastal saline soil[J]. Cotton Science, 2012, 24(2): 114-119.
[27]ABDELRAHEEM A, ESMAEILI N, O’CONNELL M, et al. Progress and perspective on drought and salt stress tolerance in cotton[J].Industrial Crops and Products, 2019, 130: 118-129.
[28]鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.
BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed.Beijing: China Agriculture Press, 2000.
[29]KARHU K, MATTILA T, BERGSTR?M I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity -Results from a short-term pilot field study[J]. Agriculture, Ecosystemsamp; Environment, 2011, 140(1/2): 309-313.
[30]HAIDER G, STEFFENS D, MOSER G, et al. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study[J]. Agriculture, Ecosystems amp;Environment, 2017, 237: 80-94.
[31]DUAN M L, LIU G H, ZHOU B B, et al. Effects of modified biochar on water and salt distribution and water-stable macroaggregates in saline-alkaline soil[J]. Journal of Soils and Sediments,2021, 21(6): 2 192-2 202.
[32]董心亮, 林啟美. 生物質(zhì)炭對(duì)土壤物理性質(zhì)影響的研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2018, 26(12): 1 846-1 854.
DONG Xinliang, LIN Qimei. Biochar effect on soil physical properties: A review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1 846-1 854.
[33]韓劍宏, 李艷偉, 姚衛(wèi)華, 等. 玉米秸稈和污泥共熱解制備的生物質(zhì)炭及其對(duì)鹽堿土壤理化性質(zhì)的影響[J]. 水土保持通報(bào), 2017, 37(4):92-98, 105.
HAN Jianhong, LI Yanwei, YAO Weihua, et al. Co-pyrolysis preparing biochar with corn straw and sewage sludge and its effects on saline soil improvement[J]. Bulletin of Soil and Water Conservation, 2017, 37(4):92-98, 105.
[34]AKHTAR S S, ANDERSEN M N, LIU F L. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 2015, 158: 61-68.
[35]高婧, 楊勁松, 姚榮江, 等. 不同改良劑對(duì)濱海重度鹽漬土質(zhì)量和肥料利用效率的影響[J]. 土壤, 2019, 51(3): 524-529.
GAO Jing, YANG Jinsong, YAO Rongjiang, et al. Effects of different soil amendments on properties and fertilizer utilization efficiency for coastal heavily-salinized soil[J]. Soils, 2019, 51(3): 524-529.
[36]LASHARI M S, LIU Y M, LI L Q, et al. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain[J]. Field Crops Research, 2013, 144: 113-118.
[37]秦蓓, 王雅琴, 唐光木, 等. 施用棉稈炭對(duì)新疆鹽漬化土壤理化性質(zhì)及作物產(chǎn)量的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2016, 53(12): 2 290-2 298.
QIN Bei, WANG Yaqin, TANG Guangmu, et al. Effects of applying cotton stalk biochar to Xinjiang saline soil on the physical and chemical properties and crop yield[J]. Xinjiang Agricultural Sciences, 2016,53(12): 2 290-2 298.
[38]趙鐵民, 李淵博, 陳為峰, 等. 生物炭對(duì)濱海鹽漬土理化性質(zhì)及玉米幼苗抗氧化系統(tǒng)的影響[J]. 水土保持學(xué)報(bào), 2019, 33(2): 196-200.
ZHAO Tiemin, LI Yuanbo, CHEN Weifeng, et al. Effect of biochar on the physicochemical properties of coastal saline soil and the antioxidation system activity in maize seedlings[J]. Journal of Soil and Water Conservation, 2019, 33(2): 196-200.
[39]冉成, 邵璽文, 朱晶, 等. 生物炭對(duì)蘇打鹽堿稻田土壤養(yǎng)分及產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2019, 38(5): 46-51.
RAN Cheng, SHAO Xiwen, ZHU Jing, et al. Amending soda salinealkali paddy soil with biochar improves soil nutrients and rice yield[J].Journal of Irrigation and Drainage, 2019, 38(5): 46-51.
[40]侯艷艷, 朱新萍, 徐萬(wàn)里, 等. 施用生物炭對(duì)灰漠土養(yǎng)分及棉花生長(zhǎng)的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2018, 55(1): 24-32.
HOU Yanyan, ZHU Xinping, XU Wanli, et al. Effects of biocar application on nutrient and cotton growth in gray desert soil[J]. Xinjiang Agricultural Sciences, 2018, 55(1): 24-32.
[41]YAO T X, ZHANG W T, GULAQA A, et al. Effects of peanut shell biochar on soil nutrients, soil enzyme activity, and rice yield in heavily saline-sodic paddy field[J]. Journal of Soil Science and Plant Nutrition,2021, 21(1): 655-664.
[42]王相平, 楊勁松, 張勝江, 等. 改良劑施用對(duì)干旱鹽堿區(qū)棉花生長(zhǎng)及土壤性質(zhì)的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2020, 29(4): 757-762.
WANG Xiangping, YANG Jinsong, ZHANG Shengjiang, et al. Effects of different amendments application on cotton growth and soil properties in arid areas[J]. Ecology and Environmental Sciences, 2020,29(4): 757-762.
[43]黃哲, 曲世華, 白嵐, 等. 不同秸稈混合生物炭對(duì)鹽堿土壤養(yǎng)分及酶活性的影響[J]. 水土保持研究, 2017, 24(4): 290-295.
HUANG Zhe, QU Shihua, BAI Lan, et al. Effects of different straw mixing biochar on nutrient and enzyme activity of saline soil[J].Research of Soil and Water Conservation, 2017, 24(4): 290-295.
[44]GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils:Mechanisms and future directions[J]. Agriculture, Ecosystems amp;Environment, 2015, 206: 46-59.
[45]GOMEZ J D, DENEF K, STEWART C E, et al. Biochar addition rate influences soil microbial abundance and activity in temperate soils[J].European Journal of Soil Science, 2014, 65(1): 28-39.
[46] WANG X B, SONG D L, LIANG G Q, et al. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil[J]. Applied Soil Ecology, 2015, 96: 265-272.
[47]韓召?gòu)?qiáng), 陳效民, 曲成闖, 等. 生物質(zhì)炭施用對(duì)潮土理化性狀、酶活性及黃瓜產(chǎn)量的影響[J]. 水土保持學(xué)報(bào), 2017, 31(6): 272-278.
HAN Zhaoqiang, CHEN Xiaomin, QU Chengchuang, et al. Effects of biochar application on soil physicochemical properties, enzyme activities and cucumber yield[J]. Journal of Soil and Water Conservation, 2017, 31(6): 272-278.
[48]張帥, 成宇陽(yáng), 吳行, 等. 生物炭施用下潮土團(tuán)聚體微生物量碳氮和酶活性的分布特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2021, 27(3): 369-379.
ZHANG Shuai, CHENG Yuyang, WU Hang, et al. Microbial biomass carbon, nitrogen and enzyme activities within aggregates of calcareous soil under biochar application[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 369-379.
[49]ASAI H, SAMSON B K, STEPHAN H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009,111(1/2): 81-84.
[50]RAJKOVICH S, ENDERS A, HANLEY K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48(3): 271-284.
Optimizing Biochar Amendment to Improve Soil Property and Cotton Seedling Growth in Saline Soils
WANG Yuting1,2, TIAN Guangli1, TIAN Yuyu1,2, ZHAO Qingqing1,2, ZHEN Bo1, LI Huizhen1, ZHOU Xinguo1*
(1. Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China;2.Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100080, China)
【Background and objective】Soil salinization is a biotic stress facing agriculture production in almost all countries. It not only destroys soil structure but also reduces bioavailable nutrients and the ability of soil to sequester carbon. Amending stalinized soil with biochar is a technology to improve soil quality and productivity, but its efficacy depends on soil texture and the amount of biochar being applied. The objective of this paper is to study the optimal biochar amendment for improving soil quality and fertility for cotton growth. 【Method】 The experiment was conducted in pots with the cultivar Medium S9612 used as the model plant. The soil was amended by biochar at ratios of 0 (CK), 1% (BC1), 1%(BC1), 3% (BC3) and 5% (BC5), respectively. In each treatment, we measured physicochemical properties, enzyme activities of the soil, as well as growth indexes of the cotton at seedling stage.【Result】Biochar amendment improved moisture content in the 0~20 cm soil layer, but the increase was negatively correlated with biochar amount; biochar also reduced salt content in the 0~20 cm soil layer. The amendment did not show significant effect on soil pH, total phosphorus, and available phosphorus, but increased soil organic carbon,total nitrogen, total potassium, available potassium, peroxidase (POD), and fibro two glycosidases (FTG), especially BC1 which significantly increased the activity of POD and FTG. In general, biochar reduced soil alkali-hydrolyzable nitrogen and polyphenol oxidase (PPO). BC1 increased stem diameter and above-ground dry matter accumulation of the crop, both significantly, but did not show noticeable impact on plant height. BC3 did not show significant effects on plant height, stem thickness, and above-ground dry matter, while BC5 reduced plant height, stem diameter, and above-ground dry matter. Also, addition of biochar reduced the total nitrogen content in stems and leaves.【Conclusion】Biochar can improve soil nutrients and enzyme activities but only when applied at an appropriate ratio. For the saline soil we studied, the optimal biochar amendment was 1%.
saline soil; biochar; soil physicochemical properties; soil enzyme activities; crop growth
S156.4
A
10.13522/j.cnki.ggps.2022168
王鈺婷, 田廣麗, 田雨雨, 等. 生物質(zhì)炭添加量對(duì)鹽堿土壤特性及棉花苗期生長(zhǎng)的影響[J]. 灌溉排水學(xué)報(bào), 2023, 42(1):72-79.
WANG Yuting, TIAN Guangli, TIAN Yuyu, et al. Optimizing Biochar Amendment to Improve Soil Property and Cotton Seedling Growth in Saline Soils[J]. Journal of Irrigation and Drainage, 2023, 42(1): 72-79.
1672 - 3317(2023)01 - 0072 - 08
2022-03-30
中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目(CAAS-ZDRW202201);水稻對(duì)高溫與澇漬耦合脅迫的生理生態(tài)響應(yīng)及根系解剖學(xué)機(jī)制項(xiàng)目(222102110339)
王鈺婷(1997-),女,山西大同人。碩士研究生,主要從事鹽堿地改良;排水理論與新技術(shù)。E-mail: wangyuting8516@163.com
周新國(guó)(1970-),男,河南信陽(yáng)人。研究員,博士生導(dǎo)師,主要從事農(nóng)田排水技術(shù)研究。E-mail: zhouxinguo@caas.cn
責(zé)任編輯:趙宇龍