楊曉明 程須珍 朱振東 劉昌燕 陳 新
綜述
食用豆抗豆象種質(zhì)創(chuàng)新與遺傳改良研究進展
楊曉明1程須珍2,*朱振東2劉昌燕3陳 新4,*
1甘肅省農(nóng)業(yè)科學院作物研究所, 甘肅蘭州 730070;2中國農(nóng)業(yè)科學院作物科學研究所, 北京 100081;3湖北省農(nóng)業(yè)科學院糧食作物研究所, 湖北武漢 430064;4江蘇省農(nóng)業(yè)科學院經(jīng)濟作物研究所, 江蘇南京 210014
食用豆在耕地質(zhì)量提升、優(yōu)化農(nóng)業(yè)生態(tài)體系及人類膳食結(jié)構(gòu)改善中發(fā)揮著重要作用。豆象是世界性倉儲性害蟲, 嚴重影響著食用豆產(chǎn)業(yè)的健康發(fā)展。國內(nèi)外在食用豆抗豆象種質(zhì)鑒定評價和利用方面, 從各種野生資源中鑒定出抗不同豆象的種質(zhì)材料, 并在豆象抗性遺傳學分析、QTL定位和基因挖掘等方面取得顯著進展。本文通過對豆象發(fā)生和危害規(guī)律、抗性鑒定方法、抗性機理研究、抗性種質(zhì)鑒定與評價、抗性遺傳和分子標記以及抗豆象育種方法和品種改良等方面的梳理和總結(jié), 對抗豆象研究存在問題進行討論和展望, 以期為我國抗豆象種質(zhì)創(chuàng)新和品種改良提供參考價值。
食用豆; 種質(zhì)創(chuàng)新; 豆象; 抗性育種; 分子標記
食用豆是指除大豆以外, 以收獲籽粒為主, 兼做蔬菜, 供人類食用的豆類作物總稱[1]。食用豆在耕地質(zhì)量提升、農(nóng)業(yè)生態(tài)系統(tǒng)優(yōu)化和人類膳食結(jié)構(gòu)改善中發(fā)揮著重要作用[2]。食用豆作物有20多種[3], 包括: 蠶豆(Vicia faba L.)、豌豆(Pisum sativum L.)、鷹嘴豆(Cicer arietinum L.)、小扁豆(Lens culinarisMedic)等冷季豆; 綠豆(Vigna radiata L.)、小豆(V. angularis)、黑吉豆(V. mungoL.)、豇豆(V. unguiculata L.)、飯豆(V. umbellate L.)等熱季豆; 普通菜豆(Phaseolus vulgaris L.)、多花菜豆(P. coccineus L.)和利馬豆(P. lunatus L.)等暖季豆。全球食用豆種植面積約7100萬公頃, 產(chǎn)量6770萬噸[4]。我國食用豆常年播種約300萬公頃, 產(chǎn)量500萬噸[1], 主要為蠶豆、豌豆、綠豆、小豆、豇豆和普通菜豆。
隨著氣候變暖和異地調(diào)種頻繁, 豆象(Coleoptera: Bruchidae)已成為危害食用豆最為嚴重的害蟲, 其主要分布于亞洲、非洲熱帶地區(qū)以及中美和南美等地[5-6]。我國危害熱季豆的豆象主要是綠豆象(Callosobruchus chinensis)和四紋豆象(Callosobruchus maculatus); 危害蠶豆和豌豆的分別是蠶豆象(Bruchus rufimanus)和豌豆象(Bruchus pisorum) (圖1), 菜豆象()為檢疫性害蟲, 但在局部地區(qū)也發(fā)生。我國河北、安徽、陜西、河南、湖北等產(chǎn)區(qū)綠豆象危害達68%; 云南、四川等產(chǎn)區(qū)蠶豆象和豌豆象危害高達76%[7]; 豆象危害從疫區(qū)向非疫區(qū)蔓延, 由低海拔產(chǎn)區(qū)向高海拔產(chǎn)區(qū)擴張。危害程度總體表現(xiàn)南方產(chǎn)區(qū)重于北方產(chǎn)區(qū), 熱季豆重于冷季豆, 豆象危害嚴重制約著食用豆產(chǎn)業(yè)的健康發(fā)展。
圖1 食用豆類作物豆象
A: 綠豆象(♀); B: 綠豆象(♂); C: 豌豆象(♂); D: 豌豆象(♀)。
A: bean weevil (♀); B: bean weevil (♂); C: pea weevil (♂); D: pea weevil (♀).
抗蟲品種培育和應(yīng)用是解決豆象危害最經(jīng)濟、有效和環(huán)境友好的途徑。食用豆抗蟲種質(zhì)創(chuàng)新和品種改良已成為育種家主要研究目標[8]。迄今, 國內(nèi)外已鑒定出抗不同豆象的食用豆種質(zhì)資源, 并在抗性遺傳分析、基因發(fā)掘、遺傳圖譜構(gòu)建、分子標記等方面取得一定成效[9]。目前, 我國培育的抗豆象品種主要是綠豆[10], 其他豆種尚未有育成的抗豆象品種在生產(chǎn)上應(yīng)用。利用遠緣雜交和現(xiàn)代分子育種技術(shù), 培育抗性、品質(zhì)和產(chǎn)量協(xié)同提高的新品種是推動產(chǎn)業(yè)發(fā)展的有效手段。本文通過國內(nèi)外主要食用豆類作物抗豆象機理研究、抗性種質(zhì)鑒定和遺傳育種等研究進行系統(tǒng)梳理和總結(jié), 旨在提出當前我國豆象防控的有效措施, 為進一步豆象綜合治理和研究提供參考。
豆象(Bruchidae)為鞘翅目(Coleoptera)葉甲總科(Chrysomeloidea)豆象亞科(Bruchinae)的通稱。全世界已鑒定并記載豆象約102個屬1300個種[11]。對食用豆產(chǎn)業(yè)造成嚴重危害的約20多種[12], 包括豆象屬(Bruchus)、瘤背豆象屬(Callosobruchus)、三齒豆象屬(Acanthoscelides)、錐胸豆象屬(Bruchidius)。隨著全球氣候變暖和農(nóng)業(yè)種植結(jié)構(gòu)變化, 豆象發(fā)生和危害不斷加劇[13]。我國豆象主要有8屬25個種。其中四紋豆象(C maculatus)、鷹嘴豆象(C. analis)、西非花生豆象(C. subinnotatus)、菜豆象(A. obtectus)、巴西豆象(Zabrotes subfasciatus)被列為我國重要的植物檢疫性有害生物[14]。
不同豆象生活史、發(fā)生規(guī)律和危害特征不同[15]。其顯著特征是綠豆象等多寄主豆象可多次侵染和危害; 而豌豆象、蠶豆象等單寄主豆象只有在田間采食花粉花蜜, 完成交配產(chǎn)卵后, 并在特定寄主上危害[16]。多寄主豆象可為害多種豆類, 如綠豆象、四紋豆象、菜豆象等在一年可繁殖多代, 并危害綠豆、小豆等多種豆種[17]。豌豆象、蠶豆象等單寄主豆象, 每年發(fā)生1代, 分別只危害蠶豆和豌豆[16]。蠶豆象和豌豆象首次危害均發(fā)生在田間, 于花莢期采食花粉花蜜, 交配產(chǎn)卵在嫩莢上, 隨著種子成熟, 卵孵化為幼蟲蛀入種子進行危害, 4齡幼蟲危害最大[18]。綠豆象、菜豆象、四紋豆象等雜食性豆象在熱帶地區(qū)全年繁殖為害, 成蟲不通過采食花粉花蜜, 可完成交配產(chǎn)卵, 幼蟲蛀入種子內(nèi)部進行危害[19]。受豆象危害種子芽率和商品性顯著下降[20], 嚴重影響種子質(zhì)量和食用品質(zhì)[21](圖2)。
基于豆象生長發(fā)育和危害規(guī)律研究, 田間防治主要是在開花期進行化學藥劑防治[22], 也有研究認為將攜帶Np基因的抗豆象豌豆品種和高粱間作, 可有效控制豆象發(fā)生和危害[23]; 還有學者開展了利用屏腹繭蜂(Sigalphus thoracicus)和葉蜂(Triaspis luteipes)等自然天敵[24-25]以及白僵菌(Beauveria bassiana)等病原微生物進行生物防治[26]。儲藏期間主要是通過溫濕度調(diào)控[27]、微波處理[28]、聚乙烯膜密封處理[29], 植物精油熏蒸[30]等方法通過微環(huán)境調(diào)控影響豆象的生長發(fā)育和繁育, 從而達到預(yù)防豆象危害的目的, 這些方法由于種種原因尚未規(guī)模化應(yīng)用。目前, 最為普遍的方法是采用磷化鋁等化學物質(zhì)熏蒸, 但該方法存在污染環(huán)境和食品安全等問題[31]。為根除豆象對豌豆產(chǎn)業(yè)的影響, 2016—2017年新西蘭開展了種子檢疫、種植結(jié)構(gòu)調(diào)整、田間化學殺蟲等各個防控環(huán)節(jié)聯(lián)動的豌豆象綜合治理, 使豌豆象種群降低了99.1%, 成為世界有效綜合治理豆象的典范[32]。
圖2 綠豆象危害各種食用豆
抗蟲性鑒定是作物抗蟲研究的基礎(chǔ), 其一致性和標準性將直接影響作物抗性種質(zhì)篩選、品種選育和遺傳研究等學科的發(fā)展。快速、準確、有效的鑒定方法和分級標準對大量抗性種質(zhì)的科學評價具有重要的意義。田間自然感蟲鑒定[33]和人工接蟲鑒定[34-35]是豆象抗性鑒定的主要方法。田間自然感蟲鑒定受氣候環(huán)境、豆象種群大小等多種因素, 豆象鑒定的一致性和準確性很難有效控制。人工接蟲鑒定包括智能溫室鑒定[36]和人工氣候箱接蟲鑒定[34]。人工氣候箱接蟲鑒定可有效調(diào)控豆象的生活環(huán)境、種群大小和雌雄蟲比例, 豆象飼養(yǎng)簡單、檢測周期短、檢測結(jié)果一致性高, 現(xiàn)已廣泛應(yīng)用于綠豆象、四紋豆象等多寄主豆象的抗蟲鑒定。智能溫室接蟲鑒定主要用于蠶豆象和豌豆象等單寄主豆象的抗蟲鑒定,豆象飼養(yǎng)必須以特定寄主的花粉或花蜜為食源進行飼養(yǎng)[36], 豆象種群培養(yǎng)費事費工。我國學者利用綠豆象多寄主生活習性和危害規(guī)律, 采用綠豆象替代蠶豆象和豌豆象, 進行人工接蟲鑒定蠶豆和豌豆抗蟲種質(zhì)[37-38], 有效的提高了鑒定效率。
在豌豆抗蟲資源鑒定中, 美國學者基于豌豆象幼蟲在豆莢和種子中的死亡率、以及成蟲在豆粒中的出現(xiàn)率和種子危害等指標, 制定了一套豌豆田間自然感蟲抗性分級標準和方法[39]。豌豆成熟期采收莢果, 檢測種皮上的幼蟲取食刺孔, 然后將種子破開, 按1~5個級別進行損傷評分。1級: 種皮有幼蟲取食刺孔, 0~1%子葉組織被食或損傷, 幼蟲死亡或未發(fā)現(xiàn)損傷; 2級: 2%~5%的子葉組織被豆象危害, 1齡幼蟲死亡; 3級: ≥5%的子葉被豆象危害, 2~4齡幼蟲死亡; 4級: 子葉損傷較重, 蛹和成蟲死亡; 5級: 子葉大部分被豆象危害, 有活成蟲或尚未羽化的蛹。
在人工氣候箱接蟲鑒定中, 國內(nèi)外學者基于豆象種子危害率, 制定了一套綠豆抗豆象分級標準[34-35,40]。在相同的接蟲種群壓力和豆象飼養(yǎng)條件下, 即溫度(27±1)℃、相對濕度(65±5)%[41], 每5~20粒種子接入7對成蟲, 接蟲28~45 d[41]或50 d[42]后, 統(tǒng)計受檢種子危害粒數(shù), 用危害種子粒數(shù)除以受檢種子總粒數(shù), 即為種子受害率。并根據(jù)受害率來評價抗性等級。1級(高抗, HR): 種子受害率0~10%; 3級(抗, R): 10.1%~35.0%; 5級(中抗, MR): 35.1%~ 65.0%; 7級(中感, S): 65.1%~90.0%; 9級(高感, HS): >90%。這套分級標準也有效的用于蠶豆[37]和豌豆[38]等食用豆作物抗綠豆象種質(zhì)評價研究[43]。但也有一些學者并不完全采用該分級標準,而將豆象抗性劃分為5級: 高抗(HR, 0~10%), 抗(R, 10.1%~20.0%), 中抗(MR, 20.1%~40.0%), 感(S, 40.1%~80.0%), 高感(HS, 80.1%~100.0%)[42,44]。
解析作物抗蟲性機制是有效開展作物抗蟲種質(zhì)創(chuàng)新和品種改良的基礎(chǔ)[45]。作物抗蟲性是指作物利用形態(tài)特征、生理特性或以自身所特有的物質(zhì)等來阻礙昆蟲侵害的自我防護能力[46], 具有可遺傳的生物學特性。作物抗蟲性機制復(fù)雜多樣[47], 除與作物遺傳特性有關(guān)外, 還與作物生長發(fā)育相協(xié)同。在作物抗蟲性機制研究方面, 近年來我國科學家基于作物和昆蟲互作機制創(chuàng)新研究, 在作物免疫受體轉(zhuǎn)錄、抗性信號轉(zhuǎn)導、效應(yīng)蛋白表達、抗蟲基因分離、小RNA干擾以及利用基因編輯技術(shù)創(chuàng)制抗蟲新種質(zhì)等方面取得了顯著進展[48]。相對玉米、大豆、水稻等大宗作物抗蟲研究, 食用豆類作物抗蟲機制研究較為落后[49], 而且多數(shù)集中在綠豆抗豆象機理研究方面。國內(nèi)外研究較多的植物抗蟲機制主要有組成型抗性(constitutive defenses)和誘導型抗性(induced defenses)。組成抗性是植物的一種固有特性, 取決于不同基因型, 抗性程度受環(huán)境影響較小, 植物在被侵害之前通常以特定的形態(tài)結(jié)構(gòu)、特異的組織成分或氣味來預(yù)防蟲害危害[50]。食用豆類作物豆象抗性主要是特有的組織結(jié)構(gòu)和形態(tài)特征以及所具有的化學物質(zhì)介導的組成抗性, 誘導抗性在食用豆抗豆象研究方面鮮有報道。
物理抗性(morphological defense)是組成抗性的一種主要形式, 是作物具備特有的形態(tài)特征或組織結(jié)構(gòu)而對害蟲產(chǎn)生的抗蟲性[50]。亞洲蔬菜研究發(fā)展中心在對綠豆抗豆象機理研究中發(fā)現(xiàn), 綠豆抗豆象性與種子大小、種皮特性等性狀有關(guān)[51]。種子較小和種皮有毛層的品種對綠豆象具有抗性[52]; Lambrides等[53]通過對TC1966、ACC23、ACC41等抗性特性研究發(fā)現(xiàn), 抗性水平與綠豆種皮薄厚和種子大小有關(guān)。在紅小豆抗豆象研究中發(fā)現(xiàn), 種皮光滑、籽粒飽滿的品種很容易受到豆象危害[54]。
生化抗性(biochemical defense)是組成抗性的另外一種表現(xiàn)形式, 是植物所特異化學物質(zhì)介導的抗性[55]。特異抗蟲性物質(zhì)主要有兩大類。一類是生物堿、凝集素、蛋白酶抑制劑等生化物質(zhì); 另一類是吲哚、茉莉酸、水楊酸等植物激素或抗生素[50]。目前分離出的抗豆象物質(zhì)主要是抑制或阻遏昆蟲對食物進行消化和利用的化學物質(zhì)。這些物質(zhì)包括植物凝集素[56]、蛋白酶抑制劑[57]和α-淀粉酶抑制劑[58], 以及從綠豆中分離出來的豇豆酸A (Vignatic acid A)[59], 從豇豆中分離出抗性糖蛋白(Vivilins)[60], 但后來發(fā)現(xiàn)Vivilins對綠豆象沒有抗蟲性[61]。Chen等[62]和Lin等[63]從綠豆抗豆象種質(zhì)TC1966與感豆象品系VC1973A雜交的后代材料VC6089A中發(fā)現(xiàn)了一種豆象抗性蛋白VrCRP; 其生物活性和α-淀粉酶抑制劑相當, 能夠有效抑制豆象幼蟲發(fā)育[64]。在對豇豆屬野生種豆象抗性研究中發(fā)現(xiàn), 一種非蛋白質(zhì)芳香族氨基酸對氨基苯甲酸(PAPA)與綠豆象和菜豆象抗性有關(guān)[65]。Zhang等[66]發(fā)現(xiàn)多聚半乳糖醛酸酶抑制蛋白(VrPGIP)介導綠豆抗蟲性, 但尚未對基因功能進一步驗證[67]。早在1988年, Osborn等[68]在對菜豆種子生物活性鑒定中, 從野生菜豆中發(fā)現(xiàn)了一種種子儲藏蛋白安賽林(Arcelins), 該物質(zhì)區(qū)別于植物凝集素和植物血凝素(PHA)[69], 為60 kD二聚糖蛋白[70], 對菜豆象具有顯著抗性。食用豆抗豆象機理的深度解析對抗性種質(zhì)創(chuàng)制和品種改良具有重要指導作用。
植物誘導抗蟲性是指在遭受植食性害蟲為害后,植物能產(chǎn)生各種誘導防衛(wèi)反應(yīng), 進而通過生理、生化及形態(tài)特征等生理變化而形成的抗蟲特性[71]。植食害蟲取食植物后引起植物體內(nèi)產(chǎn)生的生理生化反應(yīng)能夠影響植食者的產(chǎn)卵選擇、幼蟲發(fā)育等危害特性[72], 從而降低植食蟲害危害。近年來, 在植物蟲害誘導抗性研究方面, 基于植物化學防御作用機制創(chuàng)新研究, 在蟲害信號識別和傳導、防御基因調(diào)控和表達、生理代謝或變化等方面對植食者和宿主互作開展了大量研究[73]。在對豌豆抗豆象誘導抗性機制研究中發(fā)現(xiàn), 攜帶Np基因豌豆, 當受到豆象危害后, 可激發(fā)豆莢產(chǎn)生瘤狀愈傷組織, 通過瘤狀愈傷組織防御體系降低豆象產(chǎn)卵, 從而降低豆象危害[74]。而在隨后的研究中發(fā)現(xiàn), 結(jié)瘤基因Np提供的抗性是有限的[75]。Aznar-Fernández等[76]通過豌豆象在不同寄主作物上的發(fā)育研究表明, 非寄主作物山黧豆(Lathyrus sativus)花粉和莢果可顯著抑制豆象卵和幼蟲正常發(fā)育。Underwood等[77]在用墨西哥豆象(Epilachna varivestis)誘導大豆性抗性研究中發(fā)現(xiàn), 不同大豆品種間誘導抗性有顯著差異, 但同一品種間誘導抗性和組成抗性沒有顯著差異。誘導抗性表達受昆蟲種群基數(shù)和分布以及植物生長等因素的影響。
抗性種質(zhì)資源是品種創(chuàng)新的基礎(chǔ)。從不同豆類作物豆象發(fā)生和危害規(guī)律分析, 鑒定評價冷季豆類作物豆莢和種子抗性具有應(yīng)用價值; 而熱季豆類作物鑒定評價種子抗性更具有重要應(yīng)用價值。不同的研究者從豆莢抗性和種子抗性等不同方面開展了抗豆象種質(zhì)資源鑒定和評價[78]。
在抗綠豆象方面, 早在1973年Doria等[79]通過綠豆不同生長階段豆莢上產(chǎn)卵特性和幼蟲發(fā)育的研究, 從66份材料中鑒定出EG Glabrous、EG-MG- 4和EG-MG-7抗性種質(zhì), 其豆莢能夠明顯抑制綠豆象幼蟲正常發(fā)育。在對豇豆屬豆象抗性鑒定中發(fā)現(xiàn)野生綠豆TC1966具較高抗性[80]。室內(nèi)接蟲鑒定表明, TC1966對綠豆象和四紋豆象具有抗蟲性[81]。Lambrides等[53]鑒定出抗綠豆象野生綠豆資源ACC41和ACC23。但后來也有研究發(fā)現(xiàn), TC1966和ACC41對四紋豆象表現(xiàn)易感[82]。在栽培種抗綠豆象種質(zhì)鑒定方面, 有學者從綠豆栽培種中鑒定出中抗種質(zhì)V2709和V2802[83], 以及高抗種質(zhì)V1128和V2817[84]。我國學者通過對國內(nèi)外綠豆抗蟲鑒定, 篩選出高抗綠豆象品系98-15[85]以及C05199、C05202和C05528等高抗種質(zhì)[86], 并在對綠豆胰蛋白酶抑制劑穩(wěn)定性研究中, 鑒定出抑制劑活性較高的抗豆象種質(zhì)C5200和C5193[87]。
小豆是綠豆象主要寄主, 段燦星等[7]對國家保存的小豆資源進行了抗綠豆象鑒定, 篩選出優(yōu)異抗性種質(zhì)。Tomooka等[88]在對豇豆屬的7個豆種抗綠豆象種質(zhì)鑒定中發(fā)現(xiàn), 黑吉豆(V. mungo var.)祖先種、飯豆(V. umbellata)野生種及硬毛豇豆(V. hirtella)等種質(zhì)資源對綠豆象和四紋豆象具有抗蟲性。Dongre等[89]從黑吉豆種質(zhì)資源中鑒定出抗綠豆象種質(zhì)Silvestris; Kashiwaba等[90]從飯豆種質(zhì)中鑒定出高抗綠豆象和四紋豆象種質(zhì)JP99485、JP100304、JP100311。Seram等[91]從飯豆地方品種中鑒定出具完全抗豆象資源LR(M) 3、LR(M) 4和TNAU Red; Mariyammal等[42]從飯豆品種Tnau Red和綠豆品種VRM(Gg) 1遠緣雜交構(gòu)建的抗豆象近等基因系中鑒定出RIL 165高抗綠豆象種質(zhì)。
在豇豆抗豆象種質(zhì)鑒定方面, 早在1985年國際熱帶農(nóng)業(yè)研究中心(IITA)開展了大量的抗性評價研究, 鑒定出抗四紋豆象種質(zhì)TVu11952、TVu11953和TVu2027[92]。隨后相繼從豇豆中鑒定出IT81D-994、Adom (CR-06-07)[90], 以及Pajeu、Guariba、Tucumaque、Xiquexique BRS等抗性種 質(zhì)[93]。Tripathi等[94]基于種子抗性特性的研究, 從豇豆中鑒定出EC528425和EC5283872等抗豆象種質(zhì)。
在豌豆抗豆象種質(zhì)鑒定方面, 基于豆莢抗性和種子抗性, 從豌豆野生種(Pisum fulvum)中鑒定出12份抗豆象種質(zhì)[39]; Hardie等[95]通過1900份野生種和1745份栽培種兩大基因庫種質(zhì)鑒定, 從野生種中鑒定出ATC113等18份抗豆象種質(zhì); 仲偉文等[96]采用室內(nèi)綠豆象接蟲鑒定和田間抗性評價, 篩選出8份對綠豆象和豌豆象具有抗性的豌豆種質(zhì)資源, 但這些抗蟲資源均為豌豆近緣種。為從栽培種中發(fā)掘抗豆象資源, Aznar-Fernandez等[33]通過多環(huán)境條件下對野生種和栽培種鑒定, 基于豆莢和子葉抗性鑒定出栽培種(P. sativum ssp. syriacum)抗豆象種質(zhì)P665??涤郎萚43]通過2年的室內(nèi)接蟲鑒定, 從49份栽培豌豆種中篩選出重慶黃豌豆、安徽渦藥豌豆、梭沙大白豌等抗豆象地方資源, 這些優(yōu)異的抗蟲材料目前用于豌豆象抗蟲育種。
在抗蠶豆象種質(zhì)鑒定方面, 國際干旱地區(qū)農(nóng)業(yè)研究中心(ICARDA)對1000余份蠶豆種質(zhì)進行了4年田間抗性評價, 僅鑒定出ILB1814和BPL33抗性材料[97]。法國第戎大學通過對1858份蠶豆資源抗豆象田間鑒定, 篩選出2套抗性機制不同的抗性種質(zhì)。QUASAR和223303等抗蟲種質(zhì)可延緩豆象幼蟲發(fā)育; 而BOBICK ROD115和NOVA GRADISKA等抗蟲種質(zhì)延緩豆象幼蟲發(fā)育的同時, 可有效阻遏豆象幼蟲蛀入子葉[98]。Duan等[99]通過室內(nèi)接綠豆象鑒定出通蠶5號、云蠶82以及H5067等抗性種質(zhì)。楊新等[100]通過對874份不同地理來源蠶豆種質(zhì)對綠豆象抗性特性研究, 鑒定出27份高抗種質(zhì), 抗性表現(xiàn)與籽粒大小和種皮顏色有關(guān)。Shaheen等[101]從鷹嘴豆(C. arietinum)中鑒定出抗鷹嘴豆象和四紋豆象Punjab-91、Dasht、Bittle-98、Parbat等抗性材料, Swamy等[102]則鑒定出高抗四紋豆象鷹嘴豆NBeG 511、JAKI、9218、JG 11。
在菜豆抗豆象種質(zhì)鑒定方面, 從墨西哥地方資源中鑒定出凝集素家族蛋白Arcelin介導的抗菜豆象野生菜豆種質(zhì)資源G24582[103], 隨后相繼鑒定出G02771 (Arcelia 5)、G12952 (Arcelia 4)、G12882 (Arcelia 1)、G12866 (Arcelia 2)[104]以及QUES (Arcelin-8)[105]等不同抗性水平的菜豆資源, 這些資源均為菜豆野生種。
發(fā)掘野生種質(zhì)資源和培育抗性品種是解決豆象危害最為經(jīng)濟有效的途徑[106]。作物抗性遺傳解析是抗性育種的理論基礎(chǔ), 而抗性基因發(fā)掘和利用是培育抗性品種的前提。國內(nèi)外在抗豆象遺傳解析、基因發(fā)掘和分子定位等方面取得顯著進展。
Kitamura等[107]對抗豆象綠豆種質(zhì)資源TC1966遺傳研究表明, 其抗性由單顯性基因控制。程須珍等[108]通過對中綠1號和TC1966雜交對其F2代的遺傳研究進一步證實TC1966抗豆象遺傳學特性。Lambrides等[109]通過遺傳等位性研究, 進一步發(fā)現(xiàn)野生種TC1966和栽培種ACC41含有相同的抗豆象基因。Young等[110]采用RFLP分子標記方法, 將TC1966攜帶的抗豆象基因定位在LG VIII上(后來將含有Br基因的LG VIII命名為LG9), 兩側(cè)標記分別是pA882和pM151。Kaga等[111]利用RFLP分子標記進行了Br抗豆象基因定位。而對抗綠豆象和四紋豆象種質(zhì)V2709BG和V2802BG抗性遺傳分析表明, 其抗性也是由單顯性基因(Br)控制, 但不同于TC1966和ACC41遺傳特性, 其遺傳受母性遺傳和修飾基因影響[112]。王麗俠等[113]利用SSR、RFLP和STS標記, 基于澳大利亞高感豆象綠豆栽培種(Berken)和高抗豆象綠豆野生種(ACC41)雜交構(gòu)建的RILs群體, 將豆象抗性基因(Br1)定位在LG9連鎖群, 距兩側(cè)SSR標記BM202、Vr2-627的距離分別為0.7 cM和1.7 cM。吳傳書等[114]構(gòu)建了我國第1張圖譜總長732.9 cM、包括11個連鎖群的綠豆高密遺傳圖譜, 為綠豆重要性狀相關(guān)基因定位、克隆及分子標記輔助育種提供了技術(shù)平臺。
亞洲蔬菜研究發(fā)展中心(AVRDC)采用TC1966× NM92和V2802×NM94構(gòu)建的2套RILs, 通過基因測序分型(GBS)技術(shù)研究表明綠豆抗性種質(zhì)TC1966和V2802具有相同抗性位點, 并從獲得的6000多個SNP中, 將抗豆象主效QTL定位在5號染色體。根據(jù)標記的物理圖譜位置進行QTL分析表明, 在不同染色體上存在多個抗豆象QTL, 其分子標記抗性預(yù)測準確率100%[115]。劉長友等[116]在對抗豆象種質(zhì)V1128遺傳解析方面, 采用分離集團分析法(BSA)將抗性基因(Br3)定位在5號染色體; Chotechung等[117]通過418個抗(V2802)感(Kamphaeng Saen 1)綠豆品種雜交獲得的BC11F2回交群體, 采用SSR標記發(fā)現(xiàn)編碼多聚半乳糖醛酸酶抑制劑基因(VrPGIP2)與綠豆象抗性基因(Br)位于5號染色體相同基因座位。
Zhang等[66]對V2802種質(zhì)抗綠豆象遺傳解析和基因定位研究發(fā)現(xiàn), 調(diào)控多聚半乳糖醛酸酶合成的2個基因(VrPGIP1、VrPGIP2)共同參與了綠豆抗豆象遺傳調(diào)控。Kaewwongwal等[118]進一步利用SNP標記和等位基因測序, 在Br基因座位發(fā)現(xiàn)了2個新的調(diào)控豆象抗性等位基因(VrPGIP1-1、VrPGIP2-2)。Rathnayaka-Gamage等[119]采用抗感烏頭葉菜豆雜交構(gòu)建的2個不同F(xiàn)2作圖群體(F2OA、F2NB), 對調(diào)控豆象抗性基因進行精細定位和測序進一步驗證, 高抗豆象野生烏頭葉菜豆TN67中編碼多聚半乳糖醛酸酶抑制劑的2個基因(VacPGIP1、VacPGIP2)協(xié)同調(diào)控豆象抗性。Lin等[120]和Liu等[121]利用感豆象品種VC1973A和抗豆象品種VC6089A構(gòu)建的綠豆近等基因系NILs, 在轉(zhuǎn)錄組和蛋白組水平上, 通過對差異表達基因分析對抗豆象基因進行發(fā)掘, 鑒定出2個分別位于5號和1號染色體上編碼含有BURP結(jié)構(gòu)域的蛋白基因(g39185、g34458), 其中g(shù)39185被定位到與抗豆象主效基因座位標記最近的區(qū)域。
在豇豆屬抗豆象遺傳研究方面, Gupta等[122]通過對豇豆種質(zhì)TVu11952、TVu11953和TVu2027遺傳分析, 發(fā)現(xiàn)其抗性由2個隱性基因(rm1, rm2)控制。Redden等[123]以抗蟲品種TVu2027為母本, 通過5個不同抗感雜交后代苗期胰蛋白酶抑制劑的研究, 發(fā)現(xiàn)其抗蟲性表達受母系基因型決定, 為主效隱性基因遺傳, 且在不同雜交組合中存在不同效應(yīng)修飾基因影響; Thandar等[124]進一步證實豇豆抗性種質(zhì)TVu2027對綠豆象抗性由2個基因調(diào)控, 而對四紋豆象抗性由單基因調(diào)控, 其抗性遺傳力與加性效應(yīng)以及加性和顯性基因互作有關(guān), 而且不同的抗性基因之間沒有連鎖關(guān)系。Somta等[35]通過對飯豆與小豆近緣野生種(V. nakashimae)雜交遺傳群體研究, 飯豆抗性由4個QTL控制。但后來采用序列相關(guān)擴增多態(tài)性(SRAP)分子標記, 通過抗(LRB238)感(LRB26)雜交構(gòu)建的F2作圖群體, 從檢測到的11個QTL位點發(fā)掘出2個調(diào)控豆象抗性的主效基因和, 解釋表現(xiàn)變異率達67.3%和77.4%[125]。Seram等[126]以抗豆象飯豆地方品種TNAU Red和高感品種VRMGg 1雜交構(gòu)建的RILs為研究對象, 采用分離集團分析法(BSA)找到與豆象抗性關(guān)聯(lián)的RAPD標記(OPB08, OPX04)和ISSR標記(UBC810)。
Belay等[127]對217份豇豆微核心種質(zhì)進行表型和基因型分析, 基于全基因組關(guān)聯(lián)分析, 利用41,948個SNP標記, 鑒定出11個與豆象抗性高度相關(guān)的SNP標記, 并篩選6個與抗性相關(guān)的候選基因(Vigun08g132300、Vigun08g158000、Vigun06g053700、Vigun02g131000、Vigun01g234900和Vigun01g201900), 分別位于豇豆1號、2號、6號和8號染色體。王彥等[128]利用中豇1號(感)和Pant-lobia-1 (抗)為親本構(gòu)建的RILs群體, 結(jié)合豆象(綠豆象和四紋豆象)抗性表型鑒定和基因型分型, 采用完備區(qū)間作圖法(ICIM- ADD), 檢測到2個與抗豆象相關(guān)的QTL位點, 解釋表現(xiàn)變異7.16%和6.92%; 并構(gòu)建了包含182個多態(tài)性標記, 平均遺傳距離5.85 cM, 圖譜總長1065.23 cM, 包含11個連鎖群的豇豆遺傳連鎖圖譜。
在對菜豆抗豆象遺傳和分子研究方面, 主要集中在植物凝集素、α-淀粉酶抑制劑和Arcelin等種子儲藏蛋白家族(APA)的研究上[129-130]。Blair等[131]通過感豆象品種SEQ1006和抗豆象品種RAZ106雜交構(gòu)建的F2群體, 利用SSR分子標記從野生普通豆種RAZ106中鑒定了一個等位基因的連鎖位點。Kamfwa等[132]通過地方品種Solwezi和抗豆象品系A(chǔ)O-1012-29-3-3A構(gòu)建的RILs群體, 采用SNP分子標記鑒定出3個抗豆象QTL, 分別位于Pv04和Pv06染色體上, 其中Pv04染色體上的1個QTL (AO4.1SA)和APA調(diào)控的抗性位于同一基因座位。Li等[133]為從菜豆栽培種中發(fā)掘抗性基因, 通過高抗菜豆象地方品種黑蕓豆和高感品種龍蕓豆3號雜交構(gòu)建的RILs群體, 基于全基因組測序和高密度遺傳圖譜構(gòu)建, 在Pv06染色體上找到一個調(diào)控脂質(zhì)轉(zhuǎn)運蛋白和種子儲藏蛋白有關(guān)的抗菜豆象候選基因。Somta等[134]通過對豇豆屬中烏頭葉菜豆(V. aconitifolia)抗性基因定位和測序, 鑒定出豆象抗性調(diào)控主效基因(qVacBrc2.1)和修飾基因(qVacBrc5.1), 其中主效基因qVacBrc2.1位于2號連鎖群, 解釋表現(xiàn)變異率50.41%~64.23%, 兩側(cè)標記分別為CEDG261和DMB-SSR160, 該基因和野生小豆(V. nepalensis)中定位到的抗豆象基因QTL Brc2.1具有高度同源性。
抗豆象遺傳學研究表明, 豌豆象抗性是由多基因控制[135]。Aryamanesh等[136]首次在豌豆屬(Pisum)種質(zhì)資源中用QTL標記檢測到抗豆象基因片段。通過抗豆象野生種ATC113 (PI 595933)和感豆象品種Pennant雜交構(gòu)建的F2群體, 結(jié)合豆莢、種皮和子葉抗性表型, 采用AFLP和SSR分子標記, 利用MultiQTL共檢測到8個調(diào)控子葉抗性的QTL。其中3個主效QTL (COR2、COR4b、COR5a)分別定位在LG2、LG4和LG5連鎖群, 解釋表現(xiàn)變異率80%。對豆莢和子葉抗性的QTL共線性分析表明, 這2個性狀的抗性機制可能存在共同的信號調(diào)控通路和途徑[136]。
野生種或近緣野生種和栽培種種間遠緣雜交以及利用轉(zhuǎn)基因技術(shù)進行目標基因?qū)氲扔N方法, 是抗豆象種質(zhì)創(chuàng)制和品種抗性改良的重要手段。遠緣雜交抗豆象育種研究主要集中在豇豆屬不同食用豆種間雜交育種上, 轉(zhuǎn)基因抗豆象種質(zhì)改良研究主要集中在α-淀粉酶抑制劑基因()轉(zhuǎn)基因研究上。
6.1.1 遠緣雜交抗豆象育種 野生種或近緣野生種與栽培種種間遠緣雜交, 采用多代回交導入野生種優(yōu)異性狀是抗豆象種質(zhì)創(chuàng)制和品種抗性改良的重要手段。豇豆屬中飯豆(V. umbellata)、野生綠豆(V. radiata var. sublobata)、野生黑吉豆(V. mungo var. silvestris)和野生小豆(V. nepalensis)均對豆象具有很好的抗性[42]。早在20世紀90年代Sugawara等[59]利用種間雜交手段, 將野生綠豆抗豆象物質(zhì)豇豆酸A成功轉(zhuǎn)育到栽培綠豆中。2006年Somta等[35]通過飯豆和小豆近緣野生種遠緣雜交, 成功將飯豆抗豆象特性轉(zhuǎn)育到小豆中。2019年Manyammal等[42]則首次通過飯豆和綠豆遠緣雜交構(gòu)建了抗豆象RFLs, 成功將飯豆抗豆象特性轉(zhuǎn)育到綠豆中。為有效開展抗豆象野生種或近緣野生種利用研究, 劉長友等[137]通過遠緣雜交親和性研究, 明晰了豇豆屬中不同豆種親緣關(guān)系和遠緣雜交育種技術(shù), 戴希剛等[138]并以飯豆作為橋梁親本, 在豇豆抗性種質(zhì)創(chuàng)新方面取得階段性成效。Samyuktha等[41]通過6個高感綠豆品種分別和2個高抗品種種間雜交, 構(gòu)建了12個不同雜交群體, 通過后代株系評價鑒定, 篩選出優(yōu)異雜交組合(CO6×V2802BG), 并在F4~F5代中鑒定篩選出高抗豆象優(yōu)異株系5株。在利用遠緣雜交豌豆抗豆象育種方面, Clement等[139]利用野生種資源PI 595946為母本, 白花栽培種豌豆Alaska 81為父本, 通過種間雜交將抗豆象基因轉(zhuǎn)入到栽培種豌豆。Aryamanesh等[140]則利用近緣野生種ATC113和感豆象栽培種Pennant雜交, 采用30% CsCl溶液對抗感株系的分離, 經(jīng)多年回交也成功將抗豆象基因轉(zhuǎn)入到栽培種豌豆。
6.1.2 轉(zhuǎn)基因抗豆象育種 隨著作物高效再生體系的建立和優(yōu)異抗蟲基因的克隆, 轉(zhuǎn)基因抗蟲育種取得了顯著進展。利用農(nóng)桿菌介導等方法的轉(zhuǎn)基因品種改良成為現(xiàn)代作物品種育種的有效手段。但是相對玉米、水稻等禾本科作物, 食用豆作物轉(zhuǎn)基因育種較為落后[141]。特別是蠶豆[142]、豌豆[143-144]等豆類作物離體培養(yǎng)再生體系和遺傳轉(zhuǎn)化體系建立相對困難, 可供利用的有效抗蟲基因缺乏[145], 這些因素嚴重制約著轉(zhuǎn)基因技術(shù)在食用豆作物遺傳改良中的應(yīng)用。轉(zhuǎn)基因抗豆象品種改良是食用豆作物抗蟲研究的主要方向。已報道的研究重點是針對從普通菜豆中克隆到的α-淀粉酶抑制劑基因()進行食用豆品種抗蟲性改良。通過農(nóng)桿菌介導的轉(zhuǎn)基因技術(shù), 已成功將α-淀粉酶抑制劑基因?qū)刖G豆[146]、豇豆[147]、小豆[148]、鷹嘴豆[149]和豌豆[150-151]等食用豆中。值得一提的是, 轉(zhuǎn)基因小豆對綠豆象、四紋豆象、鷹嘴豆象均具有很高的抗性[148]。早在1994年Shade等[153]將α-AI-Pv基因?qū)氲皆耘嗤愣怪? 可顯著提高豌豆對綠豆象和四紋豆象的抗性水平[152]。但后來臨床試驗表明, 含有α-AI基因的轉(zhuǎn)基因豌豆可使小白鼠肺部產(chǎn)生炎癥, 主要原因是轉(zhuǎn)基因豌豆蛋白質(zhì)結(jié)構(gòu)發(fā)生改變[154]。Negawo等[155]將蘇云金芽胞桿菌(Bacillus thuringiensis, Bt)中對鱗翅目具有殺蟲活性的特異晶體蛋白基因(cry1Ac), 通過農(nóng)桿菌介導轉(zhuǎn)入到豌豆中, 可提高對煙芽夜蛾(Heliothis virescens)的抗性, 對豌豆象是否具有抗性尚未做進一步研究。
6.1.3 分子標記輔助選擇抗豆象育種 抗豆象基因定位和連鎖分子標記發(fā)掘?qū)Ψ肿訕擞涊o助育種具有重要意義。豇豆屬中綠豆、小豆、飯豆、黑吉豆等抗豆象分子標記鑒定取得顯著進展, 但這些標記常常與子粒小、品質(zhì)差等不利性狀緊密連鎖, 在一定程度上限制了分子標記開發(fā)和應(yīng)用, 相對大宗作物食用豆抗蟲分子標記育種仍處于起步階段[156]。在綠豆抗豆象種質(zhì)鑒定和分子標記輔助選擇育種上, Sarkar等[157]和Majhi等[158]利用與綠豆野生種ACC41抗性基因Br1緊密連鎖的STS標記STSbr1進行分子標記輔助選擇; Wu等[159]以攜帶豆象抗性基因V2802綠豆品種為供體, 利用VrBR-SSR013和DMB-SSR158兩個SSR標記作為前景選擇, 豆象抗性表型作為背景選擇, 經(jīng)3代回交分子標記輔助鑒定(MAB, marker-assisted backcrossing), 成功將多聚半乳糖醛酸酶抑制劑抗性基因(VrPGIP2)導入到泰國主栽綠豆品種Kamphaeng Saen 1中, 并創(chuàng)制出抗綠豆象種質(zhì)R67-22。
抗性資源鑒定以及抗性基因發(fā)掘和利用最終目標是抗性品種的選育和應(yīng)用?;谑秤枚箍苟瓜蠓N質(zhì)鑒定和分子標記開發(fā), 國內(nèi)外在抗豆象育種方面取得了顯著成效, 但主要集中在綠豆抗蟲品種改良上。在綠豆抗豆象育種方面, 由于抗性種質(zhì)發(fā)掘和利用, 泰國和韓國科學家利用TC1966、ACC41、V2709、V2802等野生種抗性種質(zhì), 開展了綠豆抗豆象品種育種研究。亞洲蔬菜研究發(fā)展中心以高抗豆象野生種TC1966和高感栽培種VC1973A雜交, 通過高抗親本回交, 選育出近等基因系VC6089A[83]; Cisse等[160]采用雜交手段培育出極早熟抗綠豆象的豇豆品種Mouride; 2000年Lee等[161]從TC1966和V2709雜交后代中選育出Jangannogdu抗豆象品種。我國在抗豆象綠豆品種改良方面, 通過引進亞洲蔬菜研究發(fā)展中心抗豆象野生資源, 采用遠緣雜交在抗豆象品種改良方面也取得顯著成效。中國農(nóng)業(yè)科學院作物科學研究所利用TC1966、V2709等抗性種質(zhì), 先后培育出中綠3號、中綠4號、中綠6號、中綠7號等抗豆象綠豆新品種[162]。山西省農(nóng)業(yè)科學院以TC1966為抗性親本, 通過有性雜交和定向選擇, 培育出晉綠豆7號[163], 并采用誘變和雜交技術(shù)選育出高抗綠豆象品種晉中10號[164]; 江蘇省農(nóng)業(yè)科學院以從泰國引進的抗豆象資源1號和地方資源蘇資8號雜交, 選育出蘇綠5號和6號抗豆象品種[165-166]。河北省農(nóng)林科學院以抗豆象材料抗豆象4號(V1128×中綠1號)為母本, 以冀綠7號為父本, 通過雜交、回交、室內(nèi)抗豆象鑒定及定向選擇, 培育出抗豆象綠豆品種冀綠17號[167]。這些品種的研究和應(yīng)用對有效解決豆象危害的產(chǎn)業(yè)瓶頸問題提供了技術(shù)支撐。
食用豆在農(nóng)業(yè)可持續(xù)發(fā)展及人類膳食結(jié)構(gòu)改善中發(fā)揮著重要作用, 而豆象嚴重制約著產(chǎn)業(yè)的健康發(fā)展, 有效解決豆象最為安全有效的措施是發(fā)掘優(yōu)異種質(zhì)資源并利用現(xiàn)代生物技術(shù)培育抗豆象品種。世界各國現(xiàn)保存食用豆種質(zhì)資源56.1萬份[168], 我國擁有豐富的食用豆種質(zhì)資源[169], 但目前鑒定出的抗豆象資源還很有限。在對種質(zhì)抗豆象基因鑒定上, 主要是基于傳統(tǒng)分子遺傳學上的單基因鑒定和利用,缺乏全基因組水平上多基因發(fā)掘和多組學(基因組學、表觀基因組學、轉(zhuǎn)錄組學、蛋白質(zhì)組學、代謝組學等)水平上抗性機理解析, 缺乏抗性基因表達和信號網(wǎng)絡(luò)調(diào)控方面的研究。在抗豆象品種改良上, 主要利用遠緣雜交和常規(guī)育種進行抗性選擇, 有效針對目標基因進行的轉(zhuǎn)基因育種和分子輔助育種尚處于起步階段。在優(yōu)質(zhì)多抗多親本聚合育種上相對大宗作物研究還存在差距。目前培育推廣的綠豆抗豆象品種, 由于豆象不同地理種群間遺傳結(jié)構(gòu)變異[170], 抗蟲品種存在抗性喪失風險。發(fā)掘新的抗蟲基因和利用現(xiàn)代育種技術(shù)培育抗蟲品種任務(wù)重大。
7.2.1 全面解析抗蟲性與重要農(nóng)藝性狀協(xié)同調(diào)控機制 食用豆作物豆象抗蟲性和其他植物抗蟲性具有相似的遺傳機制, 多由多基因或數(shù)量位點控制, 并且和重要農(nóng)藝性狀存在高度相關(guān)性??瓜x性和農(nóng)藝性狀的協(xié)同調(diào)控十分復(fù)雜, 除基因與基因互作外, 還與基因和環(huán)境互作有關(guān)。結(jié)合傳統(tǒng)基因鑒定方法與現(xiàn)代分子生物學技術(shù), 挖掘協(xié)同調(diào)控抗蟲與重要農(nóng)藝性狀的功能基因, 深度解析作物抗蟲性調(diào)控與形態(tài)建成和抗性物質(zhì)形成的分子機制, 構(gòu)建協(xié)同調(diào)控抗性與生長發(fā)育的遺傳表達和信號轉(zhuǎn)導網(wǎng)絡(luò), 為抗蟲基因聚合育種提供理論基礎(chǔ)和技術(shù)支持。
7.2.2 建立抗豆象種質(zhì)鑒定和基因發(fā)掘技術(shù), 加快抗蟲基因克隆與應(yīng)用 抗蟲育種最為關(guān)鍵的是有可利用的抗蟲種質(zhì)或基因資源。針對目前抗蟲育種中可用抗蟲種質(zhì)或抗蟲基因缺乏的問題, 繼續(xù)加強抗蟲種質(zhì)鑒定和抗蟲基因發(fā)掘與應(yīng)用。利用全基因組關(guān)聯(lián)分析(GWAS)與傳統(tǒng)克隆技術(shù)可實現(xiàn)抗蟲基因克隆; 利用基因編輯技術(shù)可提高抗性基因功能驗證[171]。隨著高通量基因測序和生物信息技術(shù)的發(fā)展, 食用豆作物基因組信息解析和功能注釋取得顯著進展。近年來國內(nèi)外先后完成綠豆[172]、小豆[173-174]、普通菜豆[175]、鷹嘴豆[176]、豇豆[177]和豌豆[178]基因組測序。Wu等[179]基于普通菜豆核心種質(zhì), 采用全基因組關(guān)聯(lián)分析, 率先構(gòu)建了世界首張精細普通菜豆單倍型圖譜, 明晰了重要農(nóng)藝性狀基因位點, 為有效開展全基因組水平上抗豆象基因發(fā)掘和利用奠定了基礎(chǔ)。基于我國綠豆核心種質(zhì)評價和關(guān)鍵性狀調(diào)控基因發(fā)掘, Liu等[180]開展了綠豆全基因組重測序, 率先構(gòu)建了我國綠豆泛基因組遺傳圖譜, 實現(xiàn)了圖形結(jié)構(gòu)基因組構(gòu)建。食用豆大量表型數(shù)據(jù)和基因型數(shù)據(jù)的發(fā)掘和應(yīng)用, 必將對豆象抗蟲種質(zhì)表型精準鑒定、基因精細定位以及精準設(shè)計抗蟲育種提供技術(shù)支撐。
7.2.3 構(gòu)建分子設(shè)計和全基因組選擇的抗蟲智能化育種技術(shù)體系 基于傳統(tǒng)遠緣雜交在抗蟲育種中存在優(yōu)異性狀重組交換低、重組位點分布不均、有害等位基因連鎖、表型選擇易受環(huán)境影響, 傳統(tǒng)育種技術(shù)已很難有效實現(xiàn)優(yōu)異多基因聚合育種目標。隨著基因組學、系統(tǒng)生物學、大數(shù)據(jù)科學和計算生物學等新興學科的快速發(fā)展, 以及大量分子標記技術(shù)的開發(fā)與應(yīng)用, 基于對關(guān)鍵基因或QTL功能的認識, 利用TILLING技術(shù)、基因組編輯技術(shù)和轉(zhuǎn)基因技術(shù)構(gòu)建新型智能化抗蟲育種體系, 使現(xiàn)代新型無重組育種技術(shù)成為可能。根據(jù)預(yù)先設(shè)定的育種目標, 選擇合適的設(shè)計元件, 實現(xiàn)分子設(shè)計和多基因組裝的全基因組選擇育種, 已經(jīng)成為引領(lǐng)作物遺傳改良的前沿技術(shù)[181]。為解決轉(zhuǎn)基因豌豆存在的科學問題, 我國學者率先在豌豆上通過農(nóng)桿菌介導的遺傳轉(zhuǎn)化,利用CRISPR/Cas9系統(tǒng)定向編輯了八氫番茄紅素脫氫酶基因(PsPDS)[182], 這為我國基因編輯創(chuàng)制豌豆新種質(zhì)邁出了新步伐。近年來, 多個研究報道采用基因編輯可加快野生種人工馴化, 加快抗性基因原位編輯與聚合, 實現(xiàn)精準設(shè)計抗蟲育種。充分應(yīng)用轉(zhuǎn)基因技術(shù)、分子標記輔助回交選擇、循環(huán)集合選擇、基因編輯技術(shù)及全基因組選擇等現(xiàn)代分子設(shè)計育種必將成為抗性育種的主要方向[183]。未來育種4.0關(guān)鍵育種方案就是合理設(shè)計具有高產(chǎn)、優(yōu)質(zhì)、高抗等綜合性狀優(yōu)良的作物[184]。
[1] 程須珍. 中國現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)可持續(xù)發(fā)展戰(zhàn)略研究(食用豆分冊).北京: 中國農(nóng)業(yè)出版社, 2020. pp 24–27.
Cheng X Z. Food Legumes: National Sustainable Development Strategy on Chinese Modern Agricultural Industry. Beijing: China Agriculture Press, 2020. pp 24–27 (in Chinese).
[2] Meena R S, Lal R. Legumes and sustainable use of soils. In: Meena R S, Das A, Yadav G S, Lal R, eds. Legumes for Soil Health and Sustainable Management. Singapore: Springer Singapore, 2018. pp 1–31.
[3] Food and Agriculture Organization of the United Nations (FAO). Definition and classification of commodities, pulses and derived products. http://www.fao.org/waicent/faoinfo/economic/faodef/ fdef04e.htm#4.01, Retrieved 1 May 2022.
[4] FAOSTAT. Value of Agricultural Production, Food and Agricultural Organization Statistical Database. Available online: https:// www.fao.org/faostat/en/#data/QV, accessed: 1 May. 2022.
[5] Credland P F. Biotype variation and host change in bruchids: causes and effects in the evolution of bruchid pests. In: Fujii K O I, Gatehouse A, Johnson C D, Mitchel R, Yoshida T, eds. Bruchids and Legumes: Economics, Ecology and Coevolution. Proceedings of the Second International Symposium on Bruchids and Legumes (ISBL-2). Okayama, 1990. pp 271–287.
[6] Aidbhavi R, Mohan K, Kodandaram M. Diversity, abundance and infestation of bruchids on stored pulses in Karnataka., 2022, 56: 297–307.
[7] 段燦星, 朱振東, 孫素麗, 王曉鳴. 中國食用豆抗性育種研究進展. 中國農(nóng)業(yè)科學, 2013, 46: 4633–4645.
Duan C X, Zhu Z D, Sun S L, Wang X M. Advances in study on food legumes resistance breeding in China., 2013, 46: 4633–4645 (in Chinese with English abstract).
[8] Jagdish J, Bhandi S, Deshmukh S, Pallipparambil G, Mishra S, Arora N. Identification, evaluation and utilization of resistance to insect pests in grain legumes: advancement and restrictions. In: Saxena K B, Saxena R K, Varshney R K, eds. Genetic Enhancement in Major Food Legumes. Patancheru, Telangana, India: Springer International Publishing, 2021. pp 197–230.
[9] Mishra S K, Macedo M L R, Panda S K, Panigrahi J. Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties., 2018, 172: 4–19.
[10] 田靜, 程須珍, 范保杰, 王麗俠, 劉建軍, 劉長友, 王素華, 曹志敏, 陳紅霖, 王彥, 王珅. 我國綠豆品種現(xiàn)狀及發(fā)展趨勢. 作物雜志, 2021, (6): 15–21.
Tian J, Cheng X Z, Fan B J, Wang L X, Liu J J, Liu C Y, Wang S H, Cao Z M, Chen H L, Wang Y, Wang K. Present situation and prospect of mung bean variety improvement in China., 2021, (6): 15–21 (in Chinese with English abstract).
[11] Kingsolver J, Barriga-Tu?ón J, Romero-Napoles J, Thomas M. Bruchidae of Chile (Insecta: Coleoptera).2017, 542: 1–106.
[12] Southgate B J. Biology of the bruchidae., 1979, 24: 449–473.
[13] Kaplin V G. Distribution and biology of invasive species of pea weevil ()., 2020, 11: 21–30.
[14] 陳新, 魏春艷, 任炳忠, 丁旭. 豆象屬昆蟲檢疫重要性概述. 植物檢疫, 2013, 27(1): 63–67.
Chen X, Wei C Y, Ren B Z, Ding X. Review of phytosanitary significance ofspp., 2013, 27(1): 63–67 (in Chinese with English abstract).
[15] Larson A O, Brindley T A, Hinman F G. Biology of the pea weevil in the Pacific Northwest with suggestions for its control on seed peas.Tech Bull, no. 599, U S Dept Agric, 1938, pp 1–48
[16] Reddy G V P, Sharma A, Gadi R L. Biology, ecology, and management of the pea weevil (Coleoptera: Chrysomelidae)., 2018, 111: 161–171.
[17] Maharjan R, Yi H, Kim H, Yoon Y, Jang Y, Bae S. Mung bean () cultivars mediated oviposition preference and development of(Coleoptera: Chrysomelidae: Bruchinae)., 2017, 53: 55–56.
[18] Smith A M. Pea weevil (L.) and crop loss-implications for management. In: Fujii K, Gatehouse A M R, Johnson C D, Mitchel R, Yoshida T, eds. Bruchids and Legumes: Economics, Ecology and Convolution. Dordrecht: Springer Netherlands, 1990. pp 105–114.
[19] Mbata G N, Thomas A, Fadamiro H F. Parasitism by(Hymenoptera: Pteromalidae) on the cowpea weevil,(Coleoptera: Bruchidae): host density, temperature effects, and host finding ability., 2005, 33: 286–292.
[20] Boeke S J, Baumgart I R, van Loon J J A, van Huis A, Dicke M, Kossou D K. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against., 2004, 40: 423–438.
[21] de Sá L F R, Wermelinger T T, Ribeiro E D S, Gravina G D A, Fernandes K V S, Xavier-Filho J, Venancio T M, Rezende G L, Oliveira A E A. Effects of(Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil(Coleoptera: Bruchidae)., 2014, 60: 50–57.
[22] 劉振興, 周桂梅, 陳健. 幾種藥劑對綠豆象的田間防效. 植物保護, 2015, 41(3): 215–219.
Liu Z X, Zhou G M, Chen J. Control efficacy of several insecticides onL. in the fields., 2015, 41(3): 215–219 (in Chinese with English abstract).
[23] Teshome A, Bryngelsson T, Mendesil E, Marttila S, Geleta M. Enhancing neoplasm expression in field pea ()intercropping and its significance to pea weevil () management., 2016, 7: 654.
[24] Schmale I, W?ckers F L, Cardona C, Dorn S. Control potential of threespecies against the bean weevil in stored beans: the effect of adult parasitoid nutrition on longevity and progeny production., 2001, 21: 134–139.
[25] Titouhi F, Amri M, Messaoud C, Haouel S, Youssfi S, Cherif A, Jemaa J M B. Protective effects of threeessential oils againstand(Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies., 2017, 72: 11–20.
[26] Hajjar M J, Ajlan A M, Al-Ahmad M H. New approach ofto control the red palm weevil (Coleoptera: Curculionidae) by trapping technique., 2015, 108: 425–432.
[27] Gbaye O A, Millard J C, Holloway G J. Legume type and temperature effects on the toxicity of insecticide to the genus(Coleoptera: Bruchidae)., 2011, 47: 8–12.
[28] 張民照, 金文林, 王進忠, 孫淑玲, 覃曉春, 張志勇. 微波處理對綠豆象的殺蟲效果及對紅小豆發(fā)芽率的影響. 昆蟲學報, 2007, 50: 967–974.
Zhang M Z, Jin W L, Wang J Z, Sun S L, Qin X C, Zhang Z Y. Insecticidal efficacy of microwave treatment against(L.) (Coleoptera: Bruchidae) and its effects on the germination rate of adzuki beans., 2007, 50: 967–974 (in Chinese with English abstract).
[29] 楊長舉, 蔣學杰. 用塑料袋密藏蠶豆防治蠶豆象. 昆蟲學報, 1987, 30: 346–348.
Yang Z J, Jiang X J. Store broad beans in plastic bags to prevent bean weevil., 1987, 30: 346–348 (in Chinese with English abstract).
[30] 魯玉杰, 孫磊, 王爭艷. 植物精油對綠豆象成蟲熏蒸效果及種群抑制作用的研究. 河南工業(yè)大學學報(自然科學版), 2016, 37(3): 76–81.
Lu Y J, Sun L, Wang Z Y. Effect of essential oil on inhibition population and fumigant toxicity of pulse beetleLinnaeus (Coleoptera: Bruchidae).(Nat Sci Edn), 2016, 37(3): 76–81 (in Chinese with English abstract).
[31] Yadav D, Bhattacharyya R, Banerjee D. Acute aluminum phosphide poisoning: the menace of phosphine exposure., 2021, 520: 34–42.
[32] Voice D G, MacLellan R, Russell A, Goulden D, Lawrie I, Baker G, David A J T, Kean J M. The eradication of pea weevil(L.) (Coleoptera: Chrysomelidae) from New Zealand., 2022, 3: 31.
[33] Aznar-Fernández T, Carrillo-Perdomo E, Flores F, Rubiales D. Identification and multi-environment validation of resistance to pea weevil () ingermplasm., 2018, 91: 505–514.
[34] 程須珍, 王素華, 吳紹宇, 周吉紅. 綠豆抗豆象育種后代F2群體遺傳變異分析. 植物遺傳資源學報, 2004, 5: 364–368.
Cheng X Z, Wang S H, Wu S Y, Zhou J H. Genetic analysis on mungbean breeding F2population for resistance to bruchid., 2004, 5: 364–368 (in Chinese with English abstract).
[35] Somta P, Kaga A, Tomooka N, Kashiwaba K, Isemura T, Chaitieng B ? S P. Development of an interspecificlinkage map between(Thunb.) Ohwi & Ohashi and(Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics., 2006, 125: 77–84.
[36] Gari A T. Pea Weevil (L.) Resistance and Genetic Diversity in Field Pea (L.). PhD Dissertation of Swedish University of Agricultural Sciences, Alnarp, Sweden, 2015.
[37] 張紅巖, 楊濤, 關(guān)建平, 楊生華, 方俐, 杜萌瑩, 宗緒曉. 蠶豆抗綠豆象種質(zhì)資源的鑒定. 作物雜志, 2016, (4): 86–92.
Zhang H Y, Yang T, Guan J P, Yang S H, Fang L, Du M Y, Zong X X. Investigation on faba bean germplasm resistance toL., 2016, (4): 86–92 (in Chinese with English abstract).
[38] 仲偉文, 楊濤, 段燦星, 姜俊燁, 王芳, 楊曉明, 宗緒曉. 豌豆種質(zhì)資源抗綠豆象鑒定. 作物雜志, 2014, (5): 43–47.
Zhong W W, Yang T, Duan C X, Jiang J Y, Wang F, Yang X M, Zong X X. Investigation on pea germplasm resistance to mungbean bruchid (L.)., 2014, (5): 43–47 (in Chinese with English abstract).
[39] Clement S L, Hardie D C, Elberson L R. Variation among accessions offor resistance to pea weevil., 2002, 42: 2167.
[40] Simmonds M S J, Blaney W M, Birch A N E. Legume seeds: the defenses of wild and cultivated species ofagainst attack by bruchid beetles.(London), 1989, 63: 177–184.
[41] Samyuktha S M, Malarvizhi D, Mariyammal I, Karthikeyan A, Seram D, Dhasarathan M, Hepziba S J, Sheela V, Hemavathy A T, Kavithamani D, Kavitha S, Senthil N. The hunt for mungbean ((L.) Wilczek) genotypes and breeding lines resistance to south Indian bruchid strain., 2022, 12: 1050.
[42] Mariyammal I, Seram D, Samyuktha S, Adhimoolam K, Dhasarathan M, Jayakodi M, Kennedy J, Malarvizhi D, Yang T, Pandiyan M, Natesan S. QTL mapping in×population uncovers major genomic regions associated with bruchid resistance., 2019, 39: 110.
[43] 唐永生, 蔣彥華, 鄭云昆. 蠶豆、豌豆抗綠豆象表現(xiàn)型品種資源篩選研究. 云南農(nóng)業(yè)科技, 2014, (5): 20–23.
Tang Y S, Jiang Y H, Zheng Y K. Screening of resistance to bean weevil () of faba beans and peas., 2014, (5): 20–23 (in Chinese with English abstract).
[44] Jegadeesan S. Screening for resistance against bruchid () damage in blackgram., 2020, 90: 1110–1114.
[45] Edwards O, Singh K B. Resistance to insect pests: what do legumes have to offer?, 2006, 147: 273–285.
[46] Douglas A E. Strategies for enhanced crop resistance to insect pests., 2018, 69: 637–660.
[47] Hamidi R, Taupin P, Frérot B. Physiological synchrony of the broad bean weevil,Boh., to the host plant phenology,L., 2021, 1: 707323.
[48] 張杰, 董莎萌, 王偉, 趙建華, 陳學偉, 郭惠珊, 何光存, 何祖華, 康振生, 李毅, 彭友良, 王國梁, 周雪平, 王源超, 周儉民.植物免疫研究與抗病蟲綠色防控: 進展、機遇與挑戰(zhàn). 中國科學: 生命科學, 2019, 49: 1479–1507.
Zhang J, Dong S M, Wang W, Zhao J H, Chen X W, Guo H S, He G C, He Z H, Kang Z S, Li Y, Peng Y L, Wang G L, Zhou X P, Wang Y C, Zhou J M. Plant immunity and sustainable control of pests in China: advances, opportunities and challenges., 2019, 49: 1479–1507 (in Chinese with English abstract).
[49] Gemechu K, Endashaw B, Emana G, Muhammad I, Tebkew D, Bayeh M. Breeding food legumes for resistance to storage insect pests: potential and limitations.(Basel), 2011, 3: 1399–1415.
[50] Belete T. Defense mechanisms of plants to insect pests: from morphological to biochemical approach., 2018, 2: 555584.
[51] War A R, Murugesan S, Boddepalli V N, Srinivasan R, Nair R M. Mechanism of resistance in mungbean [(L.) R. Wilczek var.] to bruchids,spp. (Coleoptera: Bruchidae)., 2017, 8: 1031.
[52] Chakraborty S, Chaudhuri N, Senapati S K. Correlation between seed parameters and relative susceptibility of mung bean genotypes (L.) toL. during storage., 2004, 12: 48–50.
[53] Lambrides C J, Imrie B C. Susceptibility of mungbean varieties to the bruchid species(F.),(Gyll.),(L.), and(Say.) (Coleoptera: Chrysomelidae)., 2000, 51: 85–90.
[54] Nisar M S, Haq I U, Ramzan H, Aljedani D M, Qasim M, Islam W, Khan K A. Screening of different legumes for the developmental preference of(Bruchidae: Coleoptera)., 2021, 41: 3129–3136.
[55] Mitchell C, Brennan R M, Graham J, Karley A J. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection., 2016, 7: 1132.
[56] Sadeghi A, Van Damme E J, Peumans W J, Smagghe G. Deterrent activity of plant lectins on cowpea weevil(F.) oviposition., 2006, 67: 2078–2084.
[57] Haq S K, Atif S M, Khan R H. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection., 2004, 431: 145–159.
[58] Maczó A, Cucu T, De Meulenaer B, Gelencsér é. Comparison of the α-amylase inhibitor-1 from common beans and transgenic pea expressing the bean α-amylase inhibitor-1 by means of LC-TOF-MS., 2015, 76: 86–91.
[59] Sugawara F, Ishimoto M, Le-Van N, Koshino H, Uzawa J, Yoshida S, Kitamura K. Insecticidal peptide from mungbean:? a resistant factor against infestation with azuki Bean weevil., 1996, 44: 3360–3364.
[60] Macedo M L R, Da S. Andrade L B, Moraes R A, Xavier-Filho J. Vicilin variants and the resistance of cowpea () seeds to the cowpea weevil ()., 1993, 105: 89–94.
[61] Domingues S J, Melo F R, Aguiar J M, Affonso A G, Giuli J S, Rose J L, Sales M P, Machado L F, Azevedo C R, Da Cunha P C, Uchoa A F, de Oliveira A E A, Xavier-Filho J, Fernandes K V. Resistance of(cowpea) seeds tois restricted to cotyledonary tissues., 2006, 86: 1977–1985.
[62] Chen K, Lin C, Kuan C, Sung H, Chen C. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid., 2003, 51: 530.
[63] Lin C, Chen C S, Horng S B. Characterization of resistance to(Coleoptera: Bruchidae) in mungbean variety VC6089A and its resistance-associated protein VrD1., 2005, 98: 1369–1373.
[64] Chen J, Chen G, Hsu H, Li S, Chen C. Cloning and functional expression of a mungbean defensin VrD1 in., 2004, 52: 2256–2261.
[65] Birch A N E, Fellows L E, Evans S V, Doherty K.- aminophenylalanine in: possible taxonomic and ecological significance as a seed defense against bruchids., 1986, 25: 2745–2749.
[66] Zhang Q, Yan Q, Yuan X, Lin Y, Chen J, Wu R, Xue C, Zhu Y, Chen X. Two polygalacturonase-inhibiting proteins (VrPGIP) ofconfer resistance to bruchids (spp.)., 2021, 258/259: 153376.
[67] 張勤雪, 陳景斌, 袁星星, 吳然然, 閆強, 朱月林, 薛晨晨, 陳新. 綠豆抗豆象研究進展. 湖北農(nóng)業(yè)科學, 2020, 59(11): 10–13.
Zhang Q X, Chen J B, Yuan X X, Wu R R, Yan Q, Zhu Y L, Xue C C, Chen X. Research progress of bean weevil resistance in mungbean., 2020, 59(11): 10–13 (in Chinese with English abstract).
[68] Osborn T C, Alexander D C, Samuel S M S, Cardona C, Bliss F A. Insecticidal activity and lectin homology of arcelin seed protein., 1988, 240: 207–210.
[69] Osborn T C, Burow M, Bliss F A. Purification and characterization of arcelin seed protein from common bean., 1988, 86: 399–405.
[70] Fabre C, Causse H, Mourey L, Koninkx J, Rivière M, Hendriks H, Puzo G, Samama J P, Rougé P. Characterization and sugar- binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (L. cv. RAZ-2) seeds., 1998, 329: 551–560.
[71] 曾任森, 蘇貽娟, 葉茂, 謝麗君, 陳敏, 宋圓圓. 植物的誘導抗性及生化機理. 華南農(nóng)業(yè)大學學報, 2008, 29(2): 1–6.
Zeng R S, Su Y J, Ye M, Xie L J, Chen M, Song Y Y. Plant induced defense and biochemical mechanisms., 2008, 29(2): 1–6 (in Chinese with English abstract).
[72] Poelman E H. From induced resistance to defence in plant-insect interactions., 2015, 157: 11–17.
[73] Mauch-Mani B, Baccelli I, Luna Diez E, Flors V. Defense priming: an adaptive part of induced resistance., 2017, 68: 485–512.
[74] Doss R P, Proebsting W M, Potter S W, Clement S L. Response ofmutant of pea (L.) to pea weevil (L.) oviposition and extracts., 1995, 21: 97–106.
[75] Doss R P, Oliver J E, Proebsting W M, Potter S W, Kuy S, Clement S L, Williamson R T, Carney J R, DeVilbiss E D. Bruchins: insect-derived plant regulators that stimulate neoplasm formation., 2000, 97: 6218–6223.
[76] Aznar-Fernández T, Rubiales D. Flower and pod source influence on pea weevil () oviposition capacity and preference., 2019, 10: 491.
[77] Underwood N, Morris W, Gross K, Lockwood I J. Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance., 2000, 122: 83–89.
[78] 王昶, 賀春貴, 張麗娟, 楊曉明. 豌豆抗豌豆象育種及其綜合防治研究進展. 草業(yè)學報, 2017, 26(7): 213–224.
Wang C, He C G, Zhang L J, Yang X M. Advances in breeding of pea () with resistance to pea weevil () and its integrated management., 2017, 26(7): 213–224 (in Chinese with English abstract).
[79] Doria R C, Raros R S. Varietal resistance of mungo to the bean weevil,(Linn.) and some characteristics of field infestation., 1973, 2: 399–408.
[80] Fujii K, Miyazaki S. Infestation resistance of wild legumes () to azuki bean weevil,(L.) (Coleoptera: Bruchidae) and its relationship with cytogenetic classification., 1987, 2: 229–230.
[81] Fujii K, Ishimoto M, Kitamura K. Patterns of resistance to bean weevils (Bruchidae) in-mungo-sublobata complex inform the breeding of new resistant varieties., 1989, 24: 126.
[82] Lambrides C J, Godwin I D. Mungbean, pulses, sugar and tuber crops. In: Kole C, ed. Genome Mapping and Molecular Breeding in Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. pp 69–90.
[83] Talekar N S, Lin C P. Characterization of(Coleoptera: Bruchidae) resistance in mungbean., 1992, 85: 1150–1153.
[84] Somta P, Somta C, Tomooka N, Ooi P A C, Vaughan D A, Srinives P. Characterization of new sources of mungbean ((L.) Wilczek) resistance to bruchids,spp. (Coleoptera: Bruchidae)., 2008, 44: 316–321.
[85] 劉旭明, 金達生, 程須珍, 武曉菲, 王素華. 綠豆種質(zhì)資源抗豆象鑒定研究初報. 作物品種資源, 1998, (2): 37–39.
Liu X M, Jin D S, Cheng X Z, Wu X F, Wang S H. Preliminary study on resistance identification of mung bean germplasm., 1998, (2): 37–39 (in Chinese with English abstract).
[86] 陳紅霖, 胡亮亮, 楊勇, 郝曦煜, 李姝彤, 王素華, 王麗俠, 程須珍. 481份國內(nèi)外綠豆種質(zhì)農(nóng)藝性狀及豆象抗性鑒定評價及遺傳多樣性分析. 植物遺傳資源學報, 2020, 21: 549–559.
Chen H L, Hu L L, Yang Y, Hao X Y, Li S T, Wang S H, Wang L X, Cheng X Z. Evaluation and genetic diversity analysis of agronomic traits and bruchid resistance using 481 worldwide mungbean germplasms., 2020, 21: 549–559 (in Chinese with English abstract).
[87] 樊艷平, 成小芳, 王宏民, 張耀文, 張仙紅. 四個抗豆象綠豆品種的胰蛋白酶抑制劑穩(wěn)定性. 作物學報, 2018, 44: 867–875.
Fan Y P, Cheng X F, Wang H M, Zhang Y W, Zhang X H. Stability of trypsin inhibitor in four bruchid-resistant mung bean varieties., 2018, 44: 867–875 (in Chinese with English abstract).
[88] Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y. The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genussubgenus., 2000, 115: 27–41.
[89] Dongre T K, Pawar S E, Thakare R G, Harwalkar M R. Identification of resistant sources to cowpea weevil ((F.)) insp. and inheritance of their resistance in black gram (var.)., 1996, 32: 201–204.
[90] Kashiwaba K, Tomooka N, Kaga A, Han O, Vaughan D A. Characterization of resistance to three bruchid species (spp.,Coleoptera, Bruchidae) in cultivated rice bean ()., 2003, 96: 207–213.
[91] Seram D, Senthil N, Pandiyan M, Kennedy J S. Resistance determination of a South Indian bruchid strain against rice bean landraces of Manipur (India)., 2016, 69: 199–206.
[92] Singh B B, Singh S R, Adjadi O. Bruchid resistance in Cowpea., 1985, 25: 736–739.
[93] Cruz L P, de Sá L F R, Santos L A, Gravina G A, Carvalho A O, Fernandes K V S, Freire Filho F R, Gomes V M, Oliveira A E A. Evaluation of resistance in different cowpea cultivars toinfestation., 2016, 89: 117–128.
[94] Tripathi K, Prasad T V, Bhardwaj R, Jha S K, Semwal D P, Gore P G, Sharma P K, Bhalla S. Evaluation of diverse germplasm of cowpea [(L.) Walp.] against bruchid [(Fab.)] and correlation with physical and biochemical parameters of seed.:, 2020, 18: 120–129.
[95] Hardie D C, Baker G J, Marshall D R. Field screening ofaccessions to evaluate their susceptibility to the pea weevil (Coleoptera: Bruchidae)., 1995, 84: 155–161.
[96] 仲偉文, 楊曉明. 豌豆象發(fā)生、危害、防治對策及豌豆抗豌豆象的遺傳機理綜述. 作物雜志, 2014, (2): 21–25.
Zhong W W, Yang X M. Current progress on research of pea weevil., 2014, (2): 21–25 (in Chinese with English abstract).
[97] Tahhan O, Van Emden H F. Resistance of faba bean,, toBaudi (Coleoptera: Bruchidae)., 1989, 79: 211–218.
[98] Carrillo-Perdomo E, Raffiot B, Ollivier D, Deulvot C, Magnin- Robert J, Tayeh N, Marget P. Identification of novel sources of resistance to seed weevils (spp.) in a faba bean germplasm collection., 2019, 9: 1914.
[99] Duan C, Zhu Z, Ren G, Wang X, Li D. Resistance of faba bean and pea germplasm to(Coleoptera: Bruchidae) and its relationship with quality components., 2014, 107: 1992–1999.
[100] 楊新, 楊峰, 呂梅媛, 于海天, 胡朝芹, 王玉寶, 鄭愛清, 代正明, 唐永生, 代快, 王麗萍, 何玉華. 不同地理來源蠶豆種質(zhì)的綠豆象抗性特征分析. 四川農(nóng)業(yè)大學學報, 2022, 40: 512–518.
Yang X, Yang F, Lyu M Y, Yu H T, Hu C Q, Wang Y B, Zheng A Q, Dai Z M, Tang Y S, Dai K, Wang L P, He Y H. Analysis of faba bean germplasms from different geographical regions resistance characteristics toL., 2022, 40: 512–518 (in Chinese with English abstract).
[101] Shaheen F, Khaliq A, Muhammad A. Resistance of chickpea (L.) cultivars against pulse beetle., 2006, 38: 1237–1244.
[102] Swamy S G, Raja D S, Wesley B J. Susceptibility of stored chickpeas to bruchid infestation as influenced by physico- chemical traits of the grains., 2020, 87: 101583.
[103] Acosta-Gallegos J A, Quintero C, Vargas J, Toro O C, Tohme J, Cardona C A C. A new variant of arcelin in wild common bean,L., from southern Mexico., 2004, 45: 235–242.
[104] Cardona C A C, Kornegay J L, Posso C E, Morales F J, Ramírez H. Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil., 1990, 56: 197–206.
[105] Zaugg I, Magni C, Panzeri D, Daminati M G, Bollini R, Benrey B, Bacher S, Sparvoli F. QUES, a newgenotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants., 2013, 126: 647–661.
[106] Kang J K, Pittendrigh B R, Onstad D W. Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae)., 2013, 106: 2473–2490.
[107] Kitamura K, Ishimoto M, Sawa M. Inheritance of resistance to infestation with azuki bean weevil inand successful incorporation to., 1988, 38: 459–464.
[108] 程須珍, 楊又迪. RAPD分析在綠豆親緣關(guān)系研究中的應(yīng)用. 遺傳, 1998, 20: 29–31.
Cheng X Z, Yang Y D. Study of mungbean genetic relationship using RAPD markers.(Beijing), 1998, 20: 29–31 (in Chinese with English abstract).
[109] Lambrides C J, Lawn R J, Godwin I D, Manners J, Imrie B C. Two genetic linkage maps of mungbean using RFLP and RAPD markers., 2000, 51: 415–425.
[110] Young N D, Kumar L, Menancio-Hautea D, Danesh D, Talekar N S, Shanmugasundarum S, Kim D H. RFLP mapping of a major bruchid resistance gene in mungbean (L. Wilczek)., 1992, 84: 839–844.
[111] Kaga A, Ishimoto M. Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (L. Wilczek)., 1998, 258: 378–384.
[112] Somta P, Ammaranan C, Ooi P A C, Srinives P. Inheritance of seed resistance to bruchids in cultivated mungbean (L. Wilczek)., 2007, 155: 47–55.
[113] Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X. Construction of an integrated map and location of a bruchid resistance gene in mung bean., 2016, 4: 360–366.
[114] 吳傳書, 王麗俠, 王素華, 陳紅霖, 吳健新, 程須珍, 楊曉明. 綠豆高密度分子遺傳圖譜的構(gòu)建. 中國農(nóng)業(yè)科學, 2014, 47: 2088–2098.
Wu C S, Wang L X, Wang S H, Chen H L, Wu J X, Cheng X Z, Yang X M. Construction of a genetic linkage map in mungbean., 2014, 47: 2088–2098 (in Chinese with English abstract).
[115] Schafleitner R, Huang S, Chu S, Yen J, Lin C, Yan M, Krishnan B, Liu M, Lo H, Chen C, Chen L O, Wu D, Bui T T, Ramasamy S, Tung C, Nair R. Identification of single nucleotide polymorphism markers associated with resistance to bruchids (spp.) in wild mungbean (var.) and cultivatedthrough genotyping by sequencing and quantitative trait locus analysis., 2016, 16: 159.
[116] 劉長友, 蘇秋竹, 范保杰, 曹志敏, 張志肖, 武晶, 程須珍, 田靜. 栽培綠豆V1128抗豆象基因定位. 作物學報, 2018, 44: 1875–1881.
Liu C Y, Su Q Z, Fan B J, Cao Z M, Zhang Z X, Wu J, Cheng X Z, Tian J. Genetic mapping of bruchid resistance gene in mungbean V1128., 2018, 44: 1875–1881 (in Chinese with English abstract).
[117] Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P. A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: Bruchidae) resistance in mungbean ()., 2016, 129: 1673–1683.
[118] Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P. Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with thelocus that confer bruchid (spp.) resistance to mungbean () accession V2709., 2017, 8: 1692.
[119] Rathnayaka Gamage S I, Kaewwongwal A, Laosatit K, Yimram T, Lin Y, Chen X, Nakazono M, Somta P. Tandemly duplicated genes encoding polygalacturonase inhibitors are associated with bruchid () resistance in moth bean ()., 2022, 323: 111402.
[120] Lin W, Ko C, Liu M, Kuo C, Wu D, Chen C, Schafleitner R, Chen L O, Lo H. Transcriptomic and proteomic research to explore bruchid-resistant genes in mungbean isogenic lines., 2016, 64: 6648–6658.
[121] Liu M S, Kuo T C, Ko C Y, Wu D C, Li K Y, Lin W J, Lin C P, Wang Y W, Schafleitner R, Lo H F, Chen C Y, Chen L F. Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean ([L.] R. Wilczek)., 2016, 16: 46.
[122] Gupta D S, Pandey I D, Others. Bioassay for bruchid resistance in cowpea., 2009, 22: 43–45.
[123] Redden R J, Dobie P, Gatehouse A. The inheritance of seed resistance toF. in cowpea (L. Walp.): I. Analyses of parental, F1, F2, F3and backcross seed generations., 1983, 34: 681.
[124] Thandar K, Laosatit K, Yimram T, Somta P. Genetic analysis of seed resistance toandin cowpea., 2021, 92: 101783.
[125] Venkataramana P B, Gowda R, Somta P, Ramesh S, Mohan Rao A, Bhanuprakash K, Srinives P, Gireesh C, Pramila C K. Mapping QTL for bruchid resistance in rice bean ()., 2016, 207: 135–147.
[126] Seram D, Natesan S, Muthaiyan P, Kennedy J S. Bruchid resistance study through bulked segregant analysis: used as a preliminary step for next-generation sequencing., 2022, 19: 3975.
[127] Belay M, Mehari H, Msiska U, Bruno A, Malinga G, Ongom P, Edema R, Gibson P, Rubaihayo P, Kyamanywa S. Identification of candidate genes associated with resistance to bruchid () in cowpea., 2019, 138: 605–613.
[128] 王彥, 范保杰, 曹志敏, 張志肖, 蘇秋竹, 王珅, 王學清, 彭秀國, 梅麗, 武玉華, 劉少興, 田勝民, 徐俊杰, 蔣春志, 王偉娟,劉長友, 田靜. 基于新遺傳連鎖圖譜的豇豆抗豆象QTL定位. 中國農(nóng)業(yè)科學, 2021, 54: 4740–4749.
Wang Y, Fan B J, Cao Z M, Zhang Z X, Su Q Z, Wang S, Wang X Q, Peng X G, Mei L, Wu Y H, Liu S X, Tian S M, Xu J J, Jiang C Z, Wang W J, Liu C Y, Tian J. Quantitative trait Locus mapping of bruchids resistance based on a novel genetic linkage map in cowpea ()., 2021, 54: 4740–4749 (in Chinese with English abstract).
[129] Joshi J, Pandurangan S, Diapari M, Marsolais F. Comparison of gene families: seed storage and other seed proteins. In: Pérez De La Vega M, Santalla M, Marsolais F, eds. The Common Bean Genome. Cham: Springer International Publishing, 2017. pp 201–217.
[130] Duarte M A G, Cabral G B, Ibrahim A B, Arag?o F J L. An overview of the APA locus and arcelin proteins and their biotechnological potential in the control of bruchids., 2018, 8: 57–62.
[131] Blair M W, Mu?oz C, Buendía H F, Flower J, Bueno J M, Cardona C. Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean., 2010, 121: 393–402.
[132] Kamfwa K, Beaver J, Cichy K, Kelly J. QTL Mapping of resistance to bean weevil in common bean., 2018, 58: 2370–2378.
[133] Li X, Tang Y, Wang L, Chang Y, Wu J, Wang S. QTL mapping and identification of genes associated with the resistance toin cultivated common bean using a high-density genetic linkage map., 2022, 22: 260.
[134] Somta P, Jomsangawong A, Yundaeng C, Yuan X, Chen J, Tomooka N, Chen X. Genetic dissection of azuki bean weevil (L.) resistance in moth bean ([Jaqc.] Maréchal).(Basel), 2018, 9: 555.
[135] Byrne O M, Hardie D C, Khan T N, Speijers J, Yan G. Genetic analysis of pod and seed resistance to pea weevil in a×interspecific cross., 2008, 59: 854–862.
[136] Aryamanesh N, Zeng Y, Byrne O, Hardie D C, Al-Subhi A M, Khan T, Siddique K H M, Yan G. Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping., 2014, 127: 489–497.
[137] 劉長友, 范保杰, 曹志敏, 蘇秋竹, 王彥, 張志肖, 程須珍, 田靜. 豇豆屬食用豆類間的遠緣雜交. 中國農(nóng)業(yè)科學, 2015, 48: 426–435.
Liu C Y, Fan B J, Cao Z M, Su Q Z, Wang Y, Zhang Z X, Cheng X Z, Tian J. Interspecific hybridization amongspecies., 2015, 48: 426–435 (in Chinese with English abstract).
[138] 戴希剛, 郭瑞, 潘磊, 曾長立, 陳禪友. 豇豆與飯豆種間雜種的獲得及其鑒定. 安徽農(nóng)業(yè)大學學報, 2017, 44: 519–524.
Dai X G, Guo R, Pan L, Zeng C L, Chen C Y. Acquisition and identification of interspecific hybrids between cowpea and rice bean., 2017, 44: 519–524 (in Chinese with English abstract).
[139] Clement S, McPhee K, Elberson L, Evans M. Pea weevil,L. (Coleóptera: Bruchidae), resistance in×interspecific crosses., 2009, 128: 478–485.
[140] Aryamanesh N, Byrne O, Hardie D C, Khan T, Siddique K H M, Yan G. Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea () and., 2012, 63: 612.
[141] Choudhury A, Rajam M V. Genetic transformation of legumes: an update., 2021, 40: 1813–1830.
[142] Khazaei H, O’Sullivan D M, Stoddard F L, Adhikari K N, Paull J G, Schulman A H, Andersen S U, Vandenberg A. Recent advances in faba bean genetic and genomic tools for crop improvement., 2021, 3: 1–13.
[143] Sharma S, Gambhir G, Srivastava D K.differentiation and plant regeneration from root and other explants of juvenile origin in pea (L.)., 2017, 40: 1020–1027.
[144] Ludv I, Kov A M, Griga M. Pea transformation: history, current status and challenges., 2022, 58: 127–161.
[145] Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins T J, Castillejo M, Singh K, Rispail N. Achievements and challenges in legume breeding for pest and disease resistance., 2015, 34: 195–236.
[146] Sonia, Saini R, Singh R P, Jaiwal P K. Agrobacterium tumefaciens mediated transfer ofα-amylase inhibitor-1 gene into mungbean(L.) Wilczek using bar as selectable marker., 2007, 26: 187–198.
[147] Solleti S K, Bakshi S, Purkayastha J, Panda S K, Sahoo L. Transgenic cowpea () seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles., 2008, 27: 1841.
[148] Ishimoto M, Sato T, Chrispeels M J, Kitamura K. Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean., 1996, 79: 309–315.
[149] Sarmah B K, Moore A, Tate W, Molvig L, Morton R L, Rees D P, Chiaiese P, Chrispeels M J, Tabe L M, Higgins T J V. Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor., 2004, 14: 73–82.
[150] Schroeder H E, Gollasch S, Moore A, Tabe L M, Craig S, Hardie D C, Chrispeels M J, Spencer D, Higgins T J. Bean α-amylase inhibitor confers resistance to the pea weevil () in transgenic peas (L.)., 1995, 107: 1233–1239.
[151] Sousa-Majer M, Hardie D, Turner N, Higgins T J. Bean α-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae., 2007, 100: 1416–1422.
[152] Shade R E, Schroeder H E, Pueyo J J, Tabe L M, Murdock L L, Higgins T J V, Chrispeels M J. Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles., 1994, 12: 793–796.
[153] Prescott V E, Campbell P M, Moore A, Mattes J, Rothenberg M E, Foster P S, Higgins T J V, Hogan S P. Transgenic expression of bean α-amylase inhibitor in peas results in altered structure and immunogenicity., 2005, 53: 9023–9030.
[154] Lee R Y, Reiner D, Dekan G, Moore A E, Higgins T J, Epstein M M. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice., 2013, 8: e52972.
[155] Negawo A T, Aftabi M, Jacobsen H, Altosaar I, Hassan F. Insect resistant transgenic pea expressinggene product from Bacillus thuringiensis., 2013, 67: 293–300.
[156] Mishra S, Macedo L, Panda S, Panigrahi J. Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties: Bruchid pest management in pulses., 2017, 172: 4–19.
[157] Sarkar S, Ghosh S, Chatterjee M, Das Kalita D P, Lahari T, Maji A, Mondal N, Pradhan K, Bhattacharyya S. Molecular markers linked with bruchid resistance invar. Sublobata and their validation., 2011, 20: 155–160.
[158] Majhi P K, Bhoi T K, Mogali S C, Shiv A, Sahoo K C, Saini V. Advances in molecular breeding for bruchid (spp.) resistance in mungbean [(L.) Wilczek]: a review., 2022, 45: 933–941.
[159] Wu R, Zhang Q, Lin Y, Chen J, Somta P, Yan Q, Xue C, Liu J, Chen X, Yuan X. Marker-assisted backcross breeding for improving bruchid (spp.) resistance in mung bean (L.).(Basel), 2022, 12: 1271.
[160] Cisse N, Ndiaye M, Thiaw S, Hall A E. Registration of ‘Mouride’ cowpea., 1995, 35: 1215–1216.
[161] Lee Y H, Moon J K, Park K Y, Ku J H, Yun H T, Chung W K, Kim S D, Kim H S, Kim D H, Chung M N. A new mungbean cultivar with bruchid resistance, ‘Jangannogdu’., 2000, 32: 296–297.
[162] 程須珍, 王述民. 中國食用豆類品種志. 北京: 中國農(nóng)業(yè)科學技術(shù)出版社, 2009. pp 23–25.
Cheng X Z, Wang S M. Food Legumes Variety in China. Beijing: China Agricultural Science and Technology Press, 2009. pp 23–25 (in Chinese).
[163] 朱慧珺, 趙雪英, 閻虎斌, 高偉, 張耀文. 抗豆象綠豆新品種晉綠豆7號的選育. 山西農(nóng)業(yè)科學, 2012, 40: 606–607.
Zhu H J, Zhao X Y, Yan H B, Gao W, Zhang Y W. Breeding of bruchid resistant mung bean variety Jinlyudou 7., 2012, 40: 606–607 (in Chinese with English abstract).
[164] 權(quán)彪. 抗豆象綠豆種質(zhì)晉中10號的選育與栽培技術(shù). 山西農(nóng)業(yè)科學, 2020, 48: 12–14.
Quan B. Breeding and cultivation techniques of Jinzhong 10 of mung bean germplasm resources resistant to bruchid weevil., 2020, 48: 12–14 (in Chinese with English abstract).
[165] 陳華濤, 袁星星, 張紅梅, 劉曉慶, 崔曉艷, 陳新, 顧和平. 抗豆象綠豆新品種蘇綠5號選育及配套栽培技術(shù). 作物研究, 2015, 29: 428–430.
Chen H T, Yuan X X, Zhang H M, Liu X Q, Cui X Y, Chen X, Gu H P. Breeding and cultivation techniques of the new mungbean variety Sulv No. 5 with bruchid resistance., 2015, 29: 428–430 (in Chinese with English abstract).
[166] 陳華濤, 張紅梅, 劉曉慶, 袁星星, 崔曉艷, 陳新. 綠豆新品種蘇綠6號選育及配套栽培技術(shù). 作物研究, 2015, 29: 653–654.
Chen H T, Zhang H M, Liu X Q, Yuan X X, Cui X Y, Chen X. Breeding of a new mung bean variety Sulu 6 and cultivation techniques., 2015, 29: 653–654 (in Chinese with English abstract).
[167] 范保杰, 劉長友, 曹志敏, 張志肖, 蘇秋竹, 王彥, 田靜. 抗豆象綠豆新品種冀綠15號的選育. 中國種業(yè), 2018, (9): 76–78.
Fan B J, Liu Z Y, Cao Z M, Zhang Z X, Su Q Z, Wang Y, Tian J. Breeding of a high resistance mung bean variety Jilu 17., 2018, (9): 76–78 (in Chinese with English abstract).
[168] Ng N Q. Conserving tropical leguminous food crops. In: Normah M N, Chin H F, Reed B M, eds. Conservation of Tropical Plant Species. New York: Springer New York, 2012. pp 213–247.
[169] 鄭卓杰. 中國食用豆類學. 北京: 中國農(nóng)業(yè)出版社, 1997. pp 25–27.
Zheng Z J. Catalogues of Chinese Food Legumes Germplasm and Resources. Beijing: China Agricultural Science and Technology Press, 1997. pp 25–27 (in Chinese).
[170] Wang F, Li M, Zheng H, Dong T, Zhang X. A phylogeographical analysis of the beetle pest species(Linnaeus, 1758) in China., 2022, 13: 145.
[171] 鄧一文, 劉裕強, 王靜, 陳學偉, 何祖華. 農(nóng)作物抗病蟲研究的戰(zhàn)略思考. 中國科學: 生命科學, 2021, 51: 1435–1446.
Deng Y W, Liu Y Q, Wang J, Chen X W, He Z H. Strategic thinking and research on crop disease and pest resistance in China., 2021, 51: 1435–1446 (in Chinese with English abstract).
[172] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J, Moon J, Lee Y, Park B, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S. Genome sequence of mungbean and insights into evolution withinspecies., 2014, 5: 5443.
[173] Kang Y J, Satyawan D, Shim S, Lee T, Lee J, Hwang W J, Kim S K, Lestari P, Laosatit K, Kim K H, Ha T J, Chitikineni A, Kim M Y, Ko J, Gwag J, Moon J, Lee Y, Park B, Varshney R K, Lee S. Draft genome sequence of adzuki bean,., 2015, 5: 8069.
[174] Yang K, Tian Z, Chen C, Luo L, Zhao B, Wang Z, Yu L, Li Y, Sun Y, Li W, Chen Y, Li Y, Zhang Y, Ai D, Zhao J, Shang C, Ma Y, Wu B, Wang M, Gao L, Sun D, Zhang P, Guo F, Wang W, Li Y, Wang J, Varshney R K, Wang J, Ling H Q, Wan P. Genome sequencing of adzuki bean () provides insight into high starch and low fat accumulation and domestication., 2015, 112: 13213–13218.
[175] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres- Torres M, Geffroy V, Moghaddam S M, Gao D, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications., 2014, 46: 707–713.
[176] Varshney R K, Thudi M, Roorkiwal M, He W, Upadhyaya H D, Yang W, Bajaj P, Cubry P, Rathore A, Jian J, Doddamani D, Khan A W, Garg V, Chitikineni A, Xu D, Gaur P M, Singh N P, Chaturvedi S K, Nadigatla G V P R, Krishnamurthy L, Dixit G P, Fikre A, Kimurto P K, Sreeman S M, Bharadwaj C, Tripathi S, Wang J, Lee S, Edwards D, Polavarapu K K B, Penmetsa R V, Crossa J, Nguyen H T, Siddique K H M, Colmer T D, Sutton T, von Wettberg E, Vigouroux Y, Xu X, Liu X. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits., 2019, 51: 857–864.
[177] Lonardi S, Mu?oz-Amatriaín M, Liang Q, Shu S, Wanamaker S I, Lo S, Tanskanen J, Schulman A H, Zhu T, Luo M, Alhakami H, Ounit R, Hasan A M, Verdier J, Roberts P A, Santos J R P, Ndeve A, Dole?el J, Vrána J, Hokin S A, Farmer A D, Cannon S B, Close T J. The genome of cowpea ([L.] Walp.)., 2019, 98: 767–782.
[178] Kreplak J, Madoui M, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Bérard A, Vrbová I, Fournier C, D Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar An B, Bendahmane A, Aury J, Batley J, Le Paslier M, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Dole?el J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution., 2019, 51: 1411–1422.
[179] Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang X, Wang Q, Wang Z, Xing S, Zhang H, Blair M W, Wang S. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline., 2020, 52: 118–125.
[180] Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, Cao Z, Gao Y, Wang X, Li S, Su Q, Zhang Z, Wang S, Wu X, Shang Q, Shi H, Shen Y, Wang B, Tian J. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mungbean and its improvement., 2022, 3: 100352.
[181] 薛勇彪, 種康, 韓斌, 桂建芳, 王臺, 傅向東, 何祖華, 儲成才,田志喜, 程祝寬, 林少揚. 開啟中國設(shè)計育種新篇章: “分子模塊設(shè)計育種創(chuàng)新體系”戰(zhàn)略性先導科技專項進展. 中國科學院院刊, 2015, 30: 393–402.
Xue Y B, Zhong K, Han B, Gui J F, Wang T, Fu X D, He Z H, Chu C C, Tian Z X, Cheng Z K, Lin S Y. New chapter of designer breeding in China: update on strategic program of molecular module-based designer breeding systems., 2015, 30: 393–402 (in Chinese with English abstract).
[182] Li G, Liu R, Xu R, Varshney R K, Ding H, Li M, Yan X, Huang S, Li J, Wang D, Ji Y, Wang C, He J, Luo Y, Gao S, Wei P, Zong X, Yang T. Development of an-mediated CRISPR/ Cas9 system in pea (L.)., 2022, 41: 137–145.
[183] Jiang G. Molecular marker-assisted breeding: a plant breeder's review. In: Al-Khayri J M, Jain S M, Johnson D V, eds. Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Cham: Springer International Publishing, 2015. pp 431–472.
[184] 景海春, 田志喜, 種康, 李家洋. 分子設(shè)計育種的科技問題及其展望概論. 中國科學: 生命科學, 2021, 51: 1356–1365.
Jing H C, Tian Z X, Chong K, Li J Y. Progress and perspective of molecular design breeding., 2021, 51: 1356–1365 (in Chinese with English abstract).
Advances in germplasm innovation and genetic improvement of food legumes resistant to bruchid
YANG Xiao-Ming1, CHENG Xu-Zhen2,*, ZHU Zhen-Dong2, LIU Chang-Yan3, and CHEN Xin4,*
1Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China;2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;3Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China;4Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
Food legumes play a key role in maintaining soil sustainability, developing agroecosystem diversification, and improving human nutrition. However, bruchid (Coleoptera: Bruchidae) is a notorious pest that can devastate the entire seed and cause severe loss in pulses storage. To explore the potential germplasm resources and breed legume varieties resistant to bruchids, a few elite germplasms and genes resistant to bruchids were identified and finely mapped. Lots of studies have been carried out and made some progress on resistance mechanisms, genetic analysis, genetic mapping, gene cloning, and molecular markers of bruchid resistance in pulses. In this paper, studies on pulses germplasm exploring and evaluating for resistance to bruchids, resistance inheritance, discovery and mapping of resistance genes, and the breeding of resistant cultivars were reviewed. Several important directions for future research have prospected. Here, the main objective is to supply useful information for exploring potential germplasm and promoting the genetic improvement of food legumes with resistance to bruchids in China.
food legumes; germplasm exploitation; bruchid; resistance breeding; molecular markers
10.3724/SP.J.1006.2023.24169
本研究由財政部和農(nóng)業(yè)農(nóng)村部國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-08)和國家自然科學基金項目(32260483)資助。
This study was supported by the China Agriculture Research System of MOF and MARA (CARS-08) and the National Natural Science Foundation of China (32260483).
程須珍, E-mail: chengxuzhen@caas.cn; 陳新, E-mail: cx@jaas.ac.cn
E-mail: yangxm04@hotmail.com
2022-07-21;
2022-11-03;
2022-11-14.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20221111.1116.002.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).