趙志遠(yuǎn) 趙睿 劉文豪 孫成建 徐銳
[摘要] 目的 研究CMS121對氧糖剝奪再灌注(OGD/R)神經(jīng)元及缺血再灌注(I/R)模型小鼠腦神經(jīng)損傷的保護(hù)作用及其機(jī)制。方法 將皮質(zhì)神經(jīng)元分為對照組、OGD/R組和OGD/R+CMS121組,分別進(jìn)行正常培養(yǎng)、OGD/R處理和OGD/R+CMS121治療處理。24 h后,檢測3組神經(jīng)元的細(xì)胞活力和乳酸脫氫酶(LDH)釋放水平。通過蛋白免疫印跡實(shí)驗(yàn)分析3組神經(jīng)元再灌注6、24 h蛋白激酶B(Akt)和磷酸化Akt(p-Akt)的表達(dá)。將C57BL/6J小鼠隨機(jī)分為Sham組、I/R組和I/R+CMS121組,分別進(jìn)行假手術(shù)、I/R模型構(gòu)建和I/R模型構(gòu)建+CMS121處理,再灌注24 h后,通過神經(jīng)嚴(yán)重度評分(NSS)評估小鼠神經(jīng)系統(tǒng)受損情況,通過TTC染色計(jì)算小鼠的腦梗死體積占全腦體積的比例。結(jié)果 3組神經(jīng)元的細(xì)胞活力和LDH釋放水平比較差異有顯著性(F=71.21、88.93,P<0.01);與OGD/R組相比,OGD/R+CMS121組的神經(jīng)元細(xì)胞活力升高,LDH釋放水平下降(t=5.56,11.63,P<0.05)。時(shí)間、分組、時(shí)間與分組交互作用對神經(jīng)元p-Akt表達(dá)有明顯影響(F=13.48~32.67,P<0.01),對Akt的表達(dá)均無影響(P>0.05)。再灌注6 h,3組神經(jīng)元p-Akt表達(dá)比較差異均有顯著性(F=18.78,P<0.01),與對照組比較,OGD/R組和OGD/R+CMS121組神經(jīng)元p-Akt表達(dá)均升高(P<0.01),且后兩組間比較差異無顯著性(P>0.05);再灌注24 h,3組神經(jīng)元p-Akt表達(dá)差異有顯著性(F=38.50,P<0.01),OGD/R+CMS121組神經(jīng)元p-Akt表達(dá)較對照組和OGD/R組相比均升高(P<0.01),而OGD/R組和對照組間比較差異無顯著性(P>0.05)。3組小鼠NSS和腦梗死體積占全腦體積比例比較差異有顯著性(F=20.24、118.60,P<0.01);與I/R組相比,I/R+CMS121組小鼠NSS降低,腦梗死體積減?。≒<0.05)。結(jié)論 CMS121對OGD/R處理的神經(jīng)元和I/R模型小鼠的腦神經(jīng)損傷有保護(hù)作用,這種保護(hù)作用可能是通過上調(diào)大腦皮質(zhì)神經(jīng)元Akt磷酸化水平實(shí)現(xiàn)的。
[關(guān)鍵詞] 顱神經(jīng)損傷;細(xì)胞低氧;葡萄糖;再灌注損傷;神經(jīng)元;神經(jīng)保護(hù);小鼠,近交C57BL
[中圖分類號(hào)] R745.1;R338? ? [文獻(xiàn)標(biāo)志碼] A
[ABSTRACT] Objective? To investigate the neuroprotective effects and mechanism of CMS121 in a neuron model of oxygen-glucose deprivation/reperfusion (OGD/R) and a mouse model of ischemia/reperfusion (I/R).? Methods Cortical neurons were divided into control group (normal culture), OGD/R group (OGD/R model construction), and OGD/R+CMS121 group (OGD/R model construction plus treatment with CMS121). All neurons viability and lactate dehydrogenase (LDH) release were assessed after 24 h of reperfusion. Western blotting was performed to measure the expression of protein kinase B (Akt) and phosphorylated Akt (p-Akt) in the neurons after 6 and 24 h of reperfusion. C57BL/6J mice were randomly divided into sham group (sham operation), I/R group (I/R model construction), and I/R+CMS121 group (I/R model construction plus treatment with CMS121). After 24 h of reperfusion, we assessed the neurological damage of the mice with the Neurological Severity Score (NSS), and calculated the brain infarct volume (as a percent of total brain volume) after 2,3,5-triphenyltetrazolium chloride staining. Results There were significant differences in cell viability and LDH release between the three neuron groups (F=71.21,88.93,P<0.01). Compared with the OGD/R group, the OGD/R+CMS121 group showed significantly increased neuronal viability and significantly reduced LDH release (t=5.56,11.63,P<0.05). Time, group, and time × group interaction significantly affected neuronal p-Akt expression (F=13.48-32.67,P<0.01), and showed no significant effects on Akt expression (P>0.05). After 6 h reperfusion, a significant difference was observed in neuronal p-Akt expression between the three neuron groups (F=18.78,P<0.01). Neuronal p-Akt expression was significantly increased in the OGD/R and OGD/R+CMS121 groups than in the control group (P<0.01), and showed no significant difference between the OGD/R and OGD/R+CMS121 groups (P>0.05). After 24 h reperfusion, p-Akt expression differed significantly between the three neuron groups (F=38.50,P<0.01). The expression of p-Akt was significantly increased in the OGD/R+CMS121 group than in the control and OGD/R groups (P<0.01), and showed no significant difference between the OGD/R and control groups (P>0.05). There were significant differences in the NSS score and infarct volume between the three mouse groups (F=20.24,118.60,P<0.01). Compared with the I/R group, the I/R+CMS121 group had a significantly decreased NSS score and a significantly reduced infarct volume (P<0.05). Conclusion CMS121 has neuroprotective effects in the neuronal OGD/R model and mouse I/R model, possibly through upregulating Akt phosphorylation in cortical neurons.
[KEY WORDS] Cranial nerve injuries; Cell hypoxia; Glucose; Reperfusion injury; Neurons; Neuroprotection; Mice, inbred C57BL
缺血再灌注(I/R)腦損傷在中老年人群中具有發(fā)病率及致殘性高等特點(diǎn)[1-3] ,其發(fā)病機(jī)制復(fù)雜,其中炎癥反應(yīng)會(huì)加重I/R腦損傷[4]。近年來,乙酰輔酶A羧化酶1(ACC1)被發(fā)現(xiàn)參與炎癥反應(yīng)過程,抑制ACC1能夠抑制I/R腦損傷的神經(jīng)炎癥,從而減輕I/R腦損傷[5]。CMS121是近年來發(fā)現(xiàn)的ACC1抑制劑[6-7],在神經(jīng)退行性疾病,特別是在阿爾茨海默癥(Alzheimers disease,AD)細(xì)胞模型以及動(dòng)物模型中,能夠通過維持線粒體的穩(wěn)態(tài)、調(diào)節(jié)脂質(zhì)代謝水平、減少炎癥以及脂質(zhì)過氧化等發(fā)揮神經(jīng)保護(hù)作用[8-9]。然而,CMS121是否能夠作用于神經(jīng)元并對I/R腦損傷產(chǎn)生影響,目前尚無文獻(xiàn)報(bào)道。本研究旨在探索CMS121是否對I/R腦損傷神經(jīng)元具有保護(hù)作用,并進(jìn)一步探討其作用機(jī)制?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物和材料
雄性C57BL/6J小鼠共33只,4~6周齡,體質(zhì)量20~25 g,購自于濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁殖公司;CMS121購自美國MCE公司;Neurobasal培養(yǎng)基、B-27補(bǔ)充劑和L-谷氨酰胺購自美國Gibco公司;Cell Counting Kit-8購自美國Targetmol公司;乳酸脫氫酶(LDH)細(xì)胞毒性檢測試劑盒購自上海碧云天公司;一抗抗蛋白激酶B(Akt)、抗磷酸化Akt(p-Akt)、Anti-β-actin和二抗羊抗兔購自武漢Abclonal公司;ECL發(fā)光液購自大連美侖生物技術(shù)有限公司;2,3,5-氯化三苯基四氮唑(TTC)、組織細(xì)胞固定液購自北京索萊寶公司。皮質(zhì)神經(jīng)元獲贈(zèng)于青島大學(xué)神經(jīng)再生與康復(fù)研究院。
1.2 體外實(shí)驗(yàn)
1.2.1 皮質(zhì)神經(jīng)元分組及處理 使用神經(jīng)元的專用培養(yǎng)基(Neurobasal培養(yǎng)基、含體積分?jǐn)?shù)0.02的B-27補(bǔ)充劑和0.5 μmol/L的L-谷氨酰胺)重新懸浮皮質(zhì)神經(jīng)元,將神經(jīng)元分為對照組、氧糖剝奪再灌注(OGD/R)組和OGD/R+CMS121組,每組均按照2×108個(gè)/L和1×109個(gè)/L的密度分別接種于涂有多聚賴氨酸的96孔板和6孔板內(nèi),另設(shè)1組樣品最大酶活性對照組,將細(xì)胞以2×108個(gè)/L密度接種于涂有多聚賴氨酸的96孔板內(nèi),將孔板置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的恒溫培養(yǎng)箱中靜置培養(yǎng)。培養(yǎng)期間每3 d更換一次神經(jīng)元專用培養(yǎng)基[10]。培養(yǎng)7 d后,對照組和最大酶活性對照組神經(jīng)元不作其他處理,OGD/R組神經(jīng)元進(jìn)行常規(guī)OGD/R處理。OGD/R方法如下:一定質(zhì)量的不同鹽溶于去離子水當(dāng)中,制備為脫氧無葡萄糖的細(xì)胞外溶液(具體的配方:NaCl 116 mmol/L,KCl 5.4 mmol/L,MgSO4 0.8 mmol/L,NaH2PO4 1.0 mmol/L,CaCl21.8 mmol/L,NaHCO3 26 mmol/L),經(jīng)0.22 μm的過濾器進(jìn)行無菌處理。使用脫氧無葡萄糖的細(xì)胞外溶液替換孔板中的神經(jīng)元專用培養(yǎng)基,并將孔板放置于含體積分?jǐn)?shù)0.95 N2和含體積分?jǐn)?shù)0.05 CO2的專用室在37 ℃的條件下培養(yǎng)90 min;90 min后將脫氧無葡萄糖的細(xì)胞外溶液更換為神經(jīng)元專用培養(yǎng)基[11]。OGD/R+CMS121組神經(jīng)元同樣進(jìn)行OGD處理,并于再灌注時(shí)向孔板之中加入20 nmol/L的CMS121[6]。將孔板輕輕搖勻后,靜置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的恒溫培養(yǎng)箱中繼續(xù)培養(yǎng)。
1.2.2 細(xì)胞活力檢測 對1.2.1中繼續(xù)培養(yǎng)24 h的96孔板中的3組神經(jīng)元進(jìn)行細(xì)胞活力檢測,具體方法如下:CCK8和神經(jīng)元專用培養(yǎng)基按照1∶9的體積比配置為CCK8工作液。將96孔板中的神經(jīng)元專用培養(yǎng)基更換為100 μL的CCK8工作液,另在未種植神經(jīng)元的96孔中加入等量的CCK8工作液設(shè)為空白組,置于恒溫培養(yǎng)箱中孵育4~6 h。使用酶標(biāo)儀測量各組溶液在波長450 nm處吸光度(A)值,細(xì)胞活力(%)=(處理組A-空白組A)/(對照組A-空白組A)×100%,以此計(jì)算細(xì)胞活力。實(shí)驗(yàn)重復(fù)3次,結(jié)果取均值。
1.2.3 細(xì)胞LDH釋放檢測 對1.2.1中繼續(xù)培養(yǎng)24 h的96孔板中的3組神經(jīng)元進(jìn)行細(xì)胞LDH釋放檢測。按照LDH細(xì)胞毒性檢測試劑盒說明書的要求,向1.2.1中樣品最大酶活性對照組神經(jīng)元孔板中加入10 μL的LDH釋放試劑孵育1 h,隨后向4組神經(jīng)元各孔中加入LDH檢測工作液60 μL。使用酶標(biāo)儀測量各組溶液在波長490 nm處吸光度(A)值,并計(jì)算LDH釋放量。LDH釋放量(%)=(處理組A-對照組A)/(細(xì)胞最大酶活性A-對照組A)×100%。實(shí)驗(yàn)重復(fù)3次,結(jié)果取均值。
1.2.4 蛋白免疫印跡(Western Blot)實(shí)驗(yàn)檢測3組神經(jīng)元再灌注不同時(shí)間Akt、p-Akt的表達(dá)水平1.2.1中3組6孔板中神經(jīng)元再繼續(xù)培養(yǎng)6、24 h時(shí),分別使用RIPA裂解液冰上裂解30 min,離心后吸取上清液,并置于100 ℃ 干式恒溫器中再孵育15 min,制備為蛋白樣品。通過SDS-PAGE凝膠電泳進(jìn)行蛋白質(zhì)分離,在300 mA、60 min的條件下將蛋白轉(zhuǎn)移到PVDF膜上。使用質(zhì)量分?jǐn)?shù)0.05的牛奶封閉液封閉2 h,加入一抗4 ℃孵育過夜,洗膜后加入二抗室溫孵育2 h。使用ECL發(fā)光液在化學(xué)發(fā)光檢測系統(tǒng)下進(jìn)行顯影。使用Image J軟件分析蛋白的灰度值,并測定3組再灌注6、24 h后的Akt和p-Akt的表達(dá)水平。實(shí)驗(yàn)重復(fù)3次,結(jié)果取均值。
1.3 動(dòng)物模型實(shí)驗(yàn)
1.3.1 分組及處理 將小鼠隨機(jī)分為Sham組、I/R組和I/R+CMS121組。I/R組和I/R+CMS121組小鼠均使用線栓進(jìn)行局灶腦I/R模型的構(gòu)建[11]。本實(shí)驗(yàn)共使用33只小鼠,實(shí)驗(yàn)過程中1只小鼠死亡。采用Zea Longa評分評估小鼠神經(jīng)功能缺損情況以確定模型制備情況,1~4分為造模成功,因?yàn)?分小鼠損傷過于嚴(yán)重,故取1~3分小鼠入組[12],最終入組27只小鼠,每組9只小鼠。I/R+CMS121組在構(gòu)建模型前后給予CMS121的體內(nèi)治療,即CMS121按照每次25 mg/kg的劑量,分別在I/R模型構(gòu)建前12 h和再灌注后0、3、6 h經(jīng)腹腔注射至模型小鼠體內(nèi)。Sham組進(jìn)行假手術(shù),小鼠同樣進(jìn)行大腦中動(dòng)脈的切口及縫合,但不插入線栓。
1.3.2 小鼠神經(jīng)嚴(yán)重度評分(NSS) 在經(jīng)上述處理24 h后對3組小鼠進(jìn)行NSS[11],以NSS表示小鼠神經(jīng)功能受損情況。
1.3.3 TTC染色和小鼠腦梗死體積測量 完成NSS后,將小鼠麻醉處死,各組隨機(jī)選擇3只小鼠分離腦組織。將腦組織短暫冰凍后,制備冠狀切片。將切片浸泡于質(zhì)量濃度為20 g/L的TTC溶液中,37 ℃下避光孵育30 min。之后即使用質(zhì)量濃度為40 g/L的多聚甲醛組織細(xì)胞固定液在4 ℃下固定過夜。由于TTC是一種脂溶性光敏感復(fù)合物,可進(jìn)入細(xì)胞,被活細(xì)胞內(nèi)的脫氫酶還原為紅色甲臢化合物。梗死區(qū)域組織壞死,脫氫酶活力喪失而呈現(xiàn)灰白色,非梗死區(qū)域則呈現(xiàn)紅色。收集圖像后,使用Image J軟件分析小鼠腦梗死體積。
1.4 統(tǒng)計(jì)分析
使用 GraphPad Prism 軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量數(shù)據(jù)以±s表示,組間比較采用單因素方差分析,Western Blot實(shí)驗(yàn)結(jié)果采用析因設(shè)計(jì)的方差分析進(jìn)行比較,組間兩兩比較采用LSD-t檢驗(yàn)。以P<0.05為差異具有顯著性。
2 結(jié)? 果
2.1 3組神經(jīng)元的細(xì)胞活力和LDH釋放量比較
細(xì)胞活力檢測結(jié)果顯示,對照組、OGD/R組以及OGD/R+CMS121組神經(jīng)元的細(xì)胞活力分別為(100.00±4.98)%、(58.79±3.11)%、(72.62±4.59)%,各組神經(jīng)元細(xì)胞活力比較差異具有顯著性(F=71.21,P<0.01);與對照組相比,OGD/R組神經(jīng)元的細(xì)胞活力顯著降低,差異具有顯著意義(t=16.58,P<0.01);與OGD/R組相比較,OGD/R+CMS121組神經(jīng)元的細(xì)胞活力得到顯著改善,差異有顯著性(t=5.56,P<0.05)。
細(xì)胞LDH釋放檢測結(jié)果顯示,對照組、OGD/R組和OGD/R+CMS121組神經(jīng)元LDH釋放量分別為(16.64±0.84)%、(79.09±2.63)%、(40.19±9.64)%,各組神經(jīng)元LDH釋放量比較差異有顯著性(F=88.93,P<0.01);與對照組相比,OGD/R組神經(jīng)元LDH釋放量增加,差異具有統(tǒng)計(jì)意義(t=18.67,P<0.01);與OGD/R組相比較,OGD/R+CMS121組LDH釋放量下降,差異有統(tǒng)計(jì)意義(t=11.63,P<0.01)。
2.2 3組神經(jīng)元OGD/R不同時(shí)間點(diǎn)Akt、p-Akt相對表達(dá)量和p-Akt/Akt比較
析因設(shè)計(jì)的方差分析結(jié)果顯示,時(shí)間對神經(jīng)元p-Akt/Akt、p-Akt相對表達(dá)量有明顯影響(F時(shí)間=21.98、27.55,P<0.01);分組對神經(jīng)元p-Akt/Akt和p-Akt相對表達(dá)量具有明顯影響(F組間=53.71、32.67,P<0.01);時(shí)間和分組的交互作用對神經(jīng)元p-Akt/Akt、p-Akt相對表達(dá)量有明顯影響(F交互=13.46、13.48,P<0.01)。時(shí)間、分組、時(shí)間和分組交互作用對神經(jīng)元Akt的相對表達(dá)量均無明顯影響(P>0.05)。再灌注6 h,3組神經(jīng)元p-Akt/Akt和p-Akt相對表達(dá)量比較差異有顯著性(F=53.52、18.78,P<0.01);與對照組相比較,OGD/R組和OGD/R+CMS121組神經(jīng)元p-Akt/Akt和p-Akt相對表達(dá)量均升高(P<0.01);OGD/R組和OGD/R+CMS121組神經(jīng)元p-Akt/Akt和p-Akt相對表達(dá)量比較差異無顯著性(P>0.05)。再灌注24 h,3組神經(jīng)元p-Akt/Akt和p-Akt相對表達(dá)量比較差異有顯著性(F=36.19、38.50,P<0.01);OGD/R+CMS121組p-Akt/Akt和p-Akt相對表達(dá)量較對照組和OGD/R組相比均升高(P<0.01),OGD/R組和對照組相比,p-Akt/Akt和p-Akt相對表達(dá)量比較差異無顯著性(P>0.05)。見表1,圖1。
2.3 3組小鼠NSS比較
再灌注24 h以后,Sham組、I/R組以及I/R+CMS121組小鼠的NSS分別為0.01±0.01、3.89±1.76、2.33±1.41,各組NSS比較差異均具有顯著意義(F=20.24,P<0.001);與I/R組相比,I/R+CMS121組小鼠NSS明顯降低(P<0.05)。
2.4 3組小鼠腦梗死體積占全腦體積的比例比較
TTC染色結(jié)果顯示,Sham組、I/R組、I/R+CMS121組小鼠的腦梗死體積占全腦體積的比例分別為(1.65±0.54)%、(36.71±2.40)%、(20.05±1.38)%,各組比較差異有顯著性(F=118.60,P<0.01);I/R組小鼠腦小鼠腦梗死體積占全腦體積的比例明顯高于Sham組(P<0.01);與I/R組相比,I/R+CMS121組小鼠腦梗死體積占全腦體積的比例明顯降低(P<0.01)。見圖2。
3 討? 論
I/R腦損傷的機(jī)制復(fù)雜,目前國內(nèi)外學(xué)者普遍認(rèn)為I/R損傷主要與細(xì)胞內(nèi)線粒體和NADPH氧化酶中的自由基過度形成、興奮性氨基酸毒性作用、細(xì)胞內(nèi)鈣超載、炎性反應(yīng)等機(jī)制有關(guān)[13-14]。近年來能量代謝與神經(jīng)系統(tǒng)疾病的關(guān)系被廣泛關(guān)注[15-17]。盡管葡萄糖是腦組織能量來源的主要底物,但利用其他循環(huán)底物如酮體脂肪酸等,能夠使腦組織適應(yīng)能量缺乏的狀態(tài)。其中ACC1是脂肪酸代謝的關(guān)鍵酶[18-19]。
目前研究表明,通過影響ACC1的表達(dá)或活性來調(diào)節(jié)脂肪酸代謝,能對肥胖、糖尿病、腫瘤等多種疾病起到治療作用[20-22]。近幾年來研究結(jié)果顯示,ACC1能夠通過參與免疫炎癥反應(yīng)加重I/R腦損傷[5,23]。CMS121是ACC1的抑制劑,近期研究顯示CMS121在神經(jīng)退行性病變?nèi)鏏D中,顯示出強(qiáng)大的神經(jīng)保護(hù)作用[6-9]。然而,對于CMS121在I/R腦損傷中的作用,目前未見報(bào)道。本研究通過體內(nèi)實(shí)驗(yàn)證明,CMS121能夠改善OGD/R處理的神經(jīng)元的細(xì)胞活力,并且能夠抑制神經(jīng)元的LDH釋放,這意味著CMS121能夠減弱OGD/R誘導(dǎo)的神經(jīng)元損傷,減少神經(jīng)元凋亡。體外實(shí)驗(yàn)研究結(jié)果顯示,CMS121治療能夠明顯降低I/R腦損傷模型小鼠的NSS,減少I/R腦損傷模型小鼠的腦梗死體積,進(jìn)一步證實(shí)了CMS121對于I/R腦損傷具有神經(jīng)保護(hù)作用。
Akt的激活對于I/R腦損傷的神經(jīng)元存活具有重要的影響[24]。Akt通路能夠調(diào)控Bcl-2、Bax以及caspase-3等線粒體相關(guān)凋亡蛋白的表達(dá),參與Nrf2激活,促進(jìn)神經(jīng)元的存活,減輕I/R損傷[25-31]。根據(jù)以前的報(bào)道,在I/R的早期(3~6 h),缺血區(qū)域腦組織Akt會(huì)被激活,p-Akt水平升高;而在I/R的晚期(12~24 h),該區(qū)域腦組織p-Akt水平降低[32]。本研究結(jié)果顯示,再灌注6 h時(shí),OGD/R處理使神經(jīng)元的p-Akt水平升高,CMS121對該階段的p-Akt水平影響不大。再灌注24 h時(shí),OGD/R處理的神經(jīng)元p-Akt水平已經(jīng)降低,而經(jīng)過CMS121的治療,24 h時(shí)神經(jīng)元p-Akt的水平仍舊升高。這可能表明,CMS121可能是通過持續(xù)升高p-Akt的水平,發(fā)揮神經(jīng)保護(hù)作用的。
綜上所述,本研究結(jié)果顯示,CMS121對于I/R腦損傷具有神經(jīng)保護(hù)作用。CMS121能夠持續(xù)升高大腦皮質(zhì)神經(jīng)元中的p-Akt水平,可能是通過激活A(yù)kt通路,發(fā)揮神經(jīng)保護(hù)作用的。但CMS121如何通過Akt通路發(fā)揮神經(jīng)保護(hù)作用還需要進(jìn)一步研究確定。
倫理批準(zhǔn)和動(dòng)物權(quán)利聲明:本研究涉及的所有動(dòng)物實(shí)驗(yàn)均已通過青島大學(xué)科學(xué)倫理委員會(huì)的審核批準(zhǔn)(文件號(hào)20211210C57332-0220-59220018)。所有實(shí)驗(yàn)過程均遵照《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》的規(guī)定進(jìn)行。
作者聲明:徐銳、孫成建、趙志遠(yuǎn)參與了研究設(shè)計(jì);趙志遠(yuǎn)、趙睿、劉文豪參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文。所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] BOEHME A K, ESENWA C, ELKIND M S V. Stroke risk factors, genetics, and prevention[J]. Circ Res, 2017,120(3):472-495.
[2] YANG J L, MUKDA S, CHEN S D. Diverse roles of mitochondria in ischemic stroke[J]. Redox Biol, 2018,16:263-275.
[3] THIANKHAW K, CHATTIPAKORN N, CHATTIPAKORN S C. The effects of hyperbaric oxygen therapy on the brain with middle cerebral artery occlusion[J]. J Cell Physiol, 2021, 236(3):1677-1694.
[4] JIN W N, GONZALES R, FENG Y, et al. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury[J]. Stroke, 2018,49(6):1471-1478.
[5] WANG X, ZHOU Y X, TANG D, et al. ACC1 (acetyl coenzyme A carboxylase 1) is a potential immune modulatory target of cerebral ischemic stroke[J]. Stroke, 2019,50(7):1869-1878.
[6] PRIOR M, CHIRUTA C, CURRAIS A, et al. Back to the future with phenotypic screening[J]. ACS Chem Neurosci, 2014,5(7):503-513.
[7] CURRAIS A, HUANG L, GOLDBERG J, et al. Elevating acetyl-CoA levels reduces aspects of brain aging[J]. Elife, 2019,8:e47866.
[8] ATES G, GOLDBERG J, CURRAIS A, et al. CMS121, a fatty acid synthase inhibitor, protects against excess lipid pe-roxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimers disease[J]. Redox Biol, 2020,36:101648.
[9] KEPCHIA D, CURRAIS A, DARGUSCH R, et al. Geroprotective effects of Alzheimers disease drug candidates[J]. Aging (Albany NY), 2021,13(3):3269-3289.
[10] ZHANG Z L, WANG Q H, ZHAO X L, et al. YTHDC1 mi-tigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA[J]. Cell Death Dis, 2020,11(11):977.
[11] CUI Y, ZHANG Y, ZHAO X L, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J]. Brain Behav Immun, 2021,93:312-321.
[12] 盧小葉,呂倩憶,李棋龍,等. Zea-longa評分與改良Garcia評分應(yīng)用于針刺治療CIRI大鼠神經(jīng)功能缺損評估的研究[J]. 湖南中醫(yī)藥大學(xué)學(xué)報(bào), 2021,41(9):1356-1360.
[13] LIN L, WANG X, YU Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies[J]. Biochem Pharmacol (Los Angel), 2016,5(4):213.
[14] DIRNAGL U, IADECOLA C, MOSKOWITZ M A. Patho-biology of ischaemic stroke: An integrated view[J]. Trends Neurosci, 1999,22(9):391-397.
[15] SILVA-ADAYA D, GARZA-LOMB C, GONSEBATT M E. Xenobiotic transport and metabolism in the human brain[J]. Neurotoxicology, 2021,86:125-138.
[16] ZHANG S, LACHANCE B B, MATTSON M P, et al. Glucose metabolic crosstalk and regulation in brain function and diseases[J]. Prog Neurobiol, 2021,204:102089.
[17] SERTBAS M, ULGEN K O. Unlocking human brain metabolism by genome-scale and multiomics metabolic models: Relevance for neurology research, health, and disease[J]. OMICS A J Integr Biol, 2018,22(7):455-467.
[18] RAICHLE M E, GUSNARD D A. Appraising the brains energy budget[J]. PNAS, 2002,99(16):10237-10239.
[19] CAHILL G F Jr. Fuel metabolism in starvation[J]. Annu Rev Nutr, 2006,26:1-22.
[20] FULLERTON M D, GALIC S, MARCINKO K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin[J]. Nat Med, 2013,19(12):1649-1654.
[21] YE B Y, YIN L, WANG Q W, et al. ACC1 is overexpressed in liver cancers and contributes to the proliferation of human hepatoma Hep G2 cells and the rat liver cell line BRL 3A[J]. Mol Med Rep, 2019,19(5):3431-3440.
[22] LALLY J S V, GHOSHAL S, DEPERALTA D K, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma[J]. Cell Metab, 2019,29(1):174-182.e5.
[23] ENDO Y, ONODERA A, OBATA-NINOMIYA K, et al. ACC1 determines memory potential of individual CD4+ T cells by regulating de novo fatty acid biosynthesis[J]. Nat Metab, 2019,1(2):261-275.
[24] XU X S, CHUA C C, GAO J P, et al. Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway[J]. Brain Res, 2008,1227:12-18.
[25] LIN K H, KUO W W, JIANG A Z, et al. Tetrame-thylpyrazine ameliorated hypoxia-induced myocardial cell apoptosis via HIF-1α/JNK/p38 and IGFBP3/BNIP3 inhibition to upregulate PI3K/Akt survival signaling[J]. Cell Physiol Biochem, 2015,36(1):334-344.
[26] YU Z H, CAI M, XIANG J, et al. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats[J]. J Ethnopharmacol, 2016,181:8-19.
[27] HOU Y Y, WANG K, WAN W J, et al. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats[J]. Genes Dis, 2018,5(3):245-255.
[28] LI L T, ZHANG X J, CUI L L, et al. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice[J]. Brain Res, 2013,1497:32-39.
[29] SHAH Z A, LI R C, THIMMULAPPA R K, et al. Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury[J]. Neuroscience, 2007,147(1):53-59.
[30] LI M H, CHA Y N, SURH Y J. Peroxynitrite induces HO-1 expression via PI3K/Akt-dependent activation of NF-E2-rela-ted factor 2 in PC12 cells[J]. Free Radic Biol Med, 2006,41(7):1079-1091.
[31] LIU Q, JIN Z Q, XU Z L, et al. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo[J]. Cell Stress Chaperones, 2019,24(2):441-452.
[32] WANG X T, PEI D S, XU J, et al. Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury[J]. Cell Signal, 2007,19(9):1844-1856.
(本文編輯 耿波 厲建強(qiáng))