王鑫銳 孫雨 劉如昊 李釗
摘 要 細(xì)粒沉積巖是最為常見的巖石類型之一,蘊(yùn)藏著豐富的油氣資源,伴隨著非常規(guī)油氣的發(fā)展,有關(guān)細(xì)粒沉積的研究逐漸成為了熱點(diǎn),但由于陸相細(xì)粒沉積巖巖石類型豐富,形成機(jī)制復(fù)雜,缺乏統(tǒng)一科學(xué)的分類方案。對(duì)目前常見的陸相細(xì)粒沉積巖分類方法進(jìn)行總結(jié),并依據(jù)巖石組分將其分為混合型和碎屑型細(xì)粒沉積巖兩種,并指明其常見的巖石類型特征;梳理與其相關(guān)的成因動(dòng)力學(xué)物理模擬實(shí)驗(yàn)成果,其中有關(guān)泥級(jí)顆粒的搬運(yùn)—沉積機(jī)理已經(jīng)取得了重大突破。而細(xì)粒沉積模式方面,可以分為有機(jī)質(zhì)富集模式,巖相模式以及成因模式,三個(gè)模式的內(nèi)涵和所要解決的地質(zhì)問題各不相同。在此基礎(chǔ)上,提出加強(qiáng)細(xì)粒沉積巖不同礦物成分微觀結(jié)構(gòu)特征、沉積—成巖機(jī)理認(rèn)識(shí),將巖石微觀成因分類方案與宏觀成因模式有效融合是未來(lái)細(xì)粒沉積研究的關(guān)鍵。
關(guān)鍵詞 細(xì)粒沉積;巖石特征;分類方案;成因機(jī)理;沉積模式
第一作者簡(jiǎn)介 王鑫銳,女,1995年出生,博士研究生,沉積與儲(chǔ)層地質(zhì)學(xué),E-mail: wangxr_2017@163.com
通信作者 孫雨,男,教授,E-mail: sunyu_hc@163.com
中圖分類號(hào) P581 文獻(xiàn)標(biāo)志碼 A
0 引言
細(xì)粒沉積巖(fine-grained sedimentary rocks)約占地層記錄的三分之二,是最為常見的巖石類型之一[1?4]。與早期印象中簡(jiǎn)單均一的細(xì)粒“泥巖”不同,該類巖石沉積結(jié)構(gòu)及礦物組成十分復(fù)雜[1,5?7],且由于粒度小,觀測(cè)難度大,圍繞細(xì)粒沉積巖的爭(zhēng)論從未停止。早在細(xì)粒沉積巖概念提出之時(shí),便針對(duì)粉砂級(jí)顆粒是否屬于細(xì)粒沉積巖范疇產(chǎn)生了一定爭(zhēng)議,以Krumbein[6]為典型代表的部分學(xué)者通過(guò)顆粒在水體中分散機(jī)制及沉降狀態(tài)將粉砂級(jí)顆粒納入細(xì)粒沉積巖的范疇,并將下限定為0.1 mm[6,8?9],而Lewan[9]則通過(guò)巖石中不同礦物的微觀特征及體積/重量百分比,認(rèn)為只有粒徑小于0.005 mm的泥級(jí)顆粒方能參與細(xì)粒沉積巖的構(gòu)成。目前,國(guó)內(nèi)外學(xué)者就細(xì)粒沉積巖的概念已達(dá)成共識(shí),將由粒徑小于0.062 5 mm的泥級(jí)和粉砂級(jí)黏土礦物、陸源碎屑、碳酸鹽、有機(jī)質(zhì)等不同類型沉積物顆粒構(gòu)成,且含量大于50%的巖石稱為細(xì)粒沉積巖[2,10?13]。然而不難看出,細(xì)粒沉積巖的概念涵蓋了泥級(jí)和粉砂級(jí)兩個(gè)截然不同的粒度等級(jí)[14?17],且碳酸鹽、火山碎屑等特殊成分以及成巖作用改造特征的難以辨認(rèn)[18]為細(xì)粒沉積巖的分類定名研究帶來(lái)了新的問題。細(xì)粒沉積巖[19?20]、粉砂巖[21?22]、泥巖[23?28]、黏土巖[29]、泥質(zhì)巖[30]、泥狀巖[6,10],甚至涵蓋一定沉積結(jié)構(gòu)、石油行業(yè)特征的泥頁(yè)巖[31]、頁(yè)巖[21,32?42]、油泥/頁(yè)巖[43?44]等都用來(lái)描述細(xì)粒沉積巖,不僅在國(guó)內(nèi),國(guó)際上僅“泥巖”一詞就存在shale、clay、mudrock、mudstone、claystone、lutite、pelite、argillite等截然不同的表達(dá)方式[13,45?52]?;靵y的定名在生產(chǎn)中引起了一些麻煩,如目前非常規(guī)油氣開采的對(duì)象中,涵蓋了大量不同礦物成分、不同頁(yè)理發(fā)育程度的巖石類型[53],如粉砂質(zhì)頁(yè)巖,灰質(zhì)泥巖等。而上述沉積結(jié)構(gòu)、成分特征不同的細(xì)粒沉積巖在油氣富集規(guī)律及脆性、各向異性等工程特征上存在較大差異[54?55],對(duì)非常規(guī)油氣開采尤其是水平井部署及壓裂造成了極大的影響。
隨著美國(guó)Barnett頁(yè)巖、Marcellus頁(yè)巖以及Woodford頁(yè)巖的順利開采,細(xì)粒沉積巖的分類描述以及成因分析逐漸成為研究頁(yè)巖油氣富集規(guī)律的主要手段[56?61]。國(guó)外學(xué)者主要通過(guò)野外露頭以及巖心薄片觀察、化驗(yàn)分析[57?59]、測(cè)井[60]、地震[58?59,61]等多種手段,選取諸如顏色、礦物成分、沉積結(jié)構(gòu)、層理類型、生物化石等特征對(duì)細(xì)粒沉積巖進(jìn)行分類[10,12?13,46,56,62?68]。如Loucks et al.[56]在Fort Worth盆地Barnett層系中利用礦物成分、沉積結(jié)構(gòu)以及生物化石類型構(gòu)建分類標(biāo)準(zhǔn);McKee et al.[62]利用沉積結(jié)構(gòu)中的層理規(guī)模、力學(xué)特征進(jìn)行分類,但這種基于某種或某幾種特征的分類方法更加側(cè)重于原始沉積構(gòu)造以及生物活動(dòng)軌跡的研究,以重建細(xì)粒沉積古環(huán)境[56,63?64]。此外,部分學(xué)者采用三端元圖解的結(jié)構(gòu)分類法對(duì)細(xì)粒沉積巖進(jìn)行分類,并用“mudstone”作為所有細(xì)粒沉積巖的分類主名,但同樣在術(shù)語(yǔ)上造成了混淆。隨后,Lazer et al.[12]在上述基于粒度的結(jié)構(gòu)分類標(biāo)準(zhǔn)之上,增加巖石成分(硅質(zhì)、鈣質(zhì)、泥質(zhì)等)及層理特征(塊狀、層狀等)等術(shù)語(yǔ)進(jìn)行綜合定名,并利用其生物擾動(dòng)程度、化石類型、有機(jī)質(zhì)豐度、成巖特征和顏色對(duì)其名稱進(jìn)行修飾[10,12,46]。在針對(duì)細(xì)粒物質(zhì)沉積來(lái)源的復(fù)雜性上[65?66],Milliken[13]根據(jù)沉積及成巖特征將盆內(nèi)和盆外顆粒進(jìn)行區(qū)分,其中盆內(nèi)碎屑多為生物成因,而盆外碎屑來(lái)源則更加豐富,據(jù)此建立了Tarl/Varl(盆外的陸源碎屑/火山碎屑組分達(dá)75%以上),Carl(盆外碎屑小于75%,盆內(nèi)碎屑中生物鈣質(zhì)含量>生物硅質(zhì)含量)和Sarl(盆外碎屑小于75%,盆內(nèi)碎屑中生物鈣質(zhì)含量小于生物硅質(zhì)含量)的三端元巖石分類方案。該分類方案有效地區(qū)分了不同礦物的沉積、成巖特征,對(duì)恢復(fù)細(xì)粒沉積巖形成過(guò)程以及后期成巖改造具有重大的推進(jìn)作用,但由于礦物微觀特征識(shí)別以及成因解釋難度較大,該分類方案一直存在爭(zhēng)議[67?68]。
整體而言,國(guó)外學(xué)者所討論的細(xì)粒沉積巖分類及模式均集中在海相環(huán)境,而我國(guó)目前開發(fā)的非常規(guī)含油氣層系中,除四川、滇黔桂、塔里木地區(qū)的海相及海陸過(guò)渡相體系外,渤海灣盆地古近系,松遼盆地白堊系,鄂爾多斯盆地上三疊統(tǒng),準(zhǔn)噶爾盆地上二疊統(tǒng)、侏羅統(tǒng)等均屬于陸相細(xì)粒沉積體系[69?72](圖1)。與分布面積大,厚度穩(wěn)定,成分相對(duì)單一的海相細(xì)粒沉積相比,陸相湖盆由于距離物源較近且水體深度較小,受環(huán)境、氣候因素影響更加顯著[72?73],陸相細(xì)粒沉積發(fā)育規(guī)模更小,非均質(zhì)性更強(qiáng);并且,由于巖石礦物成分、結(jié)構(gòu)、組合方式在成因上的復(fù)雜性和多解性[65,74],國(guó)外的海相細(xì)粒沉積巖分類方案在陸相湖盆中變得不再適用。針對(duì)國(guó)內(nèi)復(fù)雜的陸相湖盆細(xì)粒沉積體系,國(guó)內(nèi)外學(xué)者進(jìn)行了不懈的努力,主流采用兼顧成因以及特征描述的“三端元”巖相學(xué)分類方法對(duì)我國(guó)獨(dú)特的陸相細(xì)粒沉積巖進(jìn)行劃分及定名。巖相是在一定沉積環(huán)境中形成的巖石類型及巖石組合[75?77],任何可以反映沉積環(huán)境變化的參數(shù)都可以作為巖相的劃分標(biāo)準(zhǔn)[78]。依據(jù)礦物成分、沉積構(gòu)造、有機(jī)質(zhì)豐度進(jìn)行巖相劃分時(shí)[12],礦物成分是確定細(xì)粒沉積巖巖石類型的關(guān)鍵,通常以能夠代表其物質(zhì)來(lái)源的陸源碎屑礦物、黏土礦物和盆內(nèi)自生的碳酸鹽礦物作為三端元共同進(jìn)行巖石類型的劃分[18,74,79?82]。但由于同成分不同成因顆粒、晶體組合識(shí)別困難[10,12?13,17,46,49],以及有機(jī)質(zhì)含量精細(xì)測(cè)算的實(shí)驗(yàn)條件限制[83],導(dǎo)致現(xiàn)場(chǎng)簡(jiǎn)陋條件細(xì)粒沉積巖分類工作難以進(jìn)行;其次,不同沉積盆地中細(xì)粒沉積巖的物質(zhì)來(lái)源、沉積機(jī)制各異,使得各盆地的分類方案被限制在了某個(gè)地區(qū)之內(nèi)難以向外推廣,如松遼盆地青山口組沉積時(shí)期,由于陸源供給充足,鹽度低,以石英、斜長(zhǎng)石為主,碳酸鹽礦物含量低[39],是否選擇三端元分類方案仍然需要進(jìn)一步討論;而在使用三端元綜合分類方案的盆地中,端元的選擇同樣具有差異性,如張少敏等[84]針對(duì)吉木薩爾凹陷蘆草溝組火山活動(dòng)頻繁的特征,依據(jù)成因—成分將陸源碎屑、火山碎屑和碳酸鹽替換作為細(xì)粒沉積巖巖石類型三角形圖解的三個(gè)端元。但由于火山作用形成的火山碎屑礦物組合同樣復(fù)雜多變,目前有關(guān)火山—熱液是否應(yīng)該參與細(xì)粒沉積巖的分類定名仍然存在一定爭(zhēng)議[85?88];此外,由于具體要解決科學(xué)問題的差異[11,89?91],不同學(xué)者在分類中往往添加一些特殊的修飾詞,如陳世悅等[91]依據(jù)混合沉積機(jī)制將東營(yíng)凹陷細(xì)粒沉積巖分為均勻混合/紋層疊置混合/不均勻團(tuán)塊混合長(zhǎng)英質(zhì)/黏土質(zhì)/碳酸鹽質(zhì)細(xì)粒混積巖。目前的分類方法均具有一定的地區(qū)性和局限性,至今尚未形成統(tǒng)一的,能夠應(yīng)用于石油、地質(zhì)等多領(lǐng)域研究的細(xì)粒沉積巖分類方案[12?13,46]。
缺乏統(tǒng)一的細(xì)粒沉積巖分類方案同樣為細(xì)粒沉積模式的構(gòu)建帶來(lái)了困難,不同學(xué)者建立模式想要解決的問題不同,面對(duì)盆地的地質(zhì)條件不同,沉積模式的建立相較于細(xì)粒沉積巖分類方案更加的混亂,“逐盆逐建,逐次逐建”是細(xì)粒沉積模式構(gòu)建的常態(tài)。如Plint et al.[92]基于水槽實(shí)驗(yàn)及原位海洋學(xué)檢測(cè),為明確陸架淤泥遷移沉降方式構(gòu)建了泥漿沉積中心的形成動(dòng)力學(xué)模型。袁選俊等[93]為尋找富有機(jī)質(zhì)頁(yè)巖的富集規(guī)律,構(gòu)建了“湖侵—水體分層”的有機(jī)質(zhì)聚集機(jī)理模型。Frébourg et al.[94]基于對(duì)野外露頭的高分辨率圖像采集,為確定火山活動(dòng)與沉積物生產(chǎn)力的相互作用關(guān)系,從細(xì)粒沉積物生產(chǎn)、運(yùn)輸、富集的角度構(gòu)建了美國(guó)德克薩斯州Eagle Ford/Boquillas層系的細(xì)粒沉積模式。針對(duì)上述情況,本文系統(tǒng)地總結(jié)、歸納了近年來(lái)陸相盆地細(xì)粒沉積分類方案,明確了我國(guó)陸相細(xì)粒沉積巖中常見的巖石類型、特征及形成動(dòng)力學(xué)機(jī)制,理清了常見細(xì)粒沉積模式的建立原則及適用范圍,并指出了目前存在的問題和未來(lái)發(fā)展方向,以期豐富陸相細(xì)粒沉積巖石學(xué)基礎(chǔ)理論,指導(dǎo)陸相非常規(guī)油氣資源的評(píng)價(jià)與優(yōu)選。
1 陸相細(xì)粒沉積巖特征及分類
我國(guó)陸相細(xì)粒沉積巖具有巖石類型復(fù)雜、結(jié)構(gòu)樣式多樣、空間分布非均質(zhì)性強(qiáng)的特征[70?71,95],因此在進(jìn)行陸相湖盆細(xì)粒沉積巖研究時(shí),分類標(biāo)準(zhǔn)及命名方案眾多:從有機(jī)成因以及石油開采的角度[96?97],中國(guó)陸相細(xì)粒沉積巖可以分為腐泥型、腐殖腐泥型和腐泥腐殖型[97?98]細(xì)粒沉積巖;從沉積環(huán)境角度,可以劃分為湖泊和湖泊—沼澤成因[99?101]細(xì)粒沉積巖;從水體性質(zhì)角度,可以劃分為淡水細(xì)粒沉積巖和咸水—半咸水[95]細(xì)粒沉積巖。由上述分類可知,細(xì)粒沉積巖的有機(jī)質(zhì)特征及所處盆地的構(gòu)造樣式、沉積環(huán)境是細(xì)粒沉積巖初步分類的重要依據(jù),目前廣泛應(yīng)用的分類方法往往也基于上述標(biāo)準(zhǔn),即結(jié)合細(xì)粒沉積巖成分、結(jié)構(gòu)、構(gòu)造等特征,采用巖相學(xué)分類方法[75?78],既可以有效地反映巖石的沉積環(huán)境,沉積水動(dòng)力變化,也可以兼顧巖石成分、結(jié)構(gòu)、構(gòu)造等特征。
伴隨著不同盆地細(xì)粒沉積巖巖石成分及微觀組構(gòu)特征研究的不斷深入,發(fā)現(xiàn)盆地水體咸化程度不同,細(xì)粒沉積巖巖石學(xué)特征差異極大[102?106]。以其中典型的渤海灣盆地和松遼盆地為例,渤海灣盆地沙河街組沉積時(shí)期是典型的咸化湖盆,發(fā)育的細(xì)粒沉積巖本質(zhì)上是一種混積巖[107?110],是陸源輸入的機(jī)械沉積作用和(生物)化學(xué)沉積作用共同作用的結(jié)果,由碳酸鹽礦物,石英、長(zhǎng)石等長(zhǎng)英質(zhì)礦物,和少量黏土礦物組成[79](圖2a),其中碳酸鹽組分和陸源碎屑組分雜亂混合在一起或以紋層的形式交替疊置[31,82,114?115]。而松遼盆地青山口組沉積時(shí)期形成的細(xì)粒沉積巖在巖石成分上碳酸鹽組分明顯較低,以石英、長(zhǎng)石等長(zhǎng)英質(zhì)組分和黏土組分為主[39,111?113](圖2b),筆者通過(guò)對(duì)松遼盆地南部長(zhǎng)嶺凹陷青山口組頁(yè)巖層系中碳酸鹽組分高值樣品點(diǎn)進(jìn)行觀察發(fā)現(xiàn),碳酸鹽組分通常以方解石、白云石膠結(jié)物的形式呈薄膜狀或粒狀鑲嵌充填在石英、長(zhǎng)石顆粒邊緣。此外也有部分學(xué)者認(rèn)為松遼盆地青山口組沉積時(shí)期碳酸鹽巖異常高值帶為介形蟲等生物滅絕形成[116]??傮w來(lái)說(shuō),淡水湖盆主要發(fā)生機(jī)械沉積作用,以陸源碎屑成分為主,而咸化湖盆沉積作用更為復(fù)雜,除機(jī)械沉積外,化學(xué)及生物沉積作用產(chǎn)生的盆內(nèi)粒屑同樣參與細(xì)粒沉積巖的構(gòu)成。故筆者依據(jù)其巖石學(xué)特征將陸相湖盆細(xì)粒沉積巖進(jìn)一步細(xì)分為混合型細(xì)粒沉積巖(咸化—半咸化湖盆)和碎屑型細(xì)粒沉積巖(淡水湖盆)兩大類,分別對(duì)二者的分類方案進(jìn)行總結(jié),以便更好地認(rèn)識(shí)不同類型細(xì)粒沉積體系中巖石成分、結(jié)構(gòu)、構(gòu)造等特征。
1.1 混合型細(xì)粒沉積巖的特征與分類
在咸化—半咸化湖盆中[117?118],當(dāng)陸源供應(yīng)、盆地內(nèi)生物化學(xué)反應(yīng)與火山活動(dòng)達(dá)到一定平衡時(shí)[119],長(zhǎng)英質(zhì)碎屑組分、火山碎屑組分以及碳酸鹽巖組分會(huì)共存并形成一個(gè)連續(xù)的統(tǒng)一體[120],此類由于混合沉積作用形成的巖石可稱作混合型細(xì)粒沉積巖?!盎旌铣练e”的概念最早由Mount[121]在1984年提出,90年代引入中國(guó)后取得了一系列的成果[101?103,122?124]?;旌铣练e形成的巖石類型豐富,陸源碎屑組分與火山碎屑、碳酸鹽等其他組分在微觀結(jié)構(gòu)上混合構(gòu)成的狹義混積巖[123?124],和碎屑巖與碳酸鹽巖、火山巖等其他同期異相巖體在空間上橫向相變,縱向互層或無(wú)規(guī)律零星交叉、夾層等層系上的混合形成的宏觀廣義混積巖[103]均屬于混合沉積巖的范疇[101?102]。我國(guó)渤海灣盆地東營(yíng)凹陷、濟(jì)陽(yáng)凹陷、滄東凹陷、歧口凹陷的沙河街組、孔店組等[78,125],四川盆地下侏羅統(tǒng)[78,90,126?128]、龍馬溪組[129?130],準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草溝組[131?132],柴達(dá)木盆地克魯克組、干柴溝組[133?135],三塘湖盆地條湖組、蘆草溝組等[136],廣泛發(fā)育混合細(xì)粒沉積巖。
最初進(jìn)行混合型細(xì)粒沉積巖分類時(shí),僅簡(jiǎn)單地根據(jù)其巖石學(xué)特征,頁(yè)理發(fā)育程度以及有機(jī)質(zhì)豐度將其簡(jiǎn)單命名為頁(yè)巖、泥巖、油頁(yè)巖等,但由于此類方案過(guò)于簡(jiǎn)單,單一巖石類型中往往包含大量信息而被快速摒棄。目前基于巖相對(duì)細(xì)粒沉積巖進(jìn)行分類和定名已經(jīng)在國(guó)內(nèi)外形成共識(shí)[137?140],巖相由于包含能夠反映沉積環(huán)境變化的巖石學(xué)以及構(gòu)造特征參數(shù),可以有效地幫助我們恢復(fù)不同盆地的沉積過(guò)程以及地質(zhì)條件。
目前常用的巖相分類指標(biāo)主要包括細(xì)粒沉積巖的礦物成分、沉積構(gòu)造以及有機(jī)質(zhì)豐度等。與前兩者具有一定的通用性不同,在非常規(guī)油氣勘探開發(fā)領(lǐng)域的研究學(xué)者更傾向于將能夠表征細(xì)粒沉積巖生烴能力及含油氣性的有機(jī)質(zhì)納入評(píng)價(jià)指標(biāo)中來(lái)[7,125,140?142],考慮到不同巖相類型細(xì)粒沉積巖有機(jī)質(zhì)含量及賦存狀態(tài)不同,采用總有機(jī)碳含量(TOC)作為評(píng)價(jià)其有機(jī)質(zhì)富集程度的參數(shù),我國(guó)通常以2%和4%為界,將混合型細(xì)粒沉積巖劃分為富有機(jī)質(zhì)、中有機(jī)質(zhì)和貧有機(jī)質(zhì)三種[23?25]。而沉積構(gòu)造參數(shù)的使用上,成層性是細(xì)粒沉積巖最顯著的特征之一[65],但目前有關(guān)層理的研究多集中在層理的成分、形態(tài)、連續(xù)性以及組合特征上[19,109,143],針對(duì)層理規(guī)模的劃分標(biāo)準(zhǔn)少有筆墨,本文綜合不同學(xué)者進(jìn)行巖相分類時(shí)采用的層理規(guī)模參數(shù)對(duì)層理規(guī)模以及名稱進(jìn)行了總結(jié)。與常規(guī)巖石的宏觀塊狀(>1 m)以及層狀構(gòu)造(根據(jù)規(guī)模進(jìn)一步細(xì)分0.5~1 m 為厚層、0.1~0.5 m 為中層、0.01~0.1 m 為薄層、小于0.01 m為頁(yè)狀層)不同,細(xì)粒沉積巖的“紋層”更傾向于是一個(gè)微觀結(jié)構(gòu)上的成因概念,宏觀為塊狀構(gòu)造的巖石內(nèi)部同樣可以存在紋層結(jié)構(gòu)[94],細(xì)粒沉積巖中使用的“層理”規(guī)模由小到大可以分為紋層狀(小于1 mm,主要集中在0.01~0.5 mm)、層狀(1 mm~1 m)以及塊狀構(gòu)造(內(nèi)部均一,部分發(fā)育負(fù)荷構(gòu)造、液化砂脈、生物擾動(dòng)等軟沉積變形構(gòu)造)[19,82,144?148]。然而,無(wú)論采取上述何種特征進(jìn)行修飾,在巖相分類中,細(xì)粒沉積巖的礦物成分一直是其中的關(guān)鍵[140,149?152]。通常采用三端元的巖石學(xué)分類方法,選取長(zhǎng)英質(zhì)礦物、碳酸鹽礦物和黏土礦物作為三個(gè)端元確定細(xì)粒沉積巖的巖石主名,如常見的黏土巖、石灰?guī)r/白云巖、混合沉積巖等[90,131?132]。最終形成以有機(jī)質(zhì)含量+沉積構(gòu)造+巖石學(xué)主名的混合型細(xì)粒沉積巖巖相綜合命名方法[149?152]。此類基于物質(zhì)成分及特征描述的分類方法由于具有易于觀察描述,現(xiàn)場(chǎng)操作簡(jiǎn)便的優(yōu)點(diǎn)[51],目前大多采用此種分類手段。
然而,基于礦物成分的巖石學(xué)特征分類方案無(wú)可避免地存在一個(gè)問題,即相同的成分往往代表著不同的物質(zhì)來(lái)源以及成因過(guò)程[65,153]。隨著顯微觀測(cè)手段的不斷進(jìn)步,多數(shù)學(xué)者通過(guò)對(duì)礦物特征(粒度、晶體結(jié)構(gòu)等)以及賦存狀態(tài)(顆粒/膠結(jié)物)的顯微特征研究[127,154?156],以及對(duì)礦物在沉積及成巖過(guò)程中的演變過(guò)程進(jìn)行了實(shí)驗(yàn)室模擬[157],在一定程度上恢復(fù)了細(xì)粒沉積巖中不同礦物的來(lái)源及形成機(jī)制。由此,基于礦物來(lái)源及成因的細(xì)粒沉積分類方法開始逐漸被大眾所接受。如王小軍等[158]基于顆粒粒度、成分、結(jié)構(gòu),選取粒屑(代表砂屑、生屑等生物化學(xué)沉積作用的碳酸鹽組分),泥(碳酸鹽泥和陸源碎屑泥),粉砂(石英、長(zhǎng)石巖屑等機(jī)械沉積的陸源碎屑組分)作為成因分類的三端元對(duì)混合型細(xì)粒沉積巖進(jìn)行劃分,同時(shí)增加鹽組分對(duì)巖石類型加以修飾,有效恢復(fù)陸相湖盆的咸化過(guò)程。但成因分類受到研究技術(shù)手段以及端元選取的限制,至今尚未形成統(tǒng)一的分類標(biāo)準(zhǔn)。
無(wú)論采用何種分類方法,其最終劃分的巖石類型均具有相似的特征?;旌闲图?xì)粒沉積巖整體具有黏土礦物含量普遍較低,碳酸鹽礦物含量較高的特點(diǎn),沉積構(gòu)造以紋層狀構(gòu)造為主,次為塊狀構(gòu)造,有機(jī)質(zhì)含量較高。本文采用以巖石學(xué)為基礎(chǔ)的巖相分類法進(jìn)行歸納,混合型細(xì)粒沉積巖中最常見的巖相類型為富有機(jī)質(zhì)層狀/紋層狀灰?guī)r相、富有機(jī)質(zhì)頁(yè)狀黏土巖相、中有機(jī)質(zhì)紋層狀灰質(zhì)混合沉積巖相、貧有機(jī)質(zhì)塊狀長(zhǎng)英質(zhì)/黏土質(zhì)混合沉積巖相等[78,159?160]。其中富有機(jī)質(zhì)層狀/紋層狀灰?guī)r相以淺色碳酸鹽紋層與深色富有機(jī)質(zhì)黏土紋層互層為典型特征。淺色碳酸鹽紋層厚度大,出現(xiàn)頻率高,界限清晰,局部呈脈狀或不連續(xù)夾層狀;黏土紋層內(nèi)部可見石英顆粒半定向分布,指示牽引流搬運(yùn)特征;有機(jī)質(zhì)賦存方式以順層狀為主,兼有分散狀富集的特點(diǎn),形成暗色的富有機(jī)質(zhì)層。富有機(jī)質(zhì)頁(yè)狀黏土巖相,也是我們最常見的“黑色頁(yè)巖”,頁(yè)理發(fā)育,硬度較小,巖心上多沿層理面破碎呈薄片狀,鏡下觀察石英顆粒順層性及定向性較差,以散亂分布的形式分布其中。中有機(jī)質(zhì)紋層狀灰質(zhì)細(xì)?;旌铣练e巖相是混合咸化湖盆中最為發(fā)育的一類巖相,由顏色較淺的碳酸鹽紋層、長(zhǎng)英質(zhì)紋層與暗色有機(jī)質(zhì)含量較高的黏土質(zhì)紋層在垂向上頻繁疊置構(gòu)成,淺色紋層通常呈連續(xù)或不連續(xù)透鏡狀產(chǎn)出,有機(jī)質(zhì)以分散狀、斷續(xù)紋層狀及短線狀分布在巖石內(nèi)部[7]。除上述巖相類型外,還包括在物源強(qiáng)度較高或生物貧瘠的條件下形成的貧有機(jī)質(zhì)塊狀灰質(zhì)混合沉積巖相、層狀粉砂巖相等,通常不作為重點(diǎn)研究?jī)?nèi)容。
1.2 碎屑型細(xì)粒沉積巖的特征與分類
碎屑型細(xì)粒沉積巖主要分布在我國(guó)松遼盆地的青山口組以及鄂爾多斯盆地的延長(zhǎng)組中,與混合型細(xì)粒沉積巖不同的是,碎屑型細(xì)粒沉積巖所在的淡水湖盆陸源碎屑供應(yīng)能量較強(qiáng),以陸源碎屑的機(jī)械沉積作用為主,少見盆內(nèi)自生的生物及化學(xué)沉淀物[45]。碎屑型細(xì)粒沉積巖分類中同樣將有機(jī)質(zhì)豐度[161?162]以及沉積構(gòu)造[111,163?166]作為分類標(biāo)準(zhǔn)之一,但在巖石學(xué)主名方面,由于碳酸鹽的賦存方式、分布及成因存在一定爭(zhēng)議,目前碎屑型細(xì)粒沉積巖巖石學(xué)命名主要存在兩種方案。
第一種“三端元”的巖石學(xué)分類方法,即參照混合型細(xì)粒巖分類方法,選擇黏土礦物、長(zhǎng)英質(zhì)礦物,碳酸鹽礦物作為三端元[161?162],將巖石類型分為黏土質(zhì)頁(yè)巖、長(zhǎng)英質(zhì)頁(yè)/泥巖、(介殼)灰?guī)r、和混合質(zhì)頁(yè)巖等。其中塊狀長(zhǎng)英質(zhì)泥巖多在淺湖水體動(dòng)蕩的環(huán)境下快速沉積形成,有機(jī)質(zhì)含量低,孔隙條件及含油性較差,而紋層發(fā)育良好的紋層狀混合質(zhì)頁(yè)巖是頁(yè)巖油富集的有利巖相[39]。但隨著研究的不斷進(jìn)行,吳松濤[167]通過(guò)對(duì)松遼盆地古龍頁(yè)巖油富集部位與巖石類型進(jìn)行擬合,發(fā)現(xiàn)與其他盆地不同,松遼盆地黏土紋層與長(zhǎng)英質(zhì)及鈣質(zhì)紋層相比油氣富集情況更好,對(duì)此類碎屑型細(xì)粒沉積巖分類是否需要如此繁瑣再次提出了質(zhì)疑。且松遼盆地發(fā)育以機(jī)械沉積作用為主的長(zhǎng)英質(zhì)細(xì)粒沉積巖,具有高碳酸鹽含量的樣品個(gè)數(shù)較少且集中,多為介殼灰?guī)r呈夾層形式零星分布在細(xì)粒沉積的縱向序列之中[39,162],更像是由于突發(fā)性事件導(dǎo)致水體生物繁盛后大批量死亡產(chǎn)生鈣質(zhì)骨骼富集從而引起的鈣質(zhì)組分增多,潘樹新等[116]也已經(jīng)證實(shí)松遼盆地青山口組存在多期由于介形蟲集群性死亡事件產(chǎn)生的介形蟲層,并認(rèn)為基準(zhǔn)面的周期性下降造成水體變淺、礦化度增高以及陸源碎屑輸入量增高都會(huì)導(dǎo)致局部鈣質(zhì)骨骼富集??傮w上看,松遼盆地細(xì)粒沉積以粉砂和黏土交替出現(xiàn)為主,碳酸鹽含量較低,通常作為膠結(jié)物或夾層形式存在。因此,筆者更傾向于第二種碎屑型細(xì)粒沉積巖巖石學(xué)分類方案。
第二種劃分方案不再拘泥于巖石成分,而是將碎屑巖粒度作為確定巖石主名的標(biāo)準(zhǔn),首先利用宏觀構(gòu)造特征將其分為頁(yè)理(單層厚度小于0.01 m)發(fā)育的“頁(yè)巖”以及塊狀構(gòu)造的“泥巖”[10,165?166],隨后結(jié)合粒度特征將其分為泥巖/頁(yè)巖、粉砂質(zhì)泥巖、粉砂質(zhì)頁(yè)巖[164,168]。并針對(duì)其中含油氣性較好的頁(yè)巖,根據(jù)其內(nèi)部紋層的產(chǎn)狀以及連續(xù)性[169?170]將頁(yè)巖相進(jìn)一步細(xì)分為波狀紋層頁(yè)巖,水平紋層狀頁(yè)巖,透鏡紋層狀頁(yè)巖,(均質(zhì))頁(yè)巖等。整體來(lái)說(shuō),與混合型細(xì)粒沉積巖相比,碎屑型細(xì)粒沉積的巖石類型簡(jiǎn)單,巖石分類方案單一,以粒級(jí)、沉積構(gòu)造作為分類依據(jù),結(jié)合有機(jī)質(zhì)含量將其劃分為“貧、中、富有機(jī)質(zhì)的泥巖或頁(yè)巖”,更有利于后續(xù)研究工作的開展。
碎屑型細(xì)粒沉積巖中泥巖與頁(yè)巖在空間上互補(bǔ)交替出現(xiàn)[169?170],其中泥巖顏色變化范圍較大,石英、長(zhǎng)石等長(zhǎng)英質(zhì)礦物含量較高且呈紋層、脈狀分布其中,取心過(guò)程中不易破碎,單層厚度較大,塊狀泥巖內(nèi)部槽模、溝模、火焰構(gòu)造等變形構(gòu)造發(fā)育[111,165,169],指示高能環(huán)境中的快速沉積過(guò)程,推測(cè)此類泥巖形成于水體動(dòng)蕩,含氧量高,物源碎屑供給豐富的環(huán)境,不利于有機(jī)質(zhì)的生成和保存,故有機(jī)質(zhì)豐度較低[171];而頁(yè)巖的黏土礦物含量更高,顏色更深,以黑色、黑褐色為主,頁(yè)理發(fā)育,取心時(shí)易沿層理面發(fā)生破碎,存在少量生物碎屑,指示陸源碎屑供給不足,沉積速率低,有機(jī)質(zhì)富集,是碎屑型細(xì)粒沉積巖開發(fā)的有利巖相[34,172]。
對(duì)不同細(xì)粒沉積體系分類方案總結(jié)(表1)發(fā)現(xiàn),無(wú)論是哪種類型的細(xì)粒沉積體系,何種巖相分類方案,其目的都是為了結(jié)合區(qū)域沉積構(gòu)造背景,通過(guò)對(duì)不同巖石類型組合、不同沉積構(gòu)造特征的樣品進(jìn)行環(huán)境特征恢復(fù)乃至成因過(guò)程的耦合,建立具有代表性的細(xì)粒沉積模式,以指導(dǎo)非常規(guī)油氣的勘探與開發(fā)。但由于細(xì)粒沉積過(guò)程的復(fù)雜性和多解性,我們很難找到某個(gè)或某幾個(gè)泛用性極高的巖相類型表征其形成環(huán)境及成因過(guò)程,目前通常采用模擬細(xì)粒沉積巖的特殊構(gòu)造,尤其是“紋層”形成過(guò)程的方法,近似恢復(fù)其形成時(shí)期的流體特征及搬運(yùn)—沉積的動(dòng)力學(xué)機(jī)制。
2 陸相細(xì)粒沉積巖成因機(jī)理
Selvaraj et al.[173]通過(guò)對(duì)我國(guó)東南部湖泊沉積巖心的沉積學(xué)、物理學(xué)、地球化學(xué)分析,證實(shí)湖泊中細(xì)粒沉積物組分構(gòu)成顯示出多種搬運(yùn)—沉積特征,揭示了細(xì)粒沉積過(guò)程的復(fù)雜性。本文總結(jié)了有關(guān)細(xì)粒沉積巖中最為常見的黏土質(zhì)、長(zhǎng)英質(zhì)、灰質(zhì)/白云質(zhì)細(xì)粒沉積巖形成以及有機(jī)質(zhì)賦存過(guò)程的相關(guān)成果,旨在加深細(xì)粒沉積巖成因機(jī)理的相關(guān)認(rèn)識(shí)。
2.1 黏土質(zhì)細(xì)粒沉積巖形成機(jī)理
黏土是細(xì)粒沉積巖中最常見的組分,與滿足斯托克定律的非黏性顆粒不同,單黏土顆粒在流體中長(zhǎng)時(shí)間處于懸浮狀態(tài)不易發(fā)生沉積,需要依靠絮凝作用發(fā)生沉降[6,174?175]。Curran et al.[176]通過(guò)對(duì)美國(guó)鰻魚河入海泥漿粒度及成分的測(cè)量,證實(shí)絮狀物是細(xì)黏土顆粒物質(zhì)發(fā)生沉積時(shí)最主要的形態(tài),且絮凝體的尺寸與泥漿濃度、流體流量、動(dòng)能、距離河口遠(yuǎn)近、風(fēng)速、波高等環(huán)境常量無(wú)關(guān),這是因?yàn)樾跄丘ば灶w粒物質(zhì)本身固有的屬性。細(xì)顆粒泥沙在水中呈懸浮狀態(tài)時(shí),由于表面物理化學(xué)作用而帶有一定符號(hào)的電荷,吸引周圍的異號(hào)離子及水分子緊密圍繞在其周圍并形成吸附水膜。當(dāng)同樣帶有吸附水膜的兩顆粒相互靠近時(shí)就會(huì)形成公共的擴(kuò)散層即反離子層,使他們緊緊地結(jié)合成絮團(tuán),擴(kuò)散層越薄,吸附能力越強(qiáng),絮團(tuán)尺寸越大[173]。上述由于細(xì)顆粒表面物化作用產(chǎn)生吸附力形成的聚集往往被稱為“ 鹽絮凝”[177?178],而由真菌、細(xì)菌和浮游生物排泄的產(chǎn)生的黏性胞外聚合物物質(zhì)(EPS)使細(xì)顆粒發(fā)生聚集的過(guò)程則被稱為“生物絮凝”[179?181],二者可能同時(shí)存在,并相互促進(jìn),但生物絮凝作用始終占據(jù)主導(dǎo)地位[181]。綜上所述,細(xì)粒物質(zhì)形成的絮凝體大小只與顆粒表面的物理化學(xué)作用強(qiáng)度以及生物作用的強(qiáng)弱有關(guān)[182],但總覽目前細(xì)粒沉積過(guò)程模擬實(shí)驗(yàn),雖然明確了生物黏聚力對(duì)于細(xì)粒沉積形態(tài)存在影響[180?182],但仍然未找到合適的表征參數(shù)將生物作用納入細(xì)粒沉積成因過(guò)程模擬[183?184],導(dǎo)致模擬的結(jié)果與自然界存在一定偏差。
當(dāng)黏土以絮凝體形式發(fā)生沉積時(shí),主要存在兩種方式,其一為懸浮沉降模式[185?186]。Kranck et al.[185]通過(guò)將實(shí)驗(yàn)室構(gòu)建的重力沉降物理模型與現(xiàn)實(shí)中不同地理環(huán)境細(xì)粒沉積物質(zhì)粒度圖譜進(jìn)行比對(duì),證實(shí)細(xì)粒沉積體系中存在“一次”懸浮沉降形成的黏土物質(zhì),此類黏土沉積不經(jīng)過(guò)后期搬運(yùn)、改造,只與自身粒徑、形態(tài)與水動(dòng)力強(qiáng)度有關(guān)。陸相湖盆中該過(guò)程主要發(fā)生在湖泊中心靜水區(qū)[187?191],形成無(wú)特殊紋層構(gòu)造的塊狀泥巖。此外由河流、風(fēng)力及大氣粉塵、氣溶膠帶來(lái)的細(xì)粒物質(zhì)通過(guò)環(huán)流和混合擴(kuò)散的方式以懸移質(zhì)遷移至湖盆中心[185,189?190],過(guò)程中較粗的顆粒由于水體流速降低不斷從溫躍層中沉降形成長(zhǎng)英質(zhì)紋層,而較細(xì)的黏土及有機(jī)質(zhì)則以彌散懸浮狀態(tài)集中在溫躍層內(nèi),后期由于氣候[192?193]、溫度[194]、鹽度[195?196]、生物作用強(qiáng)度[197]變化使得溫躍層消失,平衡狀態(tài)破壞,懸浮物靜沉降通量增大,并在水體分層的條件下被保存,最終形成與季節(jié)和氣候相關(guān)的紋層狀或?qū)訝钅鄮r[188,198?199]。
隨著細(xì)粒沉積相關(guān)水槽實(shí)驗(yàn)及現(xiàn)場(chǎng)監(jiān)測(cè)數(shù)據(jù)分析研究的不斷深入,由于黏性細(xì)顆粒物質(zhì)組成的絮凝體在搬運(yùn)及沉積過(guò)程中可以表現(xiàn)出與粗粒碎屑等效的非黏性特征[200],絮凝體沉積存在第二種方式,即“平流運(yùn)輸”模式[200?202],該模式下通常形成紋層狀頁(yè)巖。Schieber et al.[201]通過(guò)模擬不同類型黏土顆粒在不同水體鹽度、沉積物濃度及流速下混合泥漿中的搬運(yùn)沉積過(guò)程時(shí),發(fā)現(xiàn)絮狀體豐度會(huì)隨著流速的降低不斷增加,當(dāng)?shù)竭_(dá)臨界沉積速度后,絮狀體會(huì)形成流線型波紋并不斷向下游移動(dòng)(圖3)。該臨界速度與初始沉積物濃度有關(guān),沉積物的臨界速度在濃度較低時(shí)最低至10 m/s,而當(dāng)沉積物濃度升高至1~2 g/L 時(shí),該臨界速度可上升至26 m/s,該速度區(qū)間內(nèi),黏土物質(zhì)均可以形成絮狀波紋發(fā)生遷移而不被破壞,打破了黏土物質(zhì)只能在低能靜水條件下沉積的局限性。此類絮狀波紋通過(guò)朵葉體不斷崩塌前積向下游移動(dòng),內(nèi)部存在低角度傾斜紋層,但由于其在底面流動(dòng)時(shí)存在30~40 cm的間距,沉積后一旦被完全壓實(shí),波紋內(nèi)部?jī)A斜薄層將不可識(shí)別,最終形成平行的黏土質(zhì)紋層[201?202]。
2.2 長(zhǎng)英質(zhì)細(xì)粒沉積巖形成機(jī)理
陸相湖盆中長(zhǎng)英質(zhì)沉積物多指陸源碎屑組分,主要發(fā)生機(jī)械沉積作用,為典型的非黏性顆粒,沉積過(guò)程滿足斯托克定律[110]。當(dāng)長(zhǎng)英質(zhì)碎屑由陸源河流搬運(yùn)進(jìn)入湖盆時(shí),受到重力、浮力、底床剪切引起的拖曳力、上舉力的共同作用,當(dāng)負(fù)載其的水動(dòng)力減弱,顆粒運(yùn)動(dòng)速度降低,重力逐漸占據(jù)主導(dǎo)地位,長(zhǎng)英質(zhì)沉積物在近岸處發(fā)生機(jī)械分異并沉降形成塊狀具有波狀層理或低角度交錯(cuò)層理的粉砂巖及長(zhǎng)英質(zhì)泥巖,向湖盆中心水動(dòng)力逐漸減弱,粒度減小直至過(guò)渡為泥巖沉積[203]。而在湖盆細(xì)粒沉積巖的實(shí)際分布中不難發(fā)現(xiàn),湖盆內(nèi)部甚至中心處同樣存在代表快速沉積、較高能水流層理的塊狀、層狀甚至紋層狀長(zhǎng)英質(zhì)泥巖相[196,204?205],證明除上述機(jī)理外,存在其他的動(dòng)力學(xué)機(jī)制,將長(zhǎng)英質(zhì)礦物長(zhǎng)距離搬運(yùn)至湖盆深處沉積。
現(xiàn)代沉積及古代沉積地層均可證實(shí)粉砂級(jí)的長(zhǎng)英質(zhì)沉積物可以受到后續(xù)風(fēng)暴流、底流等作用發(fā)生剝蝕呈再懸浮狀態(tài),并作為推移質(zhì)與黏土絮凝體一起在湖底發(fā)生長(zhǎng)距離運(yùn)輸,沉降形成層狀、紋層狀粉砂質(zhì)泥巖[197,203?204]。能夠使沉積物發(fā)生長(zhǎng)距離運(yùn)輸?shù)牧黧w包括但不僅限于洪水成因異輕流、異重流[66,175,206]、濁流[207?209]的長(zhǎng)距離搬運(yùn)和風(fēng)力驅(qū)動(dòng)環(huán)流形成絮凝羽狀流[83,210]等。早在2002年,Curran et al.[176]便證實(shí)黏土絮凝體與非黏性粗長(zhǎng)英質(zhì)顆粒是河水密度羽流的重要組成部分,并在密度羽流向湖盆中心運(yùn)移時(shí),風(fēng)力驅(qū)動(dòng)的上升流和環(huán)流會(huì)為細(xì)粒沉積碎屑物質(zhì)進(jìn)行二次補(bǔ)給,且粗粒成分在斜坡處略有增加,證實(shí)高密度流如濁流、風(fēng)驅(qū)底流同樣會(huì)對(duì)細(xì)粒沉積產(chǎn)生影響。異重流、濁流、碎屑流等不同形式底流主要通過(guò)牽引作用搬運(yùn)碎屑物質(zhì),既可以單獨(dú)對(duì)細(xì)粒沉積作用,也可以交互共同作用于湖盆深水細(xì)粒沉積體系,形成丘狀層理、脈狀層理、粒序?qū)永淼忍厥獬练e構(gòu)造特征[91,205,211?217]。陳世悅等[91]通過(guò)小尺度巖心、微觀結(jié)構(gòu)分析發(fā)現(xiàn)位于洼陷中部的樊頁(yè)1井廣泛發(fā)育砂質(zhì)團(tuán)塊及不同類型紋層互層的特征,內(nèi)部脈狀、水平、波狀、透鏡狀層理等典型的牽引流成因構(gòu)造發(fā)育。并在北部陡坡深水區(qū)對(duì)應(yīng)巖心上找到了與激發(fā)型重力流對(duì)應(yīng)的揉皺、變形和滑動(dòng)面構(gòu)造,以及代表濁流的粒序?qū)永頋岱e巖,證實(shí)渤海灣盆地東營(yíng)凹陷沙河街組細(xì)粒沉積為重力流與濁流共同作用的結(jié)果。潘樹新等[205]利用松遼盆地的巖心及青海湖衛(wèi)星照片資料,對(duì)湖盆深水區(qū)底流改造沉積物特征、識(shí)別標(biāo)志、分布特征進(jìn)行了分析,識(shí)別出湖盆中心存在重力塊體流、濁流、風(fēng)驅(qū)底流改造沉積,并認(rèn)為風(fēng)驅(qū)底流是形成深水細(xì)粒沉積的主要成因。筆者在松遼盆地長(zhǎng)嶺凹陷同樣發(fā)現(xiàn)了具有牽引流特征的細(xì)粒沉積物證實(shí)了這一說(shuō)法(圖4)。
通過(guò)上述流體搬運(yùn)最終形成粉砂紋層的過(guò)程是復(fù)雜的,絮凝體的內(nèi)部并非由純黏土物質(zhì)構(gòu)成,而是由底部邊界沉積層中湍流懸浮的所有顆粒組分共同構(gòu)成的,這其中既包含較粗的長(zhǎng)英質(zhì)碎屑又包含較細(xì)的黏土質(zhì)碎屑[218]。由于絮凝體可以在搬運(yùn)過(guò)程中呈現(xiàn)與長(zhǎng)英質(zhì)沉積物相似的非黏性特征,故二者共同在流體中被搬運(yùn)時(shí),在相對(duì)較高的區(qū)域,由于水體能量周期性變化發(fā)生機(jī)械分異作用,形成層狀或塊狀的粉砂巖及粉砂質(zhì)泥巖,黏土紋層以?shī)A層的形式分布其中[201,219]。而隨著水體不斷向湖盆中心遷移,流速逐漸下降至25 cm/s時(shí),粗粒的長(zhǎng)英質(zhì)沉積物基本沉積完畢,絮凝體構(gòu)成主要的推移質(zhì)載荷,穩(wěn)定沉降至湖底,并在底面翻滾和彈跳,絮凝體發(fā)生破壞,內(nèi)部粗顆粒被釋放,粉砂和黏土顆粒分離,分別形成粉砂質(zhì)波紋和泥質(zhì)波紋,同一時(shí)間內(nèi)在湖底發(fā)生遷移,并在尾部形成薄薄的沉積層[201?202,220?222]。大量波紋隨著時(shí)間的推移不斷在湖底移動(dòng),形成隨機(jī)分布的粉砂及泥質(zhì)紋層,但若想持續(xù)形成此類互層結(jié)構(gòu),需要存在持續(xù)穩(wěn)定的沉積物供應(yīng),并使粉砂及泥質(zhì)波紋保持該狀態(tài)在底床發(fā)生長(zhǎng)距離遷移。因此,在巖心上往往看不到大段完整泥質(zhì)及粉砂紋層互層結(jié)構(gòu),而是顯示如圖4a中由于物源供給不充分導(dǎo)致的微細(xì)紋層、不連續(xù)紋層甚至透鏡體等沉積構(gòu)造特征(圖5)。除此之外,近岸處未完全固結(jié)的粉砂級(jí)碎屑被剝蝕并發(fā)生二次搬運(yùn)至湖盆中心,與上述飽含水的黏土絮團(tuán)共同沉降至湖底,在上覆埋深作用下發(fā)生差異壓實(shí)作用同樣可以形成粉砂質(zhì)透鏡體[221?222]。
2.3 鈣質(zhì)細(xì)粒沉積巖形成機(jī)理
鈣質(zhì)(碳酸鹽)混合細(xì)粒沉積沉積巖常見于咸水—半咸水的混合沉積體系[223]。過(guò)去碳酸鹽組分往往代表低能的沉積環(huán)境[224?225],春秋兩季富含碳酸鈣的底層水體由于溫躍層的消失,發(fā)生循環(huán)進(jìn)入表層水,并在冬夏水體分層時(shí)期由于水體鹽度不斷增大,在表層形成細(xì)粒方解石并發(fā)生沉淀形成碳酸鹽紋層[78,224]。
此外,部分學(xué)者認(rèn)為碳酸鹽沉積物與黏土物質(zhì)顆粒類似,可以通過(guò)絮凝體發(fā)生沉積[224,226]。Schieberet al.[227]對(duì)碳酸鹽的絮凝沉積進(jìn)行了補(bǔ)充實(shí)驗(yàn),通過(guò)觀察從自然界中收集的含碳酸鹽泥漿在水槽中的沉積過(guò)程,建立了不同流速及床面剪切應(yīng)力下泥漿遷移形態(tài)。如圖6所示,首先明確粒徑大于50 μm的顆粒為絮狀體,可以觀察到在水流速度以及剪切應(yīng)力逐漸增大的過(guò)程中,顆粒構(gòu)成中絮凝體比例隨流速提升逐漸降低,非黏性“粗”顆粒占比逐漸升高,最終作為主要的推移質(zhì)進(jìn)行移動(dòng)并形成橢圓狀粗粒波紋;與之相反的是,當(dāng)水流速度下降時(shí),由于絮凝體在砂紋中所占比例增加,波紋形態(tài)也發(fā)生變化,尾部伸長(zhǎng)合并,黏性特征越來(lái)越明顯。甚至當(dāng)流速低于15 m/s以下時(shí),粗粒非黏性顆粒徹底消失,僅保留由絮凝體形成的波紋尾部前后相連形成的寬闊帶狀體。在實(shí)驗(yàn)觀察過(guò)程中發(fā)現(xiàn),當(dāng)流速達(dá)到28 m/s,剪切應(yīng)力達(dá)到0.25 Pa時(shí),絮狀體強(qiáng)度能夠克服剪切應(yīng)力保持穩(wěn)定,砂礫大小的絮狀顆粒和非黏性的顆粒將同時(shí)作為推移質(zhì)向前移動(dòng),逐漸向前垮塌使尾部堆積伸長(zhǎng),形成凹凸不平的床形,該底床載荷由富含粉砂及碳酸鹽絮凝體的薄層組成,經(jīng)后期壓實(shí)后形成長(zhǎng)英質(zhì)及灰質(zhì)紋層互層現(xiàn)象。該實(shí)驗(yàn)有效證實(shí)碳酸鹽絮凝作用的存在,并豐富了灰質(zhì)/長(zhǎng)英質(zhì)混合沉積巖的成因機(jī)理,即除沉積供應(yīng)能量及水體性質(zhì)的變化導(dǎo)致間歇性沉積作用和后期改造形成的異期紋層外[78],底流攜帶載荷類型變化同樣可以形成由碳酸鹽及長(zhǎng)英質(zhì)沉積物構(gòu)成的同期紋層[226]。
2.4 有機(jī)質(zhì)富集機(jī)理
細(xì)粒沉積巖中的有機(jī)質(zhì)存在分散狀及層狀兩種富集形式[113,166],富集程度受原始生產(chǎn)力和同沉積期及后期保存條件的雙重控制[225,228?229]。Tyson[228]通過(guò)對(duì)現(xiàn)代沉積中的沉積速率與有機(jī)碳含量的多元回歸分析擬合得出沉積速率與有機(jī)質(zhì)含量呈負(fù)相關(guān)關(guān)系,同時(shí)發(fā)現(xiàn),當(dāng)水中溶解氧量小于4 mL/L時(shí),有機(jī)質(zhì)富集總量是富氧條件下的2.5~4倍,證實(shí)貧氧、低沉積速率是確保有機(jī)物堆積不被稀釋的關(guān)鍵。各大盆地?zé)N源巖層系中廣泛發(fā)育的黃鐵礦[230?231]也為該理論提供支撐,黃鐵礦粒徑越小,證實(shí)沉積時(shí)期水體含氧量越低,越有利于有機(jī)質(zhì)的保存[232?234]。
除上述保存條件外,由于水體咸度變化[166]和火山、熱液活動(dòng)及[235?238]盆外火山物質(zhì)注入都[94,239]會(huì)造成有機(jī)物的生產(chǎn)能力提高,從而引起有機(jī)質(zhì)的富集。如趙文智等[165]通過(guò)對(duì)鄂爾多斯衣食村剖面的沉積物及有機(jī)質(zhì)含量測(cè)算,發(fā)現(xiàn)當(dāng)水體鹽度從1%增加到3%時(shí),有機(jī)質(zhì)捕獲效率提高300%;當(dāng)沉積物濃度從2% 上升至4% 時(shí),有機(jī)質(zhì)捕獲效率提高100%,證實(shí)適當(dāng)?shù)南袒h(huán)境可以有效促進(jìn)有機(jī)質(zhì)絮凝從而提高有機(jī)質(zhì)捕獲效率,更有利于有機(jī)質(zhì)的富集[166,240?242]。另一方面,早在1985年Zimmerle[243]通過(guò)對(duì)世界廣泛分布頁(yè)巖層系的橫向?qū)Ρ龋l(fā)現(xiàn)有機(jī)質(zhì)富集帶中往往含有大量的火山物質(zhì),證實(shí)火山活動(dòng)可以有效提高生物生產(chǎn)力,促進(jìn)有機(jī)質(zhì)的富集。這是由于火山活動(dòng)時(shí),深層熱液注入以及火山灰沉落都會(huì)為藻類勃發(fā)提供充分的營(yíng)養(yǎng)物質(zhì),有效提高有機(jī)質(zhì)原始生產(chǎn)力[85,236?237,242?246],最終形成富含有機(jī)質(zhì)的紋層狀及透鏡狀頁(yè)巖,其中透鏡狀頁(yè)巖是由于與火山活動(dòng)相伴生的強(qiáng)烈構(gòu)造作用引起底流的二次改造,在差異壓實(shí)作用下形成粉砂或生物顆粒的透鏡體[94,246]。
3 陸相湖盆細(xì)粒沉積模式
如何表征不同類型細(xì)粒沉積巖的宏觀分布規(guī)律及影響因素,刻畫不同沉積組分的成因機(jī)理及控制因素,將細(xì)粒沉積體系納入現(xiàn)有的宏觀大尺度沉積體系是建立陸相湖盆細(xì)粒沉積模式需要解決的主要問題[246?250]。針對(duì)上述問題,目前有關(guān)細(xì)粒沉積模式建立主要可以分為三個(gè)主要方向:1)指向油氣分布評(píng)價(jià)的“細(xì)粒沉積有機(jī)質(zhì)富集模式”[1,38,161,251?256];2)指向湖盆古環(huán)境重建的以不同巖石類型空間分布規(guī)律為核心的“細(xì)粒沉積巖相分布模式”[111,160?161,163,166,168];3)指向以建立與常規(guī)體系統(tǒng)一的“源—匯”系統(tǒng)為目的,以形成過(guò)程、機(jī)制響應(yīng)恢復(fù)為核心的“細(xì)粒沉積成因模式”[31,82,92,257?258]。三種方向側(cè)重點(diǎn)不同,在進(jìn)行陸相湖盆細(xì)粒沉積模式研究時(shí),需要明確研究方向,選擇合適的標(biāo)準(zhǔn)進(jìn)行細(xì)粒沉積模式的構(gòu)建。
郭英海等[251]基于文獻(xiàn)計(jì)量學(xué)對(duì)近年來(lái)細(xì)粒沉積研究動(dòng)態(tài)分析時(shí)發(fā)現(xiàn),無(wú)論是細(xì)粒沉積巖分類相關(guān)的成分、成因以及結(jié)構(gòu)研究,還是作為源—儲(chǔ)一體的非常規(guī)油氣載體的生烴能力以及含油氣性能研究,其最終目的都是為了指導(dǎo)非常規(guī)油氣地質(zhì)勘探與選區(qū)評(píng)價(jià)。國(guó)內(nèi)外學(xué)者針對(duì)具有良好開發(fā)潛力的富有機(jī)質(zhì)頁(yè)巖,構(gòu)建了一系列以有機(jī)質(zhì)富集為核心的沉積模式[1,38,161,252?256],概括起來(lái)主要包括水體分層模式,湖侵模式和門檻模式三種[38]。第一種湖侵模式(圖7a)[125,161,252?254]通常與層序地層學(xué)中基準(zhǔn)面旋回聯(lián)系在一起,是由于相對(duì)湖平面上升,氧氣無(wú)法到達(dá)湖底,在深水區(qū)形成大面積缺氧環(huán)境,從而使有機(jī)質(zhì)富集形成黑色頁(yè)巖。然而仍有部分學(xué)者認(rèn)為僅靠湖平面的快速上升無(wú)法有效的使沉積物聚集[161,255],如王嵐等[161]在對(duì)青山口組的沉積環(huán)境參數(shù)測(cè)算中發(fā)現(xiàn),代表湖泊鹽度的Sr/Ba值在青一段初期部分樣品點(diǎn)中大于3.3,指示鹽度在淡水及咸水之間變化,推測(cè)青一段存在間歇性海侵作用。以潘樹新等[116]為代表的一些學(xué)者認(rèn)為松遼盆地缺乏海相地層沉積特征,且古生物學(xué)、礦物學(xué)、地球化學(xué)等資料均不能提供海水入侵的可靠證據(jù),是否存在海侵仍需要進(jìn)一步的驗(yàn)證。第二種的水體分層模式[256,259?262]是指在溫度、鹽度或生物活動(dòng)強(qiáng)度等差異作用下,匯水盆地中由于水體溫度不同而形成縱向密度分層,表層水體與底層水體不發(fā)生物質(zhì)交換,底層水體含氧量驟減,形成適合有機(jī)質(zhì)富集的貧氧環(huán)境。生物在底層水體中難以存活,有利于有機(jī)質(zhì)的保存,可以說(shuō)水體分層是絕大多數(shù)富有機(jī)質(zhì)細(xì)粒沉積巖形成的前提條件[262]。第三種門檻沉積模式[38]可以分為高門檻和低門檻兩種,“高門檻模式”(圖7b,c)與第二種水體分層模式類似,指湖盆一側(cè)存在由退覆體或斷層巖體造成遮擋,外源水體無(wú)法影響湖盆深部水體而造成水體分層現(xiàn)象,使得底部水體呈有利于有機(jī)質(zhì)富集的貧氧、還原條件。而“低門檻模式”則不再具有水體分層特征,是在水體較淺的情況下,由于生物分解過(guò)程中將水體氧氣大量消耗,使得整個(gè)水體呈還原環(huán)境,形成以高等植物為主要有機(jī)質(zhì)類型的煤系泥頁(yè)巖沉積。此類沉積模式可以有效評(píng)價(jià)盆地含油氣性,但由于缺少空間上巖相或沉積相的約束,始終無(wú)法精準(zhǔn)確定富有機(jī)質(zhì)細(xì)粒沉積巖特征及其分布規(guī)律,且由于不同類型細(xì)粒沉積巖的脆性、各向異性等工程特征差異巨大,在一定程度上制約了非常規(guī)油氣的開采效率。
為了更好地了解不同巖相類型細(xì)粒沉積巖的空間分布規(guī)律,部分學(xué)者提出了基于巖相—沉積環(huán)境耦合的細(xì)粒沉積模式構(gòu)建方法[113,160?161,168],即利用不同沉積環(huán)境參數(shù)特征恢復(fù)細(xì)粒沉積巖石類型在平面及縱向的變化規(guī)律,建立不同巖相的空間展布樣式。該類型在混合型細(xì)粒沉積巖中更為常見,如杜學(xué)斌等[160]將東營(yíng)凹陷分為了陡坡帶、湖心區(qū)、緩坡帶和臺(tái)地礁灘,不同巖相類型的細(xì)粒沉積巖在平面上呈環(huán)帶分布。其中盆地緩坡邊緣蒸發(fā)作用較強(qiáng)烈,常見碳酸鹽沉積,向湖依次發(fā)育緩坡混合帶(包括灰—泥二元混積外帶、砂—灰—泥三元混積內(nèi)帶)的層狀或塊狀混積巖相,湖心處陸源碎屑較少,以紋層狀的灰—泥混積巖相為主。而陸源輸入占主導(dǎo)的陡坡區(qū),以機(jī)械沉積作用為主,近岸處能量較高,主要發(fā)育塊狀粉砂質(zhì)泥巖相,近湖一側(cè)黏土礦物成分增多呈現(xiàn)砂—灰—泥三元混合沉積特征,發(fā)育層狀粉砂質(zhì)及灰質(zhì)混積巖相,局部可見塊狀變形構(gòu)造(圖8)。陸源碎屑湖盆同樣可以采用此種方案[113,163,166,168],即淺水近岸斜坡處以粉砂質(zhì)泥巖和暗色泥巖組合為主,深湖則多見暗色富有機(jī)質(zhì)頁(yè)巖,泥巖與頁(yè)巖的分布范圍基本不重合,平面上呈互補(bǔ)式分布[113,166]。而垂向上,巖相類型及組合方式主要受沉積環(huán)境的演化過(guò)程控制[163,168],若湖盆水體萎縮變淺,湖盆逐漸充填,湖相細(xì)粒沉積巖中粉砂紋層出現(xiàn)頻率逐漸升高,巖相組合將呈現(xiàn)由富有機(jī)質(zhì)頁(yè)巖巖相向暗色泥巖巖相、粉砂質(zhì)泥巖巖相,甚至是粉砂巖巖相過(guò)渡的特征[168]。此類巖相—環(huán)境耦合的沉積模式可以有效指示不同類型巖相的空間分布范圍對(duì)非常規(guī)油氣勘探具有重要的指導(dǎo)作用,但由于盆地地質(zhì)條件的差異,此類沉積模式具有極強(qiáng)的區(qū)域性,難以進(jìn)行推廣和類比。
因此,為建立宏觀統(tǒng)一的“源—匯”系統(tǒng),將細(xì)粒沉積與常規(guī)沉積體系有機(jī)融合。部分學(xué)者嘗試將成因機(jī)制引入細(xì)粒沉積模式,恢復(fù)湖盆內(nèi)不同位置的沉積作用類型、過(guò)程機(jī)理,構(gòu)建不同成因類型巖相空間分布模式[31,82,92,257?258]。其中海相細(xì)粒沉積巖率先采用此種方案[92,257?258],Plint et al.[92]通過(guò)恢復(fù)泥漿在陸架上的輸送過(guò)程及其對(duì)古環(huán)境及地層層序的響應(yīng),構(gòu)建了加拿大西部前陸盆地陸架海侵—高位域和海退—低位域兩種細(xì)粒沉積模式。其中的海侵模式與陸相湖盆湖侵作用形成的碎屑型細(xì)粒沉積特征類似[263],洪水期陸源注入的碎屑物質(zhì)進(jìn)入湖盆后形成半固結(jié)的泥床,并在后期風(fēng)暴及波浪的作用下被反復(fù)改造再次懸浮后,經(jīng)混合流搬運(yùn)沿湖底運(yùn)輸,與經(jīng)懸浮羽流搬運(yùn),由枯水期河流、風(fēng)浪作用搬運(yùn)而來(lái)的沉積物一道進(jìn)入湖盆中心并發(fā)生沉積(圖9b)。然而,咸化湖盆沉積作用更為復(fù)雜[82,264],如劉惠民等[82]在對(duì)東營(yíng)凹陷沙四上亞段細(xì)?;旆e巖組構(gòu)與沉積環(huán)境分析后認(rèn)為,該時(shí)期具有斷陷特征,存在緩坡以及陡坡兩個(gè)截然不同的沉積環(huán)境,湖盆中心位于近陡坡一側(cè);上述不同的環(huán)境中的水體特征以及發(fā)生的主要沉積作用類型與盆地內(nèi)細(xì)粒沉積的巖石組分、有機(jī)質(zhì)豐度、沉積構(gòu)造存在良好的耦合關(guān)系,因此將東營(yíng)凹陷沙四上亞段細(xì)粒沉積體系進(jìn)行淺湖—半深湖—深湖的成因空間分區(qū)。淺湖區(qū)陸源碎屑物源供給充分,黏土絮團(tuán)與長(zhǎng)英、長(zhǎng)石構(gòu)成的粗顆粒在進(jìn)入湖盆后發(fā)生機(jī)械分異作用,粗顆粒物質(zhì)不斷沉降,部分黏土絮團(tuán)仍以層間流形式向湖盆中心繼續(xù)遷移,隨著水體能量逐漸下降,最終以機(jī)械作用的形式沉降下來(lái),在淺湖區(qū)粗碎屑邊緣形成帶狀分布的層狀砂/灰質(zhì)泥巖相;半深湖區(qū)水體安靜、清澈,陽(yáng)光充足,由于淺湖區(qū)和深湖區(qū)(季節(jié)性水體交換)帶來(lái)的大量營(yíng)養(yǎng)物質(zhì),生物通常呈季節(jié)性爆發(fā)生長(zhǎng),以生物化學(xué)作用為主,碳酸鹽類礦物明顯富集;深湖區(qū)由于靠近陡坡帶,水動(dòng)力強(qiáng),負(fù)載量大,且存在不同方向不同性質(zhì)的水體混合,局部發(fā)育快速堆積形成塊狀或?qū)訝睿ㄉ百|(zhì))泥巖相,湖盆中心靜水區(qū)則多以黏土與藻類的懸浮沉降作用為主,形成具有黏土—有機(jī)質(zhì)紋層的紋層狀泥質(zhì)灰?guī)r或灰質(zhì)泥巖相(圖9a)。值得注意的是,此類成因分類方案中,依然采用細(xì)粒沉積的巖石學(xué)類型分布作為耦合標(biāo)準(zhǔn)[31,82],與細(xì)粒沉積的成因分類方案結(jié)合并不緊密。
4 陸相細(xì)粒沉積巖研究發(fā)展趨勢(shì)
目前有關(guān)陸相湖盆細(xì)粒沉積巖分類、成因及沉積模式的研究仍然存在以下問題。
(1) 有關(guān)陸相細(xì)粒沉積的分類方案眾多,但受微觀尺度下細(xì)粒沉積巖中不同成因礦物特征識(shí)別的限制,仍然以描述性的分類為主。截至目前,已有無(wú)數(shù)的研究證實(shí)細(xì)粒沉積的過(guò)程可以與層序地層學(xué)[264?267]以及源—匯系統(tǒng)理論[268?269]相結(jié)合,跨學(xué)科的細(xì)粒沉積研究可以更加有效地預(yù)測(cè)細(xì)粒沉積巖巖石類型以及空間組合模式。這就要求我們必須加強(qiáng)關(guān)于細(xì)粒沉積巖微觀巖石學(xué)、礦物學(xué)[90]甚至古生物學(xué)[269]的研究,如通過(guò)微觀結(jié)構(gòu)及地球化學(xué)特征對(duì)具有不同物質(zhì)來(lái)源自生石英以及不同成巖特征的次生石英加以區(qū)分,可以進(jìn)一步明確細(xì)粒沉積成巖改造的影響[90]。建立科學(xué)統(tǒng)一的成因分類,恢復(fù)細(xì)粒沉積形成過(guò)程及成因機(jī)制,才能構(gòu)建全面且具有泛用性的細(xì)粒沉積模式,如若不然,與諸如三角洲等常規(guī)“粗?!背练e模式進(jìn)行連接和統(tǒng)一時(shí)終究會(huì)面對(duì)不小的麻煩。
(2) 具體進(jìn)行陸相混合型細(xì)粒沉積巖成因分類時(shí),如何選取三個(gè)成因端元仍然存在一定問題。目前有關(guān)細(xì)粒沉積的“多物質(zhì)來(lái)源,多成因機(jī)制”已經(jīng)被逐漸認(rèn)可[74,245,270],但國(guó)內(nèi)外有關(guān)混合型細(xì)粒沉積巖的研究多集中在硅質(zhì)碎屑—碳酸鹽混合沉積作用之上。通過(guò)前文可發(fā)現(xiàn)無(wú)論是在進(jìn)行細(xì)粒沉積分類時(shí)選取的三端元圖解中缺少代表火山碎屑成分的端元,還是在沉積模式建立上將此類混合沉積巖簡(jiǎn)單地歸為陸源碎屑注入和湖相生物—化學(xué)沉淀的混合,都忽略了火山活動(dòng)以及熱液噴流對(duì)細(xì)粒沉積帶來(lái)的影響。近年來(lái),已有不少學(xué)者證實(shí)火山活動(dòng)頻繁的地區(qū)與現(xiàn)今油田分布范圍存在一定的重合[237],如準(zhǔn)噶爾吉木薩爾凹陷便存在大量的火山活動(dòng)的證據(jù),且對(duì)細(xì)粒沉積存在一定的改造作用[80,271]。但火山及熱液活動(dòng)對(duì)有機(jī)質(zhì)富集促進(jìn)作用的研究也僅停留在觀察統(tǒng)計(jì)的層面上[94],缺乏更深層次的機(jī)理分析及實(shí)驗(yàn)?zāi)M。此外,地球深部物質(zhì)在細(xì)粒沉積巖形成時(shí)以何種相互作用機(jī)理,何種演變方式,何種賦存狀態(tài)與碳酸鹽以及陸源碎屑組分進(jìn)行混合,更需要進(jìn)一步地探索,以期在未來(lái)能夠找到恰當(dāng)?shù)幕鹕阶饔帽碚鲄?shù),被應(yīng)用到細(xì)粒沉積的成因分類以及相關(guān)模式的建立。
(3) 細(xì)粒沉積巖的成因分類以及成因模式建立目前已經(jīng)有了長(zhǎng)足的進(jìn)步,但二者相關(guān)性依然較差,目前的成因模式中討論的巖石類型依然是基于巖石學(xué)特征進(jìn)行劃分的。如何將細(xì)粒沉積的顯微結(jié)構(gòu)與具體的成因過(guò)程相結(jié)合,規(guī)范細(xì)粒沉積成因模式中的巖相成因類型,是目前細(xì)粒沉積成因模式建立亟需解決的重點(diǎn)問題。
(4) 細(xì)粒沉積成因過(guò)程模擬采用的實(shí)驗(yàn)設(shè)備和技術(shù)相對(duì)落后,無(wú)法恢復(fù)自然界中復(fù)雜的沉積現(xiàn)象,且細(xì)粒沉積由于粒度過(guò)小,容易受到內(nèi)部其他顆粒以及實(shí)驗(yàn)中邊界條件的影響使實(shí)驗(yàn)結(jié)果產(chǎn)生偏差[271?274]。此外,由于目前實(shí)驗(yàn)設(shè)計(jì)過(guò)于簡(jiǎn)單,往往集中于某個(gè)小尺度單一過(guò)程通量的搬運(yùn)、沉積模擬,缺乏代表生物作用、成巖作用的環(huán)境常量[274?276]。上述兩點(diǎn)問題的存在,導(dǎo)致目前細(xì)粒沉積模擬實(shí)驗(yàn)?zāi)P湍芊裰苯討?yīng)用到百年乃至千年尺度的自然界中備受質(zhì)疑[277?278]。亟需加強(qiáng)沉積過(guò)程中小尺度模擬實(shí)驗(yàn)研究[279?281],尤其針對(duì)細(xì)顆粒內(nèi)部相互作用、沉降機(jī)制和近底床沉積過(guò)程的模擬,從而建立細(xì)粒沉積中沉積物搬運(yùn)—沉積方式與流體流變特征的關(guān)系,恢復(fù)顆?!坝|發(fā)—搬運(yùn)—沉降”過(guò)程。同時(shí),加強(qiáng)不同學(xué)科融合,探索能夠有效表征參與細(xì)粒沉積過(guò)程的生物作用、火山活動(dòng)以及成巖改造的環(huán)境參數(shù),構(gòu)建與自然界等效性更好的實(shí)驗(yàn)?zāi)P汀?/p>
5 結(jié)論
(1) 與海相沉積不同,陸相湖盆細(xì)粒沉積巖由于礦物成分、結(jié)構(gòu)各異,沉積—成巖機(jī)制復(fù)雜,加之不同學(xué)者的研究領(lǐng)域及目的不同,有關(guān)陸相湖盆細(xì)粒沉積分類方案以及沉積模式一直沒有達(dá)成共識(shí)。
(2) 依據(jù)不同陸相湖盆細(xì)粒沉積巖的巖石學(xué)特征,將我國(guó)陸相細(xì)粒沉積巖分為混合型細(xì)粒沉積巖以及碎屑型細(xì)粒沉積巖,混合型細(xì)粒沉積巖主要采用“有機(jī)質(zhì)含量+沉積構(gòu)造+(三端元)巖石學(xué)主名”的巖相分類法,碎屑型細(xì)粒沉積巖除上述分類方法外,可以用巖石粒度特征替代以碳酸鹽、黏土、石英/長(zhǎng)石為三端元的巖石學(xué)特征進(jìn)行巖性主名的確定。
(3) 系統(tǒng)歸納了目前有關(guān)細(xì)粒沉積巖中黏土質(zhì)、長(zhǎng)英質(zhì)、鈣質(zhì)(碳酸鹽)組分以及有機(jī)質(zhì)的遷移、沉降、保存機(jī)理的認(rèn)識(shí)。突破以往細(xì)顆粒只能在靜水條件下沉積的限制,泥級(jí)的碳酸鹽、黏土礦物通過(guò)絮凝作用形成絮團(tuán),以與粗顆粒等效的方式通過(guò)湖盆內(nèi)不同類型流體搬運(yùn)而發(fā)生長(zhǎng)距離運(yùn)輸并與較粗的粉砂級(jí)顆粒共同發(fā)生沉積。向湖盆中心靠近時(shí),由于水體能量下降,絮團(tuán)崩解,內(nèi)部較粗的粉砂顆粒被釋放,與黏土顆粒一道以絮狀波紋的形式不斷遷移,沉積壓實(shí)后可以形成水平/波狀紋層、透鏡狀紋層等典型的細(xì)粒沉積巖結(jié)構(gòu)。
(4) 細(xì)粒沉積巖的有機(jī)質(zhì)含量主要受原始生產(chǎn)力和同沉積期及后期保存條件的雙重控制,其中高原始生產(chǎn)力、貧氧、低沉積速率、適當(dāng)咸化的水體、火山物質(zhì)和熱液注入都有利于有機(jī)質(zhì)的富集。
(5) 根據(jù)研究方向的差異,將目前細(xì)粒沉積模式分為三種,即指向油氣分布評(píng)價(jià)的“有機(jī)質(zhì)富集模式”,指向湖盆古環(huán)境重建的以不同巖石類型空間分布規(guī)律為核心的“巖相分布模式”,以及指向以建立與常規(guī)體系統(tǒng)一的“源—匯”系統(tǒng)為目的,以形成過(guò)程、機(jī)制響應(yīng)恢復(fù)為核心的“成因模式”。指出加強(qiáng)細(xì)粒沉積巖中不同礦物成分的微觀結(jié)構(gòu)特征、沉積—成巖機(jī)理認(rèn)識(shí),將巖石的微觀成因分類方案與宏觀成因模式有效融合是未來(lái)細(xì)粒沉積研究的關(guān)鍵。
參考文獻(xiàn)(References)
[1] Picard M D. Classification of fine-grained sedimentary rocks[J].
Journal of Sedimentary Research, 1971, 41(1): 179-195.
[2] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and
implications for source, seal, and reservoir properties in petroleum
systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[3] Clarke F W. The data of geochemistry[M]. 2nd ed. Washington:
Government Printing Office, 1924: 1-770.
[4] Wickman F E. The “total” amount of sediments and the composition
of the“ average igneous rock”[J]. Geochimica et Cosmochimica
Acta, 1954, 5(3): 97-110.
[5] Sorby H C. On the application of quantitative methods to the
study of the structure and history of rocks[J]. Quarterly Journal
of the Geological Society, 1908, 64(1/2/3/4): 171-233.
[6] Krumbein W C. The mechanical analysis of fine-grained sediments
[J]. Journal of Sedimentary Research, 1932, 2(3):
140-149.
[7] 陳世悅,張順,王永詩(shī),等. 渤海灣盆地東營(yíng)凹陷古近系細(xì)粒沉
積巖巖相類型及儲(chǔ)集層特征[J]. 石油勘探與開發(fā),2016,43
(2):198-208.[Chen Shiyue, Zhang Shun, Wang Yongshi, et al.
Lithofacies types and reservoirs of Paleogene fine-grained sedimentary
rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum
Exploration and Development, 2016, 43(2): 198-208.]
[8] 鄒才能,楊智,張國(guó)生,等. 常規(guī)—非常規(guī)油氣“有序聚集”理論
認(rèn)識(shí)及實(shí)踐意義[J]. 石油勘探與開發(fā),2014,41(1):14-27.
[Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Conventional
and unconventional petroleum "orderly accumulation": Concept
and practical significance[J]. Petroleum Exploration and Development,
2014, 40(1): 14-27.]
[9] Lewan M D. Laboratory classification of very fine grained sedimentary
rocks[J]. Geology, 1978, 6(12): 745-748.
[10] Macquaker J H S, Adams A E. Maximizing information from
fine-grained sedimentary rocks: An inclusive nomenclature for
mudstones[J]. Journal of Sedimentary Research, 2003, 73
(5): 735-744.
[11] Jiang Z X, Duan H J, Liang C, et al. Classification of
hydrocarbon-bearing fine-grained sedimentary rocks[J]. Journal
of Earth Science, 2017, 28(6): 693-976.
[12] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing
key attributes of fine-grained sedimentary rocks in outcrops,
cores, and thin sections: Nomenclature and description guidelines
[J]. Journal of Sedimentary Research, 2015, 85(3):
230-246.
[13] Milliken K. A compositional classification for grain assemblages
in fine-grained sediments and sedimentary rocks[J]. Journal
of Sedimentary Research, 2014, 84(12): 1185-1199.
[14] Shepard F P. Nomenclature based on sand-silt-clay ratios[J].
Journal of Sedimentary Research, 1954, 24(3): 151-158.
[15] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock
classification and nomenclature for use in New Zealand[J].
New Zealand Journal of Geology and Geophysics, 1970, 13
(4): 937-968.
[16] Flemming B W. A revised textural classification of gravel-free
muddy sediments on the basis of ternary diagrams[J]. Continental
Shelf Research, 2000, 20(10/11): 1125-1137.
[17] Folk R L. The distinction between grain size and mineral composition
in sedimentary-rock nomenclature[J]. The Journal of
Geology, 1954, 62(4): 344-359.
[18] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill
Publishing Company, 1980: 1-182.
[19] 柳波,呂延防,孟元林,等. 湖相紋層狀細(xì)粒巖特征、成因模式
及其頁(yè)巖油意義:以三塘湖盆地馬朗凹陷二疊系蘆草溝組為
例[J]. 石油勘探與開發(fā),2015,42(5):598-607.[Liu Bo, Lü
Yanfang, Meng Yuanlin, et al. Petrologic characteristics and genetic
model of lacustrine lamellar fine-grained rock and its significance
for shale oil exploration: A case study of Permian Lucaogou
Formation in Malang Sag, Santanghu Basin, NW China
[J]. Petroleum Exploration and Development, 2015, 42(5):
598-607.]
[20] 周立宏,蒲秀剛,陳長(zhǎng)偉,等. 陸相湖盆細(xì)粒巖油氣的概念、特
征及勘探意義:以渤海灣盆地滄東凹陷孔二段為例[J]. 地球
科學(xué),2018,43(10):3625-3639.[Zhou Lihong, Pu Xiugang,
Chen Changwei, et al. Concept, characteristics and prospecting
significance of fine-grained sedimentary oil gas in terrestrial lake
basin: A case from the Second member of Paleogene Kongdian
Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science,
2018, 43(10): 3625-3639.]
[21] 鄒才能,朱如凱,白斌,等. 致密油與頁(yè)巖油內(nèi)涵、特征、潛力
及挑戰(zhàn)[J]. 礦物巖石地球化學(xué)通報(bào),2015,34(1):1-17.[Zou
Caineng, Zhu Rukai, Bai Bin, et al. Significance, geologic
characteristics, resource potential and future challenges of tight
oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry,
2015, 34(1): 1-17.]
[22] 朱如凱,鄒才能,吳松濤,等. 中國(guó)陸相致密油形成機(jī)理與富
集規(guī)律[J]. 石油與天然氣地質(zhì),2019,40(6):1168-1184.[Zhu
Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation
and accumulation of continental tight oil in China[J]. Oil
& Gas Geology, 2019, 40(6): 1168-1184.]
[23] 高崗,向?qū)毩?,都鵬燕,等. 準(zhǔn)噶爾盆地瑪湖凹陷風(fēng)城組泥巖
與泥質(zhì)白云巖熱模擬產(chǎn)物特征對(duì)比[J]. 地球科學(xué)與環(huán)境學(xué)
報(bào),2016,38(1):93-103.[Gao Gang, Xiang Baoli, Du Pengyan,
et al. Comparison of thermal simulation product characteristics
of mudstone and argillaceous dolomite from Fengcheng
Formation in Mahu Sag of Junggar Basin[J]. Journal of earth
Sciences and Environment, 2016, 38(1): 93-103.]
[24] Williams H, Turner F J, Gilbert C M. Petrography: An introduction
to the study of rocks in thin section[M]. 2nd ed. San
Francisco: W. H. Freeman and Company, 1982.
[25] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill
Publishing Company, 1980.
[26] Bates R L, Jackson J A. Glossary of geology[M]. 3rd ed. Alexandria:
American Geological Institute, 1987.
[27] Alexander T, Baihly J, Boyer C, et al. The shale gas revolution
[J]. New Technology of Oilfield, 2011, 23(3): 40-55.
[28] 國(guó)家石油和化學(xué)工業(yè)局. SY/T 5368—2000 巖石薄片鑒定
[S]. 北京:石油工業(yè)出版社,2000. [State Administration of
Petroleum and Chemical Industry. SY/T 5368-2000 thin section
examination of rock[S]. Beijing: Petroleum Industry Press,
2000.]
[29] 姜在興. 沉積學(xué)[M]. 2 版. 北京:石油工業(yè)出版社,2010.[Jiang
Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum
Industry Press, 2010.]
[30] 王成云,匡立春,高崗,等. 吉木薩爾凹陷蘆草溝組泥質(zhì)巖類
生烴潛力差異性分析[J]. 沉積學(xué)報(bào),2014,32(2):385-390.
[Wang Chengyun, Kuang Lichun, Gao Gang, et al. Difference
in hydrocarbon generation potential of the shaly source rocks in
Jimusar Sag, Permian Lucaogou Formation[J]. Acta Sedimentologica
Sinica, 2014, 32(2): 385-390.]
[31] 王勇,劉惠民,宋國(guó)奇,等. 濟(jì)陽(yáng)坳陷泥頁(yè)巖細(xì)粒沉積體系
[J]. 石油學(xué)報(bào),2019,40(4):395-410.[Wang Yong, Liu Huimin,
Song Guoqi, et al. Lacustrine shale fine-grained sedimentary
system in Jiyang Depression[J]. Acta Petrolei Sinica,
2019, 40(4): 395-410.]
[32] 盧雙舫,李俊乾,張鵬飛,等. 頁(yè)巖油儲(chǔ)集層微觀孔喉分類與
分級(jí)評(píng)價(jià)[J]. 石油勘探與開發(fā),2018,45(3):436-444.[Lu
Shuangfang, Li Junqian, Zhang Pengfei, et al. Classification
of microscopic pore-throats and the grading evaluation on shale
oil reservoirs[J]. Petroleum Exploration and Development,
2018, 45(3): 436-444.]
[33] 聶海寬,張培先,邊瑞康,等. 中國(guó)陸相頁(yè)巖油富集特征[J].
地學(xué)前緣,2016,23(2):55-62.[Nie Haikuan, Zhang Peixian,
Bian Ruikang, et al. Oil accumulation characteristics of China
continental shale[J]. Earth Science Frontiers, 2016, 23(2):
55-62.]
[34] 宋國(guó)奇,張林曄,盧雙舫,等. 頁(yè)巖油資源評(píng)價(jià)技術(shù)方法及其
應(yīng)用[J]. 地學(xué)前緣,2013,20(4):221-228.[Song Guoqi,
Zhang Linye, Lu Shuangfang, et al. Resource evaluation method
for shale oil and its application[J]. Earth Science Frontiers,
2013, 20(4): 221-228.]
[35] 支東明,唐勇,鄭孟林,等. 準(zhǔn)噶爾盆地瑪湖凹陷風(fēng)城組頁(yè)巖
油藏地質(zhì)特征與成藏控制因素[J]. 中國(guó)石油勘探,2019,24
(5):615-623. [Zhi Dongming, Tang Yong, Zheng Menglin,
et al. Geological characteristics and accumulation controlling
factors of shale reservoirs in Fengcheng Formation, Mahu
Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24
(5): 615-623.]
[36] 趙文智,胡素云,侯連華,等. 中國(guó)陸相頁(yè)巖油類型、資源潛力
及與致密油的邊界[J]. 石油勘探與開發(fā),2020,47(1):1-10.
[Zhao Wenzhi, Hu Suyun, Hou Lianhua, et al. Types and resource
potential of continental shale oil in China and its boundary
with tight oil[J]. Petroleum Exploration and Development,
2020, 47(1): 1-10.]
[37] 趙文智,胡素云,侯連華. 頁(yè)巖油地下原位轉(zhuǎn)化的內(nèi)涵與戰(zhàn)略
地位[J]. 石油勘探與開發(fā),2018,45(4):537-545.[Zhao Wenzhi,
Hu Suyun, Hou Lianhua. Connotation and strategic role of
in-situ conversion processing of shale oil underground in the onshore
China[J]. Petroleum Exploration and Development,
2018, 45(4): 537-545.]
[38] 鄒才能,楊智,崔景偉,等. 頁(yè)巖油形成機(jī)制、地質(zhì)特征及發(fā)展
對(duì)策[J]. 石油勘探與開發(fā),2013,40(1):14-26. [Zou
Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism,
geological characteristics and development strategy of nonmarine
shale oil in China[J]. Petroleum Exploration and Development,
2013, 40(1): 14-26.]
[39] 柳波,石佳欣,付曉飛,等. 陸相泥頁(yè)巖層系巖相特征與頁(yè)巖
油富集條件:以松遼盆地古龍凹陷白堊系青山口組一段富有
機(jī)質(zhì)泥頁(yè)巖為例[J]. 石油勘探與開發(fā),2018,45(5):828-838.
[Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological characteristics
and shale oil enrichment of lacustrine fine-grained sedimentary
system: A case study of organic-rich shale in First member
of Cretaceous Qingshankou Formation in Gulong Sag, Songliao
Basin, NE China[J]. Petroleum Exploration and Development,
2018, 45(5): 828-838.]
[40] 支東明,唐勇,楊智峰,等. 準(zhǔn)噶爾盆地吉木薩爾凹陷陸相頁(yè)
巖油地質(zhì)特征與聚集機(jī)理[J]. 石油與天然氣地質(zhì),2019,40
(3):524-534. [Zhi Dongming, Tang Yong, Yang Zhifeng,
et al. Geological characteristics and accumulation mechanism of
continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil &
Gas Geology, 2019, 40(3): 524-534.]
[41] 趙賢正,周立宏,蒲秀剛,等. 陸相湖盆頁(yè)巖層系基本地質(zhì)特
征與頁(yè)巖油勘探突破:以渤海灣盆地滄東凹陷古近系孔店組
二段一亞段為例[J]. 石油勘探與開發(fā),2018,45(3):361-372.
[Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Geological
characteristics of shale rock system and shale oil exploration
in a lacustrine basin: A case study from the Paleogene 1st submember
of Kong 2 member in Cangdong Sag, Bohai Bay Basin,
China[J]. Petroleum Exploration and Development, 2018,
45(3): 361-372.]
[42] 王民,馬睿,李進(jìn)步,等. 濟(jì)陽(yáng)坳陷古近系沙河街組湖相頁(yè)巖
油賦存機(jī)理[J]. 石油勘探與開發(fā),2019,46(4):789-802.
[Wang Min, Ma Rui, Li Jinbu, et al. Occurrence mechanism
of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang
Depression, Bohai Bay Basin, China[J]. Petroleum Exploration
and Development, 2019, 46(4): 789-802.]
[43] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin,
2002, 86(11): 1921-1938.
[44] Mavor M. Barnett shale gas-in-place volume including sorbed
and free gas volume[R]. Texas: AAPG Southwest Section
Meeting, 2003.
[45] Tourtelot H A. Theuseof theword “shale”[J]. American Journal
of Science, 1960, 258: 335-343.
[46] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction
and overview[M]. New York: Springer, 2005:
1-297.
[47] O'Brien N R, Slatt R M. Argillaceous rock atlas[M]. New
York: Springer, 1990: 1-156.
[48] Weaver C E. Clays, muds, and shales: Developments in sedimentology,
44[M]. Amsterdam: Elsevier, 1989: 1-819.
[49] Boggs S. Mudstones and shales[M]//Boggs S Jr. Petrology of
sedimentary rocks. 2nd ed. New York: Cambridge University
Press, 2009: 194-219.
[50] Middleton G V, Church M J, Coniglio M, et al. Encyclopedia
of sediments and sedimentary rocks[M]. Dordrecht: Springer,
2003: 1-821.
[51] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale
[M]. New York: Springer, 1980: 1-310.
[52] Weaver C E. Fine-grained rocks: Shales or physilites[J]. Sedimentary
Geology, 1980, 27(4): 301-313.
[53] 鄒才能,陶士振,袁選俊,等.“ 連續(xù)型”油氣藏及其在全球的
重要性:成藏、分布與評(píng)價(jià)[J]. 石油勘探與開發(fā),2009,36(6):
669-682.[Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al.
Global importance of “continuous” petroleum reservoirs: Accumulation,
distribution and evaluation[J]. Petroleum Exploration
and Development, 2009, 36(6): 669-682.]
[54] 周立宏,蒲秀剛,鄧遠(yuǎn),等. 細(xì)粒沉積巖研究中幾個(gè)值得關(guān)注
的問題[J]. 巖性油氣藏,2016,28(1):6-15.[Zhou Lihong, Pu
Xiugang, Deng Yuan, et al. Several issues in studies on finegrained
sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28
(1): 6-15.]
[55] 鐘建華,劉圣鑫,馬寅生,等. 頁(yè)巖宏觀破裂模式與微觀破裂
機(jī)理[J]. 石油勘探與開發(fā),2015,42(2):242-250.[Zhong Jianhua,
Liu Shengxin, Ma Yinsheng, et al. Macro-fracture mode
and micro-fracture mechanism of shale[J]. Petroleum Explora‐
tion and Development, 2015, 42(2): 242-250.]
[56] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies
and depositional setting of a deep-water shale-gas succession
in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007,
91(4): 579-601.
[57] Hickey J J, Bo H. Lithofacies summary of the Mississippian
barnett shale, mitchell 2 T. P. sims well, wise county, texas
[J]. AAPG Bulletin, 2007, 91(4): 437-443.
[58] Mitra A, Warrington D S, Sommer A. Application of lithofacies
models to characterize unconventional shale gas reservoirs
and identify optimal completion intervals[C]//Proceedings of
the SPE western regional meeting. Anaheim: Society of Petroleum
Engineers, 2010.
[59] Wang G C, Carr T R. Methodology of organic-rich shale lithofacies
identification and prediction: A case study from Marcellus
Shale in the Appalachian Basin[J]. Computers & Geosciences,
2012, 49: 151-163.
[60] Bhattacharya S, Carr T R, Pal M. Comparison of supervised
and unsupervised approaches for mudstone lithofacies classification:
Case studies from the Bakken and Mahantango-Marcellus
Shale, USA[J]. Journal of Natural Gas Science and Engineering,
2016, 33: 1119-1133.
[61] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy
of the barnett shale in east-central Fort Worth Basin, Texas
[J]. AAPG Bulletin, 2012, 96(1): 1-22.
[62] McKee E D, Weir G W. Terminology for stratification and
cross-stratification in sedimentary rocks[J]. GSA Bulletin,
1953, 64(4): 381-390.
[63] Trabucho-Alexandre J, Dirkx R, Veld H, et al. Toarcian black
shales in the dutch central graben: Record of energetic, variable
depositional conditions during an oceanic anoxic event[J]. Journal
of Sedimentary Research, 2012, 82(2): 104-120.
[64] Schieber J. Distribution and deposition of mudstone facies in the
Upper Devonian Sonyea Group of New York[J]. Journal of Sedimentary
Research, 1999, 69(4): 909-925.
[65] Schieber J. Early diagenetic silica deposition in algal cysts and
spores: A source of sand in black shales?[J]. Journal of Sedimentary
Research, 1996, 66(1): 175-183.
[66] Mulder T, Syvitski J P M. Turbidity currents generated at river
mouths during exceptional discharges to the world oceans[J].
The Journal of Geology, 1995, 103(3): 285-299.
[67] Camp W K, Egenhoff S, Schieber J, et al. A compositional
classification for grain assemblages in fine-grained sediments
and sedimentary rocks — discussion[J]. Journal of Sedimentary
Research, 2016, 86(1): 1-5.
[68] Milliken K L. A compositional classification for grain assemblages
in fine-grained sediments and sedimentary rocks—reply
[J]. Journal of Sedimentary Research, 2016, 86(1): 6-10.
[69] 李新景,呂宗剛,董大忠,等. 北美頁(yè)巖氣資源形成的地質(zhì)條
件[J]. 天然氣工業(yè),2009,29(5):27-32.[Li Xinjing, Lü Zonggang,
Dong Dazhong, et al. Geologic controls on accumulation
of shale gas in North America[J]. Natural Gas Industry, 2009,
29(5): 27-32.]
[70] 鄒才能,董大忠,王社教,等. 中國(guó)頁(yè)巖氣形成機(jī)理、地質(zhì)特征
及資源潛力[J]. 石油勘探與開發(fā),2010,37(6):641-653.[Zou
Caineng, Dong Dazhong, Wang Shejiao, et al. Geological
characteristics, formation mechanism and resource potential of
shale gas in China[J]. Petroleum Exploration and Development,
2010, 37(6): 641-653.]
[71] 李昌偉,陶士振,董大忠,等. 國(guó)內(nèi)外頁(yè)巖氣形成條件對(duì)比與
有利區(qū)優(yōu)選[J]. 天然氣地球科學(xué),2015,26(5):986-1000.[Li
Changwei, Tao Shizhen, Dong Dazhong, et al. Comparison of
the formation condition of shale gas between domestic and
abroad and favorable areas evaluation[J]. Natural Gas Geoscience,
2015, 26(5): 986-1000.]
[72] 孟楚潔,胡文瑄,賈東,等. 寧鎮(zhèn)地區(qū)上奧陶統(tǒng)五峰組—下志
留統(tǒng)高家邊組底部黑色巖系地球化學(xué)特征與沉積環(huán)境分析
[J]. 地學(xué)前緣,2017,24(6):300-311.[Meng Chujie, Hu
Wenxuan, Jia Dong, et al. Analyses of geochemistry features
and sedimentary environment in the Upper Ordovician Wufeng-
Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area
[J]. Earth Science Frontiers, 2017, 24(6): 300-311.]
[73] 徐文禮,鄭榮才,顏雪,等. 下?lián)P子地區(qū)早古生代黑色巖系地
球化學(xué)特征及其地質(zhì)意義[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),
2014,44(4):1108-1122. [Xu Wenli, Zheng Rongcai, Yan
Xue, et al. Trace and rare earthelement geochemistry of the Early
Paleozoic black shales in the Lower Yangtze area and its geological
significances[J]. Journal of Jilin University (Earth Science
Edition), 2014, 44(4): 1108-1122.]
[74] 姜在興,孔祥鑫,楊葉芃,等. 陸相碳酸鹽質(zhì)細(xì)粒沉積巖及油
氣甜點(diǎn)多源成因[J]. 石油勘探與開發(fā),2021,48(1):26-37.
[Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multisource
genesis of continental carbonate-rich fine-grained sedimentary
rocks and hydrocarbon sweet spots[J]. Petroleum Exploration
and Development, 2021, 48(1): 26-37.]
[75] Dimberline A J, Bell A, Woodcock N H. A laminated hemipelagic
facies from the Wenlock and Ludlow of the Welsh Basin
[J]. Journal of the Geological Society, 1990, 147(4):
693-701.
[76] Lemons D R, Chan M A. Facies architecture and sequence
stratigraphy of fine-grained lacustrine deltas along the eastern
margin of Late Pleistocene Lake bonneville, northern Utah
and southern Idaho[J]. AAPG Bulletin, 1999, 83(4):
635-665.
[77] 吳靖,姜在興,梁超. 東營(yíng)凹陷沙河街組四段上亞段細(xì)粒沉積
巖巖相特征及與沉積環(huán)境的關(guān)系[J]. 石油學(xué)報(bào),2017,38
(10):1110-1122.[Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies
characteristics of fine-grained sedimentary rocks in the upper
submember of member 4 of Shahejie Formation, Dongying Sag
and their relationship with sedimentary environment[J]. Acta
Petrolei Sinica, 2017, 38(10): 1110-1122.]
[78] 張順,劉惠民,陳世悅,等. 中國(guó)東部斷陷湖盆細(xì)粒沉積巖巖
相劃分方案探討:以渤海灣盆地南部古近系細(xì)粒沉積巖為例
[J]. 地質(zhì)學(xué)報(bào),2017,91(5):1108-1119.[Zhang Shun, Liu
Huimin, Chen Shiyue, et al. Classification scheme for lithofacies
of fine-grained sedimentary rocks in faulted basins of eastern
China: Insights from the fine-grained sedimentary rocks in
Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica,
2017, 91(5): 1108-1119.]
[79] 鄭榮才,文華國(guó),范銘濤,等. 酒西盆地下溝組湖相白煙型噴
流巖巖石學(xué)特征[J]. 巖石學(xué)報(bào),2006,22(12):3027-3038.
[Zheng Rongcai, Wen Huaguo, Fan Mingtao, et al. Lithological
characteristics of sublacustrine white smoke type exhalative
rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica
Sinica, 2006, 22(12): 3027-3038.]
[80] 柳益群,周鼎武,焦鑫,等. 一類新型沉積巖:地幔熱液噴積
巖:以中國(guó)新疆三塘湖地區(qū)為例[J]. 沉積學(xué)報(bào),2013,31(5):
773-781.[Liu Yiqun, Zhou Dingwu, Jiao Xin, et al. A new
type of sedimentary rocks: Mantle-originated hydroclastites and
hydrothermal exhalites, Santanghu area, Xinjiang, NW China
[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781.]
[81] Jiao X, Liu Y Q, Yang W, et al. A magmatic-hydrothermal
lacustrine exhalite from the Permian Lucaogou Formation,
Santanghu Basin, NW China - The volcanogenic origin of finegrained
clastic sedimentary rocks[J]. Journal of Asian Earth Sciences,
2018, 156: 11-25.
[82] 劉惠民,王勇,楊永紅,等. 東營(yíng)凹陷細(xì)粒混積巖發(fā)育環(huán)境及
其巖相組合:以沙四上亞段泥頁(yè)巖細(xì)粒沉積為例[J]. 地球科
學(xué),2020,45(10):3543-3555.[Liu Huimin, Wang Yong, Yang
Yonghong, et al. Sedimentary environment and lithofacies of
fine-grained hybrid sedimentary in Dongying Sag: A case of
fine-grained sedimentary system of the Es4[J]. Earth Science,
2020, 45(10): 3543-3555.]
[83] 姜在興,王雯雯,王俊輝,等. 風(fēng)動(dòng)力場(chǎng)對(duì)沉積體系的作用
[J]. 沉積學(xué)報(bào),2017,35(5):863-876.[Jiang Zaixing, Wang
Wenwen, Wang Junhui, et al. The influence of wind field on
depositional systems[J]. Acta Sedimentologica Sinica, 2017,
35(5): 863-876.]
[84] 張少敏,操應(yīng)長(zhǎng),朱如凱,等. 湖相細(xì)?;旌铣练e巖巖石類型
劃分:以準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆草溝組為例[J].
地學(xué)前緣,2018,25(4):198-209. [Zhang Shaomin, Cao
Yingchang, Zhu Rukai, et al. Lithofacies classification of finegrained
mixed sedimentary rocks in the Permian Lucaogou Formation,
Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers,
2018, 25(4): 198-209.]
[85] 焦鑫,柳益群,周鼎武,等. 湖相烴源巖中的火山—熱液深源
物質(zhì)與油氣生成耦合關(guān)系研究進(jìn)展[J]. 古地理學(xué)報(bào),2021,23
(4):789-809. [Jiao Xin, Liu Yiqun, Zhou Dingwu, et al.
Progress on coupling relationship between volcanic and
hydrothermal-originated sediments and hydrocarbon generation
in lacustrine source rocks[J]. Journal of Palaeogeography,
2021, 23(4): 789-809.]
[86] Wohletz K H, Sheridan M F. Hydrovolcanic explosions. II.
Evolution of basaltic tuff rings and tuff cones[J]. American
Journal of Science, 1983, 283(5): 385-413.
[87] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinitehosted
ecosystem: The lost city hydrothermal field[J]. Science,
2005, 307(5714): 1428-1434.
[88] Smith J V. Susceptibility of lava domes to erosion and collapse
by toppling on cooling joints[J]. Journal of Volcanology and
Geothermal Research, 2018, 349: 311-322.
[89] 李增學(xué),宋明水,李瑩,等. 湖相細(xì)粒巖二級(jí)指標(biāo)劃分法巖相
分類及其應(yīng)用實(shí)例[J]. 現(xiàn)代地質(zhì),2021,35(2):365-377.
[Li Zengxue, Song Mingshui, Li Ying, et al. Petrographic
classification of lacustrine fine-grained rocks using a two-level
index division method and a case study of its application[J].
Geoscience, 2021, 35(2): 365-377.]
[90] 趙建華,金之鈞,金振奎,等. 四川盆地五峰組—龍馬溪組頁(yè)
巖巖相類型與沉積環(huán)境[J]. 石油學(xué)報(bào),2016,37(5):572-586.
[Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies
types and sedimentary environment of shale in Wufeng-
Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,
2016, 37(5): 572-586.]
[91] 陳世悅,張順,劉惠民,等. 湖相深水細(xì)粒物質(zhì)的混合沉積作
用探討[J]. 古地理學(xué)報(bào),2017,19(2):271-284.[Chen Shiyue,
Zhang Shun, Liu Huimin, et al. Discussion on mixing of finegrained
sediments in lacustrine deep water[J]. Journal of Palaeogeography,
2017, 19(2): 271-284.]
[92] Plint A G, Macquaker J H S, Varban B L. Bedload transport of
mud across a wide, storm-influenced ramp: Cenomania-Turonian
Kaskapau Formation, western Canada Foreland Basin[J].
Journal of Sedimentary Research, 2012, 82(11): 801-822.
[93] 袁選俊,林森虎,劉群,等. 湖盆細(xì)粒沉積特征與富有機(jī)質(zhì)頁(yè)
巖分布模式:以鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7 油層組為例[J]. 石
油勘探與開發(fā),2015,42(1):34-43.[Yuan Xuanjun, Lin Senhu,
Liu Qun, et al. Lacustrine fine-grained sedimentary features
and organic-rich shale distribution pattern: A case study of
Chang 7 member of Triassic Yanchang Formation in Ordos Basin,
NW China[J]. Petroleum Exploration and Development,
2015, 42(1): 34-43.]
[94] Frébourg G, Ruppel S C, Loucks R G, et al. Depositional controls
on sediment body architecture in the Eagle Ford/Boquillas
system: Insights from outcrops in west Texas, United States
[J]. Aapg Bulletin, 2016, 100(4): 657-682.
[95] 劉招君,孟慶濤,柳蓉. 中國(guó)陸相油頁(yè)巖特征及成因類型[J].
古地理學(xué)報(bào),2009,11(1):105-114.[Liu Zhaojun, Meng Qingtao,
Liu Rong. Characteristics and genetic types of continental
oil shales in China[J]. Journal of Palaeogeography, 2009, 11
(1): 105-114.]
[96] Hutton A C. Petrographic classification of oil shales[J]. Interna‐
tional Journal of Coal Geology, 1987, 8(3): 203-231.
[97] 劉招君,孫平昌,柳蓉,等. 中國(guó)陸相盆地油頁(yè)巖成因類型及
礦床特征[J]. 古地理學(xué)報(bào),2016,18(4):525-534.[Liu Zhaojun,
Sun Pingchang, Liu Rong, et al. Genetic types and deposit
features of oil shale in continental basin in China[J]. Journal of
Palaeogeography, 2016, 18(4): 525-534.]
[98] 趙隆業(yè),陳基娘,王天順. 關(guān)于中國(guó)油頁(yè)巖的工業(yè)成因分類
[J]. 煤田地質(zhì)與勘探,1991,19(5):2-6.[Zhao Longye, Chen
Jiniang, Wang Tianshun. Industrial-original classification of
Chinese oil shales[J]. Coal Geology & Exploration, 1991, 19
(5): 2-6.]
[99] 李寶毅,王建鵬,徐銀波,等. 斷陷和坳陷盆地富有機(jī)質(zhì)泥巖
測(cè)試參數(shù)及研究意義[J]. 世界地質(zhì),2012,31(4):778-784.
[Li Baoyi, Wang Jianpeng, Xu Yinbo, et al. Testing parameters
of organic-rich mudstone in faulted basin and depressed
basin and their significance[J]. Global Geology, 2012, 31(4):
778-784.]
[100] 劉招君,孟慶濤,賈建亮,等. 陸相盆地油頁(yè)巖成礦規(guī)律:以
東北地區(qū)中、新生代典型盆地為例[J]. 吉林大學(xué)學(xué)報(bào)(地球
科學(xué)版),2012,42(5):1286-1297.[Liu Zhaojun, Meng Qingtao,
Jia Jianliang, et al. Metallogenic regularity of oil shale in
continental basin: Case study in the Meso-Cenozoic basins of
Northeast China[J]. Journal of Jilin University (Earth Science
Edition), 2012, 42(5): 1286-1297.]
[101] 劉招君,柳蓉,孫平昌,等. 中國(guó)典型盆地油頁(yè)巖特征及賦存
規(guī)律[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2020,50(2):313-
325.[Liu Zhaojun, Liu Rong, Sun Pingchang, et al. Oil shale
characteristics and distribution in typical basins of China[J].
Journal of Jilin University (Earth Science Edition), 2020, 50
(2): 313-325.]
[102] 張錦泉,葉紅專. 論碳酸鹽與陸源碎屑的混合沉積[J]. 成都
地質(zhì)學(xué)院學(xué)報(bào),1989,16(2):87-92.[Zhang Jinquan, Ye Hongzhuan.
A study on carbonate and siliciclastic mixed sediments
[J]. Journal of Chengdu College of Geology, 1989, 16(2):
87-92.]
[103] 沙慶安. 混合沉積和混積巖的討論[J]. 古地理學(xué)報(bào),2001,3
(3):63-66.[Sha Qingan. Discussion on mixing deposit and
hunji rock[J]. Journal of Palaeogeography, 2001, 3(3):
63-66.]
[104] 鄭綿平. 鹽湖學(xué)的研究與展望[J]. 地質(zhì)論評(píng),2006,52(6):
737-746.[Zheng Mianping. Salinology: Research and prospects
[J]. Geological Review, 2006, 52(6): 737-746.]
[105] 金強(qiáng),朱光有. 中國(guó)中新生代咸化湖盆烴源巖沉積的問題及
相關(guān)進(jìn)展[J]. 高校地質(zhì)學(xué)報(bào),2006,12(4):483-492.[Jin
Qiang, Zhu Guangyou. Progress in research of deposition of
oil source rocks in saline lakes and their hydrocarbon generation
[J]. Geological Journal of China Universities, 2006, 12(4):
483-492.]
[106] Chen A D, Zheng M P, Yao H T, et al. Magnetostratigraphy
and 230Th dating of a drill core from the southeastern Qaidam
Basin: Salt lake evolution and tectonic implications[J]. Geoscience
Frontiers, 2018, 9(3): 943-953.
[107] 譚先鋒,王萍,王佳,等. 早始新世極熱氣候時(shí)期咸化湖盆混
合沉積作用:以渤海灣盆地東營(yíng)凹陷孔店組為例[J]. 石油與
天然氣地質(zhì),2018,39(2):340-354.[Tan Xianfeng, Wang
Ping, Wang Jia, et al. Mixed sedimentation in saline lacustrine
basins during initial Eocene thermal maximum period: A
case study on Kongdian Formation in Dongying Sag, Bohai
Bay Basin[J]. Oil & Gas Geology, 2018, 39(2): 340-354.]
[108] Liang C, Cao Y C, Jiang Z X, et al. Shale oil potential of lacustrine
black shale in the Eocene Dongying Depression: Implications
for geochemistry and reservoir characteristics[J].
AAPG Bulletin, 2017, 101(11): 1835-1858.
[109] 劉惠民,孫善勇,操應(yīng)長(zhǎng),等. 東營(yíng)凹陷沙三段下亞段細(xì)粒沉
積巖巖相特征及其分布模式[J]. 油氣地質(zhì)與采收率,2017,
24(1):1-10.[Liu Huimin, Sun Shanyong, Cao Yingchang,
et al. Lithofacies characteristics and distribution model of finegrained
sedimentary rock in the lower Es3 member, Dongying
Sag[J]. Petroleum Geology and Recovery Efficiency, 2017,
24(1): 1-10.]
[110] 姜在興,梁超,吳靖,等. 含油氣細(xì)粒沉積巖研究的幾個(gè)問題
[J]. 石油學(xué)報(bào),2013,34(6):1031-1039.[Jiang Zaixing, Liang
Chao, Wu Jing, et al. Several issues in sedimentological
studies on hydrocarbon-bearing fine-grained sedimentary rocks
[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.]
[111] 張君峰,徐興友,白靜,等. 松遼盆地南部白堊系青一段深湖
相頁(yè)巖油富集模式及勘探實(shí)踐[J]. 石油勘探與開發(fā),2020,
47(4):637-652.[Zhang Junfeng, Xu Xingyou, Bai Jing, et
al. Enrichment and exploration of deep lacustrine shale oil in
the First member of Cretaceous Qingshankou Formation, southern
Songliao Basin, NE China[J]. Petroleum Exploration and
Development, 2020, 47(4): 637-652.]
[112] 付曉飛,石海東,蒙啟安,等. 構(gòu)造和沉積對(duì)頁(yè)巖油富集的控
制作用:以松遼盆地中央坳陷區(qū)青一段為例[J]. 大慶石油地
質(zhì)與開發(fā),2020,39(3):56-71.[Fu Xiaofei, Shi Haidong,
Meng Qian, et al. Controlling effects of the structure and deposition
on the shale oil enrichment: Taking Formation qn1, in
the Central Depression of Songliao Basin as an instance[J]. Petroleum
Geology & Oilfield Development in Daqin, 2020, 39
(3): 56-71.]
[113] 林森虎,袁選俊,楊智. 陸相頁(yè)巖與泥巖特征對(duì)比及其意義:
以鄂爾多斯盆地延長(zhǎng)組7 段為例[J]. 石油與天然氣地質(zhì),
2017,38(3):517-523.[Lin Senhu, Yuan Xuanjun, Yang Zhi.
Comparative study on lacustrine shale and mudstone and its significance:
A case from the 7th member of Yanchang Formation
in the Ordos Basin[J]. Oil & Gas Geology, 2017, 38(3):
517-523.]
[114] 解習(xí)農(nóng),葉茂松,徐長(zhǎng)貴,等. 渤海灣盆地渤中凹陷混積巖優(yōu)
質(zhì)儲(chǔ)層特征及成因機(jī)理[J]. 地球科學(xué),2018,43(10):3526-
3539.[Xie Xinong, Ye Maosong, Xu Changgui, et al. High
quality reservoirs characteristics and forming mechanisms of
mixed siliciclastic-carbonate sediments in the Bozhong Sag,
Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-
3539.]
[115] 周立宏,陳長(zhǎng)偉,韓國(guó)猛,等. 渤海灣盆地歧口凹陷沙一下亞
段地質(zhì)特征與頁(yè)巖油勘探潛力[J]. 地球科學(xué),2019,44(8):
2736-2750.[Zhou Lihong, Chen Changwei, Han Guomeng,
et al. Geological characteristics and shale oil exploration potential
of lower First member of Shahejie Formation in Qikou
Sag, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2736-
2750.]
[116] 潘樹新,梁蘇娟,史永蘇,等. 松遼盆地上白堊統(tǒng)青山口組介
形蟲群集性死亡事件成因[J]. 古地理學(xué)報(bào),2010,12(4):
409-414.[Pan Shuxin, Liang Sujuan, Shi Yongsu, et al. Origin
of ostracod extinction event of the Upper Cretaceous Qingshankou
Formation in Songliao Basin[J]. Journal of Palaeogeography,
2010, 12(4): 409-414.]
[117] 陳能貴,王艷清,徐峰,等. 柴達(dá)木盆地新生界湖盆咸化特征
及沉積響應(yīng)[J]. 古地理學(xué)報(bào),2015,17(3):371-380.[Chen
Nenggui, Wang Yanqing, Xu Feng, et al. Palaeosalinity characteristics
and its sedimentary response to the Cenozoic saltwater
lacustrine deposition in Qaidam Basin[J]. Journal of
Palaeogeography, 2015, 17(3): 371-380.]
[118] 張敏,尹成明,壽建峰,等. 柴達(dá)木盆地西部地區(qū)古近系及新
近系碳酸鹽巖沉積相[J]. 古地理學(xué)報(bào),2004,6(4):391-400.
[Zhang Min, Yin Chengming, Shou Jianfeng, et al. Sedimentary
facies of carbonate rocks of the Paleogene and Neogene in
western Qaidam Basin[J]. Journal of Palaeogeography, 2004,
6(4): 391-400.]
[119] Chiarella D, Longhitano S G, Tropeano M. Types of mixing
and heterogeneities in siliciclastic-carbonate sediments[J]. Marine
and Petroleum Geology, 2017, 88: 617-627.
[120] Doyle L J, Roberts H H. Carbonate-clastic transitions[M].
Amsterdam: Elsevier, 1988.
[121] Mount J F. Mixing of siliciclastic and carbonate sediments in
shallow shelf environments[J]. Geology, 1984, 12(7):
432-435.
[122] 張雄華. 混積巖的分類和成因[J]. 地質(zhì)科技情報(bào),2000,19
(4):31-34. [Zhang Xionghua. Classification and origin of
mixosedimentite[J]. Geological Science and Technology Information,
2000, 19(4): 31-34.]
[123] 楊朝青,沙慶安. 云南曲靖中泥盆統(tǒng)曲靖組的沉積環(huán)境:一
種陸源碎屑與海相碳酸鹽的混合沉積[J]. 沉積學(xué)報(bào),1990,8
(2):59-66.[Yang Chaoqing, Sha Qingan. Sedimentary environment
of the Middle Devonian Qujing Formation, Qujing,
Yunnan province: A kind of mixing sedimentation of terrigenous
clastics and carbonate[J]. Acta Sedimentologica Sinica,
1990, 8(2): 59-66.]
[124] 李祥輝. 層序地層中的混合沉積作用及其控制因素[J]. 高
校地質(zhì)學(xué)報(bào),2008,14(3):395-404.[Li Xianghui. Mixing of
siliciclastic-carbonate sediments within systems tracts of depositional
sequences and its controlling factors[J]. Geological
Journal of China Universities, 2008, 14(3): 395-404.]
[125] 彭麗,陸永潮,彭鵬,等. 渤海灣盆地渤南洼陷沙三下亞段泥
頁(yè)巖非均質(zhì)性特征及演化模式:以羅69 井為例[J]. 石油與
天然氣地質(zhì),2017,38(2):219-229.[Peng Li, Lu Yongchao,
Peng Peng, et al. Heterogeneity and evolution model of the
lower Shahejie member 3 mud-shale in the Bonan subsag, Bohai
Bay Basin: An example from well Luo 69[J]. Oil & Gas
Geology, 2017, 38(2): 219-229.]
[126] 朱毅秀,金振奎,金科,等. 中國(guó)陸相湖盆細(xì)粒沉積巖巖石學(xué)
特征及成巖演化表征:以四川盆地元壩地區(qū)下侏羅統(tǒng)大安寨
段為例[J]. 石油與天然氣地質(zhì),2021,42(2):494-508.[Zhu
Yixiu, Jin Zhenkui, Jin Ke, et al. Petrologic features and diagenetic
evolution of fine-grained sedimentary rocks incontinental
lacustrine basins: A case study on the Lower Jurassic Daanzhai
member of Yuanba area, Sichuan Basin[J]. Oil & Gas
Geology, 2021, 42(2): 494-508.]
[127] 朱彤,龍勝祥,王烽,等. 四川盆地湖相泥頁(yè)巖沉積模式及巖
石相類型[J]. 天然氣工業(yè),2016,36(8):22-28.[Zhu Tong,
Long Shengxiang, Wang Feng, et al. Sedimentary models and
lithofacies types of lacustrine mud shale in the Sichuan Basin
[J]. Natural Gas Industry, 2016, 36(8): 22-28.]
[128] 劉忠寶,劉光祥,胡宗全,等. 陸相頁(yè)巖層系巖相類型、組合
特征及其油氣勘探意義:以四川盆地中下侏羅統(tǒng)為例[J].
天然氣工業(yè),2019,39(12):10-21. [Liu Zhongbao, Liu
Guangxiang, Hu Zongquan, et al. Lithofacies types and
assemblage features of continental shale strata and their significance
for shale gas exploration: A case study of the Middle and
Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas
Industry, 2019, 39(12): 10-21.]
[129] 梁超,姜在興,楊鐿婷,等. 四川盆地五峰組—龍馬溪組頁(yè)巖
巖相及儲(chǔ)集空間特征[J]. 石油勘探與開發(fā),2012,39(6):
691-698. [Liang Chao, Jiang Zaixing, Yang Yiting, et al.
Characteristics of shale lithofacies and reservoir space of the
Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum
Exploration and Development, 2012, 39(6): 691-698.]
[130] 李卓,姜振學(xué),唐相路,等. 渝東南下志留統(tǒng)龍馬溪組頁(yè)巖巖
相特征及其對(duì)孔隙結(jié)構(gòu)的控制[J]. 地球科學(xué),2017,42(7):
1116-1123.[Li Zhuo, Jiang Zhenxue, Tang Xianglu, et al.
Lithofacies characteristics and its effect on pore structure of the
marine shale in the low Silurian Longmaxi Formation, southeastern
Chongqing[J]. Earth Science, 2017, 42(7): 1116-
1123.]
[131] 李書琴,印森林,高陽(yáng),等. 準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草溝
組混合細(xì)粒巖沉積微相[J]. 天然氣地球科學(xué),2020,31(2):
235-249.[Li Shuqin, Yin Senlin, Gao Yang, et al. Study on
sedimentary microfacies of mixed fine-grained rocks in Lucaogou
Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas
Geoscience, 2020, 31(2): 235-249.]
[132] 葸克來(lái),操應(yīng)長(zhǎng),朱如凱,等. 吉木薩爾凹陷二疊系蘆草溝組
致密油儲(chǔ)層巖石類型及特征[J]. 石油學(xué)報(bào),2015,36(12):
1495-1507. [Xi Kelai, Cao Yingchang, Zhu Rukai, et al.
Rock types and characteristics of tight oil reservoir in Permian
Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica,
2015, 36(12): 1495-1507.]
[133] 陳世悅,劉金,馬帥,等. 柴北緣東段克魯克組泥頁(yè)巖儲(chǔ)層特
征[J]. 地學(xué)前緣,2016,23(5):56-65.[Chen Shiyue, Liu
Jin, Ma Shuai, et al. Characteristics of Keluke shale reservoirs
in northeast margin of Qaidam Basin[J]. Earth Science Frontiers,
2016, 23(5): 56-65.]
[134] 康志宏,周磊,任收麥,等. 柴北緣中侏羅統(tǒng)大煤溝組七段泥
頁(yè)巖儲(chǔ)層特征[J]. 地學(xué)前緣,2015,22(4):265-276.[Kang
Zhihong, Zhou Lei, Ren Shoumai, et al. Characteristics of
shale of the 7th member of the Middle Jurassic Dameigou Formation
in northern Qaidam Basin[J]. Earth Science Frontiers,
2015, 22(4): 265-276.]
[135] 劉占國(guó),張永庶,宋光永,等. 柴達(dá)木盆地英西地區(qū)咸化湖盆
混積碳酸鹽巖巖相特征與控儲(chǔ)機(jī)制[J]. 石油勘探與開發(fā),
2021,48(1):68-80.[Liu Zhanguo, Zhang Yongshu, Song
Guangyong, et al. Mixed carbonate rocks lithofacies features
and reservoirs controlling mechanisms in the saline lacustrine
basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum
Exploration and Development, 2021, 48(1): 68-80.]
[136] 徐雄飛,于祥春,卿忠,等. 三塘湖盆地蘆草溝組巖相特征及
其與頁(yè)巖油藏的關(guān)系[J]. 新疆石油地質(zhì),2020,41(6):677-
684.[Xu Xiongfei, Yu Xiangchun, Qing Zhong, et al. Lithofacies
characteristics and its relationship with shale oil reservoirs
of Lucaogou Formation in Santanghu Basin[J]. Xinjiang
Petroleum Geology, 2020, 41(6): 677-684.]
[137] Finthan B, Mamman Y D. The lithofacies and depositional
paleoenvironment of the Bima Sandstone in Girei and Environs,
Yola Arm, Upper Benue Trough, Northeastern Nigeria
[J]. Journal of African Earth Sciences, 2020, 169: 103863.
[138] Borka S. Markov chains and entropy tests in genetic-based
lithofacies analysis of deep-water clastic depositional systems
[J]. Open Geosciences, 2016, 8(1): 45-51.
[139] K?nitzer S F, Davies S J, Stephenson M H, et al. Depositional
controls on mudstone lithofacies in a basinal setting: Implications
for the delivery of sedimentary organic matter[J]. Journal
of Sedimentary Research, 2014, 84(3): 198-214.
[140] 聶銀蘭,謝慶賓,朱筱敏,等. 基于巖相表征的細(xì)粒沉積物沉
積機(jī)制和研究展望[J]. 斷塊油氣田,2021,28(3):305-310.
[Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al. The sedimentary
mechanism and research prospect of fine grain sediments
based on lithofacies characterization[J]. Fault-Block Oil &
Gas Field, 2021, 28(3): 305-310.]
[141] 寧方興,王學(xué)軍,郝雪峰,等. 東營(yíng)凹陷細(xì)粒沉積巖巖相組合
特征[J]. 西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,42(4):55-
65.[Ning Fangxing, Wang Xuejun, Hao Xuefeng, et al. Finegrained
sedimentary rock lithofacies assemblage characteristics
in Dongying Depression[J]. Journal of Southwest Petroleum
University (Science & Technology Edition), 2020, 42(4):
55-65.]
[142] Jones R W. Organic facies[M]//Brooks J, Welte D. Advance
in petroleum geochemistry. London: Academic Press, 1987:
1-90.
[143] 施振生,邱振. 海相細(xì)粒沉積層理類型及其油氣勘探開發(fā)意
義[J]. 沉積學(xué)報(bào),2021,39(1):181-196.[Shi Zhensheng,
Qiu Zhen. Main bedding types of marine fine-grained sediments
and their significance for oil and gas exploration and development
[J]. Acta Sedimentologica Sinica, 2021, 39(1):
181-196.]
[144] Lobza V, Schieber J. Biogenic sedimentary structures produced
by worms in soupy, soft muds; observations from the
Chattanooga Shale (Upper Devonian) and experiments[J].
Journal of Sedimentary Research, 1999, 69(5): 1041-1049.
[145] 鐘搖,朱利東,楊文光,等. 重慶云陽(yáng)地區(qū)沙溪廟組軟沉積物
變形構(gòu)造及其地質(zhì)意義[J]. 成都理工大學(xué)學(xué)報(bào)(自然科學(xué)
版),2021,48(2):165-177.[Zhong Yao, Zhu Lidong, Yang
Wenguang, et al. Soft sediment deformation structures in
Shaximiao Formation and its geological significance in Yunyang
area, Chongqing, China[J]. Journal of Chengdu University
of Technology (Science & Technology Edition), 2021, 48
(2): 165-177.]
[146] Rodr????guez-Pascua M A, Calvo J P, De Vicente G, et al. Softsediment
deformation structures interpreted as seismites in lacustrine
sediments of the Prebetic Zone, SE Spain, and their
potential use as indicators of earthquake magnitudes during the
Late Miocene[J]. Sedimentary Geology, 2000, 135(1/2/3/
4): 117-135.
[147] Neuendorf K K E, Mehl J P, Jackson A. Glossary of geology
[M]. 5th ed. Alexandria: American Geological Institute,
2005.
[148] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology,
1967, 8(1): 7-26.
[149] 劉慶,曾翔,王學(xué)軍,等. 東營(yíng)凹陷沙河街組沙三下—沙四上
亞段泥頁(yè)巖巖相與沉積環(huán)境的響應(yīng)關(guān)系[J]. 海洋地質(zhì)與第
四紀(jì)地質(zhì),2017,37(3):147-156.[Liu Qing, Zeng Xiang,
Wang Xuejun, et al. Lithofacies of mudstone and shale deposits
of the Es3z-Es4s Formation in Dongying Sag and their depositional
environment[J]. Marine Geology & Quaternary Geology,
2017, 37(3): 147-156.]
[150] 劉姝君,操應(yīng)長(zhǎng),梁超. 渤海灣盆地東營(yíng)凹陷古近系細(xì)粒沉
積巖特征及沉積環(huán)境[J]. 古地理學(xué)報(bào),2019,21(3):479-
489. [Liu Shujun, Cao Yingchang, Liang Chao. Lithologic
characteristics and sedimentary environment of fine-grained
sedimentary rocks of the Paleogene in Dongying Sag, Bohai
Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3):
479-489.]
[151] 鄧遠(yuǎn),陳世悅,蒲秀剛,等. 渤海灣盆地滄東凹陷孔店組二段
細(xì)粒沉積巖形成機(jī)理與環(huán)境演化[J]. 石油與天然氣地質(zhì),
2020,41(4):811-823,890. [Deng Yuan, Chen Shiyue,
Pu Xiugang, et al. Formation mechanism and environmental
evolution of fine-grained sedimentary rocks from the Second
member of Kongdian Formation in the Cangdong Sag, Bohai
Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-
823, 890.]
[152] 周立宏,韓國(guó)猛,馬建英,等. 歧口凹陷西南緣沙河街組一段
下亞段古環(huán)境特征與沉積模式[J]. 石油學(xué)報(bào),2020,41(8):
903-917.[Zhou Lihong, Han Guomeng, Ma Jianying, et al.
Palaeoenvironment characteristics and sedimentary model of
the lower submember of member 1 of Shahejie Formation in
the southwestern margin of Qikou Sag[J]. Acta Petrolei Sinica,
2020, 41(8): 903-917.]
[153] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of
quartz silt in mudstones and implications for silica cycling[J].
Nature, 2000, 406(6799): 981-985.
[154] 滕建彬,劉惠民,邱隆偉,等. 東營(yíng)凹陷古近系湖相細(xì)?;旆e
巖沉積成巖特征[J]. 地球科學(xué),2020,45(10):3808-3826.
[Teng Jianbin, Liu Huimin, Qiu Longwei, et al. Sedimentary
and diagenetic characteristics of lacustrine fine-grained hybrid
rock in Paleogene formation in Dongying Sag[J]. Earth Science,
2020, 45(10): 3808-3826.]
[155] Boles J R, Franks S J. Clay diagenesis in Wilcox sandstones of
Southwest Texas: Implications of smectite diagenesis on sandstone
cementation[J]. Journal of Sedimentary Research,
1979, 49(1): 55-70.
[156] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in
Late Cretaceous mudstones, northern North Sea: Changes in
rock properties due to dissolution of smectite and precipitation
of micro-quartz crystals[J]. Marine and Petroleum Geology,
2010, 27(8): 1752-1764.
[157] Metwally Y M, Chesnokov E M. Clay mineral transformation
as a major source for authigenic quartz in thermo-mature gas
shale[J]. Applied Clay Science, 2012, 55: 138-150.
[158] 王小軍,宋永,郭旭光,等. 陸相咸化湖盆細(xì)粒沉積巖分類及
其石油地質(zhì)意義[J]. 沉積學(xué)報(bào),2023,41(1):303-317.
[Wang Xiaojun, Song Yong, Guo Xuguang, et al. Classification
of fine-grained sedimentary rocks in saline lacustrine basins
and its petroleum geological significance[J]. Acta Sedimentologica
Sinica,2023,41(1):303-317.]
[159] 張順,陳世悅,鄢繼華,等. 東營(yíng)凹陷西部沙三下亞段—沙四
上亞段泥頁(yè)巖巖相及儲(chǔ)層特征[J]. 天然氣地球科學(xué),2015,
26(2):320-332.[Zhang Shun, Chen Shiyue, Yan Jihua, et
al. Characteristics of shale lithofacies and reservoir space in
the 3rd and 4th members of Shahejie Formation, the west of
Dongying Sag[J]. Natural Gas Geoscience, 2015, 26(2):
320-332.]
[160] 杜學(xué)斌,劉曉峰,陸永潮,等. 陸相細(xì)?;旌铣练e分類、特征及發(fā)
育模式:以東營(yíng)凹陷為例[J]. 石油學(xué)報(bào),2020,41(11):1324-
1333.[Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification,
characteristics and development models of continental
fine-grained mixed sedimentation: A case study of Dongying
Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.]
[161] 王嵐,曾雯婷,夏曉敏,等. 松遼盆地齊家—古龍凹陷青山口
組黑色頁(yè)巖巖相類型與沉積環(huán)境[J]. 天然氣地球科學(xué),
2019,30(8):1125-1133. [Wang Lan, Zeng Wenting, Xia
Xiaomin, et al. Study on lithofacies types and sedimentary environment
of black shale of Qingshankou Formation in Qijia-
Gulong Depression, Songliao Basin[J]. Natural Gas Geoscience,
2019, 30(8): 1125-1133.]
[162] 柳波,孫嘉慧,張永清,等. 松遼盆地長(zhǎng)嶺凹陷白堊系青山口
組一段頁(yè)巖油儲(chǔ)集空間類型與富集模式[J]. 石油勘探與開
發(fā),2021,48(3):521-535. [Liu Bo, Sun Jiahui, Zhang
Yongqing, et al. Reservoir space and enrichment model of
shale oil in the First member of Cretaceous Qingshankou Formation
in the Changling Sag, southern Songliao Basin, NE
China[J]. Petroleum Exploration and Development, 2021, 48
(3): 521-535.]
[163] 耳闖,羅安湘,趙靖舟,等. 鄂爾多斯盆地華池地區(qū)三疊系延
長(zhǎng)組長(zhǎng)7 段富有機(jī)質(zhì)頁(yè)巖巖相特征[J]. 地學(xué)前緣,2016,23
(2) :108-117. [Er Chuang, Luo Anxiang, Zhao Jingzhou,
et al. Lithofacies features of organic-rich shale of the
Triassic Yanchang Formation in Huachi aera, Ordos Basin[J].
Earth Science Frontiers, 2016, 23(2): 108-117.]
[164] 范柏江,梅啟亮,王小軍,等. 泥巖與頁(yè)巖地化特征對(duì)比:以
鄂爾多斯盆地安塞地區(qū)延長(zhǎng)組7 段為例[J]. 石油與天然氣
地質(zhì),2020,41(6):1119-1128.[Fan Bojiang, Mei Qiliang,
Wang Xiaojun, et al. Geochemical comparison of mudstone
and shale: A case study of the 7th member of Yanchang Formation
in Ansai area, Ordos Basin[J]. Oil & Gas Geology,
2020, 41(6): 1119-1128.]
[165] 趙文智,朱如凱,胡素云,等. 陸相富有機(jī)質(zhì)頁(yè)巖與泥巖的成
藏差異及其在頁(yè)巖油評(píng)價(jià)中的意義[J]. 石油勘探與開發(fā),
2020,47(6):1079-1089. [Zhao Wenzhi, Zhu Rukai, Hu
Suyun, et al. Accumulation contribution differences between
lacustrine organic-rich shales and mudstones and their significance
in shale oil evaluation[J]. Petroleum Exploration and
Development, 2020, 47(6): 1079-1089.]
[166] 劉群,袁選俊,林森虎,等. 鄂爾多斯盆地延長(zhǎng)組湖相黏土巖
分類和沉積環(huán)境探討[J]. 沉積學(xué)報(bào),2014,32(6):1016-
1025.[Liu Qun, Yuan Xuanjun, Lin Senhu, et al. The classification
of lacustrine mudrock and research on its depositional
environment[J]. Acta Sedimentologica Sinica, 2014, 32(6):
1016-1025.]
[167] 吳松濤. 松遼盆地青山口組頁(yè)巖紋層結(jié)構(gòu)與儲(chǔ)集性能評(píng)價(jià)
[C]//中國(guó)石油學(xué)會(huì)石油地質(zhì)專業(yè)委員會(huì),中國(guó)地質(zhì)學(xué)會(huì)石油
地質(zhì)專業(yè)委員會(huì),中國(guó)石油學(xué)會(huì)非常規(guī)油氣專業(yè)委員會(huì),等.
第六屆非常規(guī)油氣地質(zhì)評(píng)價(jià)暨新能源學(xué)術(shù)研討會(huì). 2021:7.
[Wu Songtao. Shale laminar structure and reservoir performance
evaluation of Qingshankou Formation in Songliao Basin
[C]//Petroleum Geology Committee of China Petroleum Society,
Petroleum Geology Committee of China Geological Society,
Unconventional Oil and Gas Committee of China Petroleum
Society, et al. The 6th symposium on unconventional oil
and gas geological evaluation and new energy. 2021: 7.]
[168] 付金華,鄧秀芹,楚美娟,等. 鄂爾多斯盆地延長(zhǎng)組深水巖相
發(fā)育特征及其石油地質(zhì)意義[J]. 沉積學(xué)報(bào),2013,31(5):
928-938.[Fu Jinhua, Deng Xiuqin, Chu Meijuan et al. Features
of deepwater lithofacies, Yanchang Formation in Ordos
Basin and its petroleum significance[J]. Acta Sedimentologica
Sinica, 2013, 31(5): 928-938.]
[169] 李森,朱如凱,崔景偉,等. 鄂爾多斯盆地長(zhǎng)7 段細(xì)粒沉積巖
特征與古環(huán)境:以銅川地區(qū)瑤頁(yè)1 井為例[J]. 沉積學(xué)報(bào),
2020, 38(3):554-570. [Li Sen, Zhu Rukai, Cui Jingwei,
et al. Sedimentary characteristics of fine-grained sedimentary
rock and paleo-environment of Chang 7 member in the
Ordos Basin: A case study from well Yaoye 1 in Tongchuan
[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.]
[170] 白靜,徐興友,陳珊,等. 松遼盆地長(zhǎng)嶺凹陷乾安地區(qū)青山口
組一段沉積相特征與古環(huán)境恢復(fù):以吉頁(yè)油1 井為例[J].
中國(guó)地質(zhì),2020,47(1):220-235.[Bai Jing, Xu Xingyou,
Chen Shan, et al. Sedimentary characteristics and paleoenvironment
restoration of the First member of Qingshankou
Formation in Qianan area, Changling Sag, Songliao Basin: A
case study of Jiyeyou 1 well[J]. Geology in China, 2020, 47
(1): 220-235.]
[171] Calvert S E, Bustin R M, Ingall E D. Influence of water column
anoxia and sediment supply on the burial and preservation
of organic carbon in marine shales[J]. Geochimica et Cosmochimica
Acta, 1996, 60(9): 1577-1593.
[172] Pedersen T F, Calvert S E. Anoxia vs. productivity: What
controls the formation of organic-carbon-rich sediments and
sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4):
454-466.
[173] Selvaraj K, Lin B Z, Lou J Y, et al. Lacustrine sedimentological
and geochemical records for the last 170 years of climate
and environmental changes in southeastern China[J]. Boreas,
2016, 45(1): 165-179.
[174] Thill A, Moustier S, Garnier J M, et al. Evolution of particle
size and concentration in the Rh?ne river mixing zone: Influence
of salt flocculation[J]. Continental Shelf Research,
2001, 21(18/19): 2127-2140.
[175] Mulder T, Chapron E. Flood deposits in continental and marine
environments: Character and significance[M]//Slatt R M,
Zavala C. Sediment transfer from shelf to deep water: Revisiting
the delivery system. Tulsa: AAPG Studies in Geology,
2011: 1-30.
[176] Curran K J, Hill P S, Milligan T G. Fine-grained suspended
sediment dynamics in the Eel River flood plume[J]. Continental
Shelf Research, 2002, 22(17): 2537-2550.
[177] 范二平,唐書恒,張成龍,等. 湘西北下古生界黑色頁(yè)巖掃描
電鏡孔隙特征[J]. 古地理學(xué)報(bào),2014,16(1):133-142.[Fan
Erping, Tang Shuheng, Zhang Chenglong, et al. Scanningelectron-
microscopic micropore characteristics of the Lower Paleozoic
black shale in northwestern Hunan province[J]. Journal
of Palaeogeography, 2014, 16(1): 133-142.]
[178] Wolanski E, Gibbs R J. Flocculation of suspended sediment in
the Fly River estuary, Papua New Guinea[J]. Journal of
Coastal Research, 1995, 11(3): 754-762.
[179] Tourney J, Ngwenya B T. The role of bacterial extracellular
polymeric substances in geomicrobiology[J]. Chemical Geology,
2014, 386: 115-132.
[180] Malarkey J, Baas J H, Hope J A, et al. The pervasive role of
biological cohesion in bedform development[J]. Nature Communications,
2015, 6: 6257.
[181] Eisma D. Flocculation and de-flocculation of suspended matter
in estuaries[J]. Netherlands Journal of Sea Research, 1986,
20(2/3): 183-199.
[182] Parsons D R, Schindler R J, Hope J A, et al. The role of biophysical
cohesion on subaqueous bed form size[J]. Geophysical
Research Letters, 2016, 43(4): 1566-1573.
[183] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent,
transitional, and laminar clay suspension flows[J].
Journal of Sedimentary Research, 2009, 79(4): 162-183.
[184] Schindler R J, Parsons D R, Ye L P, et al. Sticky stuff: Redefining
bedform prediction in modern and ancient environments
[J]. Geology, 2015, 43(5): 399-402.
[185] Kranck K, Smith P C, Milligan T G. Grain-size characteristics
of fine-grained unflocculated sediments I:‘ One-round distributions
[J]. Sedimentology, 1996, 43(3): 589-594.
[186] Asmolov E S. Numerical simulation of rarefied suspension sedimentation
in a container[J]. Fluid Dynamics, 2007, 42(3):
410-418.
[187] 黃建維. 粘性泥沙在靜水中沉降特性的試驗(yàn)研究[J]. 泥沙
研究,1981(2):30-41.[Huang Jianwei. Experimental study of
settling properties of cohesive sediment in still water[J]. Journal
of Sediment Research, 1981(2): 30-41.]
[188] 謝宗奎. 柴達(dá)木臺(tái)南地區(qū)第四系細(xì)粒沉積巖相與沉積模式
研究[J]. 地學(xué)前緣,2009,16(5):245-250.[Xie Zongkui. Research
on the Quaternary fine-fraction lithofacies and sedimentation
model in Tainan area, Qaidam Basin[J]. Earth Science
Frontiers, 2009, 16(5): 245-250.]
[189] McCave I N. Transport and escape of fine-grained sediment
from shelf areas[M]//Swift D J P, Duane D B, Pilkey O H.
Shelf sediment transport: Process and pattern. Stroudsburg:
Dowden, Hutchinson & Ross, 1972.
[190] Nittrouer C A, Wright L D. Transport of particles across continental
shelves[J]. Reviews of Geophysics, 1994, 32(1):
85-113.
[191] Arthur M A, Sageman B B. Marine black shales: Depositional
mechanisms and environments of ancient deposits[J]. Annual
Review of Earth and Planetary Sciences, 1994, 22(1):
499-551.
[192] 逄勇,顏潤(rùn)潤(rùn),余鐘波,等. 風(fēng)浪作用下的底泥懸浮沉降及內(nèi)
源釋放量研究[J]. 環(huán)境科學(xué),2008,29(9):2456-2464.
[Pang Yong, Yan Runrun, Yu Zhongbo, et al. Suspensionsedimentation
of sediment and release amount of internal load
in Lake Taihu affected by wind[J]. Environmental Science,
2008, 29(9): 2456-2464.]
[193] 胡開明,王水,逄勇. 太湖不同湖區(qū)底泥懸浮沉降規(guī)律研究及
內(nèi)源釋放量估算[J]. 湖泊科學(xué),2014,26(2):191-199.[Hu
Kaiming, Wang Shui, Pang Yong. Suspension-sedimentation
of sediment and release amount of internal load in Lake Taihu
[J]. Journal of Lake Sciences, 2014, 26(2): 191-199.]
[194] 楊茜,楊庶,宋嫻麗,等. 桑溝灣夏、秋季懸浮顆粒物的沉降通量
及再懸浮的影響[J]. 海洋學(xué)報(bào),2014,36(12):85-90.[Yang
Qian, Yang Shu, Song Xianli, et al. Vertical flux and resuspension
of settling particulate matter of Sanggou Bay in summer and
autumn[J]. Acta Oceanologica Sinica, 2014, 36(12): 85-90.]
[195] 徐志剛. 長(zhǎng)江口細(xì)顆粒泥沙的絮凝特性試驗(yàn)[J]. 東海海洋,
1984(3):45-50. [Xu Zhigang. Experiment on flocculation
characteristics of fine sediments from the Changjiang estuary
[J]. Journal of Marine Sciences, 1984(3): 45-50.]
[196] 陳洪松,邵明安. NaCl 對(duì)細(xì)顆粒泥沙靜水絮凝沉降動(dòng)力學(xué)模
式的影響[J]. 水利學(xué)報(bào),2002(8):63-67.[Chen Hongsong,
Shao Mingan. Effect of NaCl concentration on dynamic model
of fine sediment flocculation and settling in still water[J].
Journal of Hydraulic Engineering, 2002(8): 63-67.]
[197] Heiskanen A S. Contamination of sediment trap fluxes by vertically
migrating phototrophic micro-organisms in the coastal
Baltic Sea[J]. Marine Ecology Progress, 1995, 122: 45-58.
[198] 柴朝暉,方紅衛(wèi),姚仕明,等. 黏性泥沙絮凝—沉降—再懸浮
運(yùn)動(dòng)過(guò)程數(shù)學(xué)模型研究[J]. 水利學(xué)報(bào),2016,47(12):1540-
1547.[Chai Zhaohui, Fang Hongwei, Yao Shiming, et al. A
model for the flocculation-settling-resuspension process of cohesive
sediment[J]. Journal of Hydraulic Engineering, 2016,
47(12): 1540-1547.]
[199] Yoshida H, Nurtono T, Fukui K. A new method for the control
of dilute suspension sedimentation by horizontal movement
[J]. Powder Technology, 2005, 150(1): 9-19.
[200] Allen J R L. Current ripples: Their relation to patterns of water
and sediment motion[M]. Amsterdam: North Holland Publishing
Company, 1968: 1-433.
[201] Schieber J, Southard J, Thaisen K. Accretion of mudstone
beds from migrating floccule ripples[J]. Science, 2007, 318
(5857): 1760-1763.
[202] Schieber J, Southard J B. Bedload transport of mud by floccule
ripples: Direct observation of ripple migration processes
and their implications[J]. Geology, 2009, 37(6): 483-486.
[203] 金成志,董萬(wàn)百,白云風(fēng),等. 松遼盆地古龍頁(yè)巖巖相特征與
成因[J]. 大慶石油地質(zhì)與開發(fā),2020,39(3):35-44.[Jin
Chengzhi, Dong Wanbai, Bai Yunfeng, et al. Lithofacies characteristics
and genesis analysis of Gulong shale in Songliao
Basin[J]. Petroleum Geology & Oilfield Development in
Daqing, 2020, 39(3): 35-44.]
[204] Tripsanas E K, Piper D J W, Jenner K A, et al. Submarine
mass-transport facies: New perspectives on flow processes
from cores on the eastern North American margin[J]. Sedimentology,
2008, 55(1): 97-136.
[205] 潘樹新,陳彬滔,劉華清,等. 陸相湖盆深水底流改造砂:沉
積特征、成因及其非常規(guī)油氣勘探意義[J]. 天然氣地球科
學(xué),2014,25(10):1577-1585.[Pan Shuxin, Chen Bintao, Liu
Huaqing, et al. Deepwater bottom current rework sand
(BCRS) in lacustrine basins: Sedimentary characteristics,
identification criterion, formation mechanism and its significance
for unconventional oil/gas exploration[J]. Natural Gas
Geoscience, 2014, 25(10): 1577-1585.]
[206] Sturm M, Matter A. Turbidites and varves in lake brienz
(Switzerland): Deposition of clastic detritus by density currents
[M]//Matter A, Tucker M E. Modern and ancient lake
sediments. Oxford: Blackwell Scientific, 1978.
[207] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics
of flow and deposition[M]//Middleton G V, Bouma A
H. Turbidites and deep water sedimentation: Short course lecture
notes, Part I. California: Los Angeles, 1973.
[208] Lowe D R. Sediment gravity flows: II. Depositional models
with special reference to the deposits of high-density turbidity
currents[J]. Journal of Sedimentary Research, 1982, 52(1):
279-297.
[209] Mulder T, Alexander J. The physical character of subaqueous
sedimentary density flows and their deposits[J]. Sedimentology,
2001, 48(2): 269-299.
[210] 姜在興,王俊輝,張?jiān)#?“ 風(fēng)—源—盆”三元耦合油氣儲(chǔ)
集體預(yù)測(cè)方法及其應(yīng)用:對(duì)非主力物源區(qū)儲(chǔ)集體的解釋與預(yù)
測(cè)[J]. 石油學(xué)報(bào),2020,41(12):1465-1476.[Jiang Zaixing,
Wang Junhui, Zhang Yuanfu, et al. Ternary “Windfield-
Source-Basin” system for the prediction of hydrocarbon reservoirs:
interpretation and prediction of hydrocarbon reservoirs
deviated from the main provenance areas[J]. Acta Petrolei Sinica,
2020, 41(12): 1465-1476.]
[211] Curran K J, Hill P S, Schell T M, et al. Inferring the mass
fraction of floc-deposited mud: Application to fine-grained turbidites
[J]. Sedimentology, 2004, 51(5): 927-944.
[212] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment
density flows: Depositional processes and deposit types
[J]. Sedimentology, 2012, 59(7): 1937-2003.
[213] Baas J H, Manica R, Puhl E, et al. Processes and products of
turbidity currents entering soft muddy substrates[J]. Geology,
2014, 42(5): 371-374.
[214] Shanmugam G. New perspectives on deep-water sandstones:
Implications[J]. Petroleum Exploration and Development,
2013, 40(3): 316-324.
[215] 李相博,劉化清,潘樹新,等. 中國(guó)湖相沉積物重力流研究的
過(guò)去、現(xiàn)在與未來(lái)[J]. 沉積學(xué)報(bào),2019,37(5):904-921.[Li
Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present
and future of research on deep-water sedimentary gravity flow
in lake basins of China[J]. Acta Sedimentologica Sinica,
2019, 37(5): 904-921.]
[216] 宋博,閆全人,向忠金,等. 廣西憑祥盆地深水底流沉積類型
及其研究意義[J]. 沉積學(xué)報(bào),2016,34(1):58-69.[Song Bo,
Yan Quanren, Xiang Zhongjin, et al. Sedimentary types and
significance of deep-water bottom currents deposit in the
Pingxiang Basin, Guangxi[J]. Acta Sedimentologica Sinica,
2016, 34(1): 58-69.]
[217] 孫福寧,楊仁超,李冬月. 異重流沉積研究進(jìn)展[J]. 沉積學(xué)
報(bào),2016,34(3):452-462.[Sun Funing, Yang Renchao, Li
Dongyue. Research progresses on hyperpycnal flow deposits
[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.]
[218] Tran D, Strom K. Suspended clays and silts: Are they independent
or dependent fractions when it comes to settling in a turbulent
suspension?[J]. Continental Shelf Research, 2017, 138: 81-94.
[219] Stow D A V, Bowen A J. A physical model for the transport
and sorting of fine-grained sediment by turbidity currents[J].
Sedimentology, 1980, 27(1): 31-46.
[220] Schieber J, Yawar Z. A new twist on mud deposition-mud ripples
in experiment and rock record[J]. The Sedimentary Record,
2009, 7(2): 4-8.
[221] Schieber J. Experimental testing of the transport-durability of
shale lithics and its implications for interpreting the rock record
[J]. Sedimentary Geology, 2016, 331: 162-169.
[222] Yawar Z, Schieber J. On the origin of silt laminae in laminated
shales[J]. Sedimentary Geology, 2017, 360: 22-34.
[223] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation
and application[M]. Berlin: Springer-Verlag, 2004:
1-976.
[224] Boggs Jr S. Principles of sedimentology and stratigraphy[M].
4th ed. Upper Saddle River, NJ: Pearson Prentice Hall,
2006: 1-688.
[225] Chen C, Mu C L, Zhou K K, et al. The geochemical characteristics
and factors controlling the organic matter accumulation
of the Late Ordovician-Early Silurian black shale in the Upper
Yangtze Basin, South China[J]. Marine and Petroleum Geology,
2016, 76: 159-175.
[226] Shinn E A, Steinen R P, Dill R F, et al. Lime-mud layers in
high-energy tidal channels: A record of hurricane deposition
[J]. Geology, 1993, 21(7): 603-606.
[227] Schieber J, Southard J B, Kissling P, et al. Experimental deposition
of carbonate mud from moving suspensions: Importance
of flocculation and implications for modern and ancient
carbonate mud deposition[J]. Journal of Sedimentary Research,
2013, 83(11): 1026-1032.
[228] Tyson R V. Sedimentation rate, dilution, preservation and total
organic carbon: Some results of a modelling study[J]. Organic
Geochemistry, 2001, 32(2): 333-339.
[229] Ma Y Q, Fan M J, Lu Y C, et al. Geochemistry and sedimentology
of the Lower Silurian Longmaxi mudstone in southwestern
China: Implications for depositional controls on organic
matter accumulation[J]. Marine and Petroleum Geology,
2016, 75: 291-309.
[230] Wilkin R T, Barnes H L, Brantley S L. The size distribution
of framboidal pyrite in modern sediments: An indicator of redox
conditions[J]. Geochimica et Cosmochimica Acta, 1996,
60(20): 3897-3912.
[231] Wilkin R T, Barnes H L. Formation processes of framboidal
pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):
323-339.
[232] Chen G, Gang W Z, Liu Y Z, et al. Organic matter enrichment
of the Late Triassic Yanchang Formation (Ordos Basin,
China) under dysoxic to oxic conditions: Insights from pyrite
framboid size distributions[J]. Journal of Asian earth sciences,
2019, 170: 106-117.
[233] Zou C N, Qiu Z, Wei H Y, et al. Euxinia caused the Late Ordovician
extinction: Evidence from pyrite morphology and pyritic
sulfur isotopic composition in the Yangtze area, South China
[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,
2018, 511: 1-11.
[234] R?hl H J, Schmid-R?hl A, Oschmann W, et al. Erratum to
“The Posidonia Shale (Lower Toarcian) of SW-Germany: An
oxygen-depleted ecosystem controlled by sea level and palaeoclimate”:
[Palaeogeogr. , Palaeoclimatol. , Palaeocol. 165
(2001) 27 - 52][J]. Palaeogeography, Palaeoclimatology,
Palaeoecology, 2001, 169(3/4): 273-299.
[235] Zhang W Z, Yang H, Xie L Q, et al. Lake-bottom hydrothermal
activities and their influence on high-quality source rock development:
A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum
Exploration and Development, 2010, 37(4): 424-429.
[236] Xie S C, Pancost R D, Wang Y B, et al. Cyanobacterial
blooms tied to volcanism during the 5-million-year Permo-
Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
[237] Procesi M, Ciotoli G, Mazzini A, et al. Sediment-hosted geothermal
systems: Review and first global mapping[J]. Earth-
Science Reviews, 2019, 192: 529-544.
[238] Santillan-Jimenez E, Pace R, Morgan T, et al. Co-processing
of hydrothermal liquefaction algal bio-oil and petroleum feedstock
to fuel-like hydrocarbons via fluid catalytic cracking[J].
Fuel Processing Technology, 2019, 188: 164-171.
[239] Langmann B, Zak?ek K, Hort M, et al. Volcanic ash as fertiliser
for the surface ocean[J]. Atmospheric Chemistry and
Physics, 2010, 10(8): 3891-3899.
[240] Lovell C J, Rose C W. Measurement of soil aggregate settling
velocities. 1. A modified bottom withdrawal tube method[J].
Australian Journal of Soil Research, 1988, 26(1): 55-71.
[241] 王倩茹,陶士振,關(guān)平. 中國(guó)陸相盆地頁(yè)巖油研究及勘探開
發(fā)進(jìn)展[J]. 天然氣地球科學(xué),2020,31(3):417-427.[Wang
Qianru, Tao Shizhen, Guan Ping. Progress in research and exploration
& development of shale oil in continental basins in
China[J]. Natural Gas Geoscience, 2020, 31(3): 417-427.]
[242] 胡濤,龐雄奇,姜福杰,等. 陸相斷陷咸化湖盆有機(jī)質(zhì)差異富
集因素探討:以東濮凹陷古近系沙三段泥頁(yè)巖為例[J]. 沉積
學(xué)報(bào),2021,39(1):140-152.[Hu Tao, Pang Xiongqi, Jiang
Fujie, et al. Factors controlling differential enrichment of organic
matter in saline lacustrine rift basin: A case study of
Third member Shahejie Fm in Dongpu Depression[J]. Acta
Sedimentologica Sinica, 2021, 39(1): 140-152.]
[243] Zimmerle W. New aspects on the formation of hydrocarbon
source rocks[J]. Geologische Rundschau, 1985, 74(2):
385-416.
[244] 劉全有,朱東亞,孟慶強(qiáng),等. 深部流體及有機(jī)—無(wú)機(jī)相互作
用下油氣形成的基本內(nèi)涵[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),
2019,49(3):499-520.[Liu Quanyou, Zhu Dongya, Meng
Qingqiang, et al. The scientific connotation of oil and gas formations
under deep fluids and organic-inorganic interaction[J]. Science
China (Seri. D): Earth Sciences, 2019, 49(3): 499-520.]
[245] Wright V P. Lacustrine carbonates in rift settings: The interaction
of volcanic and microbial processes on carbonate deposition
[J]. Geological Society, London, Special Publications,
2012, 370(1): 39-47.
[246] 龐軍剛,李賽,楊友運(yùn),等. 湖盆深水區(qū)細(xì)粒沉積成因研究進(jìn)
展:以鄂爾多斯盆地延長(zhǎng)組為例[J]. 石油實(shí)驗(yàn)地質(zhì),2014,36
(6):706-711,724.[Pang Jungang, Li Sai, Yang Youyun, et
al. Study progress of origin of fine-grained sedimentary rocks
in deep-water area of lacustrine basin: Taking Yangchang Formation
in Ordos Basin as an example[J]. Petroleum Geology
& Experiment, 2014, 36(6): 706-711, 724.]
[247] 梁超. 含油氣細(xì)粒沉積巖沉積作用與儲(chǔ)層形成機(jī)理[D]. 北
京:中國(guó)地質(zhì)大學(xué)(北京),2015.[Liang Chao. The sedimentation
and reservoir formation mechanism of hydrocarbonbearing
fine-grained sedimentary rocks[D]. Beijing: China
University of Geosciences (Beijing), 2015.]
[248] 朱筱敏,鐘大康,袁選俊,等. 中國(guó)含油氣盆地沉積地質(zhì)學(xué)進(jìn)
展[J]. 石油勘探與開發(fā),2016,43(5):820-829.[Zhu Xiaomin,
Zhong Dakang, Yuan Xuanjun, et al. Development of
sedimentary geology of petroliferous basins in China[J]. Petroleum
Exploration and Development, 2016, 43(5): 820-829.]
[249] 趙賢正,蒲秀剛,韓文中,等. 細(xì)粒沉積巖性識(shí)別新方法與儲(chǔ)
集層甜點(diǎn)分析:以渤海灣盆地滄東凹陷孔店組二段為例[J].
石油勘探與開發(fā),2017,44(4):492-502.[Zhao Xianzheng,
Pu Xiugang, Han Wenzhong, et al. A new method for lithology
identification of fine grained deposits and reservoir sweet
spot analysis: A case study of Kong 2 member in Cangdong
Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and
Development, 2017, 44(4): 492-502.]
[250] 劉可禹,劉暢.“ 化學(xué)—沉積相”分析:一種研究細(xì)粒沉積巖
的有效方法[J]. 石油與天然氣地質(zhì),2019,40(3):491-503.
[Liu Keyu, Liu Chang, “Chemo-sedimentary facies” analysis:
An effective method to study fine-grained sedimentary
rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503.]
[251] 郭英海,趙迪斐,陳世悅. 細(xì)粒沉積物及其古地理研究進(jìn)展
與展望[J]. 古地理學(xué)報(bào),2021,23(2):263-283.[Guo Yinghai,
Zhao Difei, Chen Shiyue. Research progress and prospect
of fine-grained sediments and palaeogeography[J]. Journal of
Palaeogeography, 2021, 23(2): 263-283.]
[252] Slatt R M, Rodriguez N D. Comparative sequence stratigraphy
and organic geochemistry of gas shales: Commonality or coincidence?
[J]. Journal of Natural Gas Science and Engineering,
2012, 8: 68-84.
[253] 李圯,劉可禹,蒲秀剛,等. 滄東凹陷孔二段混合細(xì)粒沉積巖
相特征及形成環(huán)境[J]. 地球科學(xué),2020,45(10):3779-3796.
[Li Yi, Liu Keyu, Pu Xiugang, et al. Lithofacies characteristics
and formation environments of mixed finegrained sedimentary
rocks in Second member of Kongdian Formation in Cangdong
Depression, Bohai Bay Basin[J]. Earth Science, 2020,
45(10): 3779-3796.]
[254] Hammes U, Frébourg G. Haynesville and Bossier mudrocks:
A facies and sequence stratigraphic investigation, East Texas
and Louisiana, USA[J]. Marine and Petroleum Geology,
2012, 31(1): 8-26.
[255] 李鵬,劉全有,畢赫,等. 火山活動(dòng)與海侵影響下的典型湖相
頁(yè)巖有機(jī)質(zhì)保存差異分析[J]. 地質(zhì)學(xué)報(bào),2021,95(3):632-
642.[Li Peng, Liu Quanyou, Bi He, et al. Analysis of the difference
in organic matter preservation in typical lacustrine shale
under the influence of volcanism and transgression[J]. Acta
Geologica Sinica, 2021, 95(3): 632-342.]
[256] Bradley W H, Eugster H P. Geochemistry and paleolimnology
of the trona deposits and associated authigenic minerals of the
Green River Formation of Wyoming[R]. U. S. Geological
Survey Professional Paper 496-B, Washington: United States
Government Printing Office, 1969: 53.
[257] Hill P S, Fox J M, Crockett J S, et al. Sediment delivery to
the seabed on continental margins[M]//Nittrouer C A, Austin J
A, Field M E, et al. Continental margin sedimentation: From
sediment transport to sequence stratigraphy. Malden: Blackwell
Publishing Ltd. , 2007.
[258] Snedden J W, Nummedal D. Origin and geometry of stormdeposited
sand beds in modern sediments of the texas continental
shelf[M]//Swift D J P, Oertel G F, Tillman R W, et al. Shelf sand
and sandstone bodies: Geometry, facies and sequence stratigraphy.
Oxford: Blackwell Publishing Ltd. , 1991.
[259] Eugster H P, Surdam R C. Depositional environment of the
Green River Formation of wyoming: A preliminary report[J].
Geological Society of America Bulletin, 1973, 84(4): 1115-
1120.
[260] Desborough G A. A biogenic-chemical stratified lake model
for the origin of oil shale of the Green River Formation: An alternative
to the playa-lake model[J]. Geological Society of
America Bulletin, 1978, 89(7): 961-971.
[261] 柳蓉,張坤,劉招君,等. 中國(guó)油頁(yè)巖富集與地質(zhì)事件研究[J].
沉積學(xué)報(bào),2021,39(1):10-28. [Liu Rong, Zhang Kun,
Liu Zhaojun, et al. Oil shale mineralization and geological
events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1):
10-28.]
[262] 李友川. 中國(guó)近海湖相優(yōu)質(zhì)烴源巖形成的主要控制因素[J].
中國(guó)海上油氣,2015,27(3):1-9.[Li Youchuan. Main controlling
factors for the development of high quality lacustrine hydrocarbon
source rocks in offshore China[J]. China Offshore Oil
and Gas, 2015, 27(3): 1-9.]
[263] 楊仁超,尹偉,樊愛萍,等. 鄂爾多斯盆地南部三疊系延長(zhǎng)組
湖相重力流沉積細(xì)粒巖及其油氣地質(zhì)意義[J]. 古地理學(xué)報(bào),
2017,19(5):791-806.[Yang Renchao, Yin Wei, Fan Aiping,
et al. Fine-grained, lacustrine gravity-flow deposits and their
hydrocarbon significance in the Triassic Yanchang Formation in
southern Ordos Basin[J]. Journal of Palaeogeography, 2017,
19(5): 791-806.]
[264] Shiah F K, Liu K K, Kao S J, et al. The coupling of bacterial
production and hydrography in the southern East China Sea:
Spatial patterns in spring and fall[J]. Continental Shelf Research,
2000, 20(4/5): 459-477.
[265] Fishman N, Guthrie J, Honarpour M. The stratigraphic distribution
of hydrocarbon storage and its effect on producible hydrocarbons
in the Eagle Ford Formation, South Texas[C]//Proceedings
of the unconventional resources technology conference.
Denver: SEG, 2013.
[266] Hemmesch N T, Harris N B, Mnich C A, et al. A sequencestratigraphic
framework for the Upper Devonian Woodford
Shale, Permian Basin, west Texas[J]. AAPG Bulletin, 2014,
98(1): 23-47.
[267] Houseknecht D W, Rouse W A, Paxton S T, et al. Upper
Devonian-Mississippian stratigraphic framework of the Arkoma
Basin and distribution of potential source-rock facies in the
Woodford - Chattanooga and Fayetteville - Caney shale-gas
systems[J]. AAPG Bulletin, 2014, 98(9): 1739-1759.
[268] 張凱棣. 東海陸架近代泥質(zhì)沉積源匯過(guò)程的礦物學(xué)響應(yīng)
[D]. 青島:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院海洋研究所),
2017.[Zhang Kaidi. Mineralogical response of source to sink
processes in modern muddy sediments of the East China Sea
continental shelf[D]. Qingdao: Institute of Oceanology, Chinese
Academy of Science, 2017.]
[269] Breyer J A, Denne R, Kosanke T, et al. Facies, fractures,
pressure and production in the eagle ford shale (Cretaceous)
between the Maverick Basin and the San Marcos Arch, Texas,
USA[C]//Proceedings of the unconventional resources technology
conference. Denver: SEG, 2013.
[270] Kelts K, Talbot M. Lacustrine carbonates as geochemical archives
of environmental change and biotic/abiotic interactions
[M]//Tilzer M M, Serruya C. Large lakes: Ecological structure
and function. Berlin Heidelberg: Springer, 1990.
[271] 蔣宜勤,柳益群,楊召,等. 準(zhǔn)噶爾盆地吉木薩爾凹陷凝灰?guī)r
型致密油特征與成因[J]. 石油勘探與開發(fā),2015,42(6):
741-749.[Jiang Yiqin, Liu Yiqun, Yang Zhao, et al. Characteristics
and origin of tuff-type tight oil in Jimusar Depression,
Junggar Basin, NW China[J]. Petroleum Exploration and Development,
2015, 42(6): 741-749.]
[272] Soulsby R L, Manning A J, Spearman J, et al. Settling velocity
and mass settling flux of flocculated estuarine sediments[J].
Marine Geology, 2013, 339: 1-12.
[273] Zhang Y, Ren J, Zhang W Y. Flocculation under the control
of shear, concentration and stratification during tidal cycles
[J]. Journal of Hydrology, 2020, 586: 124908.
[274] 錢寧,萬(wàn)兆慧. 泥沙運(yùn)動(dòng)力學(xué)[J]. 北京:科學(xué)出版社,2003.
[Qian Ning, Wan Zhaohui. Mechanics of sediment transport
[J]. Beijing: Science Press, 2003.]
[275] Wheatcroft R A, Ilhan I, Pink F X. Particle bioturbation in
Massachusetts Bay: Preliminary results using a new deliberate
tracer technique[J]. Journal of Marine Research, 1994, 52
(6): 1129-1150.
[276] Amoudry L O, Souza A J. Deterministic coastal morphological
and sediment transport modeling: A review and discussion[J].
Reviews of Geophysics, 2011, 49(2): RG2002.
[277] Zhang W Y, Harff J, Schneider R, et al. Holocene morphogenesis
at the southern Baltic Sea: Simulation of multi-scale
processes and their interactions for the Darss- Zingst peninsula
[J]. Journal of Marine Systems, 2014, 129: 4-18.
[278] French J, Payo A, Murray B, et al. Appropriate complexity
for the prediction of coastal and estuarine geomorphic behaviour
at decadal to centennial scales[J]. Geomorphology,
2016, 256: 3-16.
[279] Zhang W Y. Sediment transport models[M]//Harff J, Meschede
M, Petersen S, et al. Encyclopedia of marine geosciences.
Dordrecht: Springer, 2016: 764-767.
[280] Diaz M, Grasso F, Le Hir P, et al. Modeling mud and sand
transfers between a macrotidal estuary and the continental
shelf: Influence of the sediment transport parameterization[J].
Journal of Geophysical Research: Oceans, 2020, 125(4):
e2019JC015643.
[281] Grant W D, Madsen O S. Combined wave and current interaction
with a rough bottom[J]. Journal of Geophysical Research:
Oceans, 1979, 84(C4): 1797-1808.