楊毅 陳麗 李小意
摘要:脫落酸(Abscisic Acid,ABA)作為植物六大激素之一,在植物應(yīng)對干旱、滲透等逆境脅迫條件下,維持植物體本身內(nèi)環(huán)境的穩(wěn)態(tài)中都起重要作用. ABA受體RCARs/PYR/PYLs結(jié)合ABA后抑制PP2C的活性來激活A(yù)BA信號轉(zhuǎn)導(dǎo)途徑. ABA受體作為ABA信號傳遞中的核心成員,其翻譯后修飾對其功能有重要意義.本文主要總結(jié)了ABA受體的功能以及泛素化、硝基化和磷酸化修飾對其功能的精細(xì)調(diào)控的研究進(jìn)展,并對該領(lǐng)域需解決的問題進(jìn)行了展望.總結(jié)發(fā)現(xiàn),ABA受體的不同修飾對其功能的影響不同,因此其翻譯后修飾的研究可能對培育抗逆農(nóng)作物品種具有理論指導(dǎo)意義.
關(guān)鍵詞:脫落酸; 脫落酸受體; 翻譯后修飾; 泛素化; 磷酸化
中圖分類號: ?Q945
文獻(xiàn)標(biāo)識碼:A???DOI:10.19907/j.0490-6756.2023.050003
收稿日期: ?2023-05-30
基金項目: ?國家自然科學(xué)基金(32370273); 四川大學(xué)-自貢市校地科技合作專項資金(2022CDZG-22)
通訊作者: ?楊毅. E-mail: Yangyi528@scu.edu.cn
The progress on the function and post-translational ?modification of ABA receptors
YANG Yi, CHEN Li, LI Xiao-Yi
(Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Educaion, College of Life Sciences, Sichuan University, Chengdu 610065, China)
Abscisic acid (ABA), as one of the six major phytohormones, plays an important role in maintaining the homeostasis of the internal environment under adverse stress conditions such as drought and osmotic stress. ABA receptors (RCARs/PYR/PYLs) bind to ABA and inhibit the activity of PP2C to activate the ABA signal transduction pathway. As a core member of ABA signaling, ABA receptors have post-translational modification (PTM) that is of great significance to their function in plant growth and development, and in responses to abiotic and biotic stresses. In this review, we summarize the recent works in RCARs functions and their fine regulation by PTM in plants and discuss new directions for future studies. In summary, different PTMs lead to variable functions of ABA receptors, thereby elucidation of PTMs would theoretically guide for cultivating stress-resistant crop varieties.
Abscisic acid (ABA); ABA receptors; Post-translational modification; Ubiquitination; ??Phosphorylation
1 引 言
脫落酸(Abscisic acid, ABA)是一類具有倍半萜結(jié)構(gòu)的物質(zhì),廣泛存在于植物中.脫落酸在19世紀(jì)60年代在棉鈴中被分離和鑒定.直到2009年,ABA 受體才由美國和德國的研究團(tuán)隊利用完全不同的研究手段于同一期的 Science 雜志獨立發(fā)表.其中,Culter 研究小組從化學(xué)遺傳學(xué)的角度出發(fā),利用一種選擇性的 ABA拮抗劑(pyrabactin)進(jìn)行遺傳篩選,最終鑒定出一個環(huán)化酶亞家族成員,同時隸屬于含 START 結(jié)構(gòu)域的超家族,PYRABACTIN RESISTANCE 1(PYR1) ?[1] .結(jié)果顯示, PYR1 ?多重缺失突變體表現(xiàn)出很強(qiáng)的 ABA 不耐受性.德國實驗室Grill 研究小組則利用遺傳學(xué)方法中的酵母雙雜交手段以磷酸酶PP2C成員ABI1和ABI2為誘餌篩選到與其互作的蛋白質(zhì),并命名為Regulatory Component of ABA Receptor 1/3 (RCAR1/3).兩個研究小組的研究成果共同揭示了 ABA 信號通路的核心通路,即 PYR1/RCAR1與ABA 結(jié)合后抑制 Clade A PP2Cs 的活性,從而釋放下游激酶SnRK2s,進(jìn)而磷酸化轉(zhuǎn)錄因子ABF,最后啟動效應(yīng)基因的表達(dá)(圖1).隨后一系列文章證實PYR\\PYLs\\RCARs(本文都采用RCARs命名方式)是ABA受體 ?[2-6] .
在擬南芥中,ABA受體可以分為三個亞家族,第一家族包括RCAR1-RCAR4;第二亞家族成員:RCAR5-RCAR10;第三亞家族成員:RCAR11-RCAR12.第一亞家族和第二亞家族是主要以單體形式存在于細(xì)胞中;第三亞家族則是二聚體態(tài)形式;其中 RCAR13在植物體內(nèi)是兩種狀態(tài)單體和二聚體 ?[6,7] .RCAR1、RCAR3、RCAR6、RCAR8、RCAR9、RCAR10、RCAR12和RCAR13結(jié)合ABA后,再與ABI1、ABI2或者HAB1相互作用,抑制PP2Cs磷酸酶活性 ?[1,8,9] ?.其他的受體不依賴ABA,即沒有ABA的情況下,都能與PP2Cs結(jié)合.RCAR1、RCAR3和RCAR8與ABA的結(jié)合能力是第三亞家族成員(除RCAR13外)的50~90倍,解離系數(shù)約為1 μM ?[6,8] ?. ABA受體組織表達(dá)形式的有共性也有特性 ?[10] ,比如,5 d大小的幼苗中,RCAR8和RCAR11只要在根的上部分的皮層中,而RCAR3、RCAR11和RCAR14主要分布在根冠細(xì)胞中;RCAR3、RCAR8、RCAR11、RCAR12和RCAR14在微管組織中都有分布.
2 ABA受體的功能
ABA受體作為ABA信號的核心成員在調(diào)控植物應(yīng)對干旱脅迫中起重要作用.例如,在擬南芥中分別過表達(dá)RCAR11、RCAR12、RCAR13和RCAR14能增強(qiáng)植物的耐旱性 ?[11] .棉花 GhPYL10 、 GhPYL12 和 GhPYL26 基因能夠讓擬南芥幼苗生長和種子萌發(fā)對ABA超敏感,植株的耐旱能力更強(qiáng) ?[12] .木薯ABA受體MePYL8調(diào)控干旱脅迫 ?[13] . OsRCAR5過表達(dá)水稻中的ABA敏感性增強(qiáng),同時,OsRCAR5也與PP2C相互作用 ?[14] .因此,在水稻中ABA信號傳遞與擬南芥類似.利用RD29A啟動子在擬南芥和水稻中過表達(dá) RCAR1 ,植株均表現(xiàn)出顯著的抗旱性和干旱誘導(dǎo)的葉片衰老 ?[15] .過表達(dá)ABA受體 TaPYL1-1B ?可以增強(qiáng)小麥的抗寒性和提高水分利用率,從而保證產(chǎn)量 ?[16] .在擬南芥中過表達(dá)葡萄中的ABA受體 VaPYL4 ( RCAR10 )可以增強(qiáng)植株抗旱和抗鹽能力 ?[17] .轉(zhuǎn)基因番茄OE- VaPYL9 具有較強(qiáng)的抗氧化酶活性和較高的脯氨酸含量,較低的丙二醛(MDA)和H ?2 O ?2 含量,并提高了清除活性氧的能力,進(jìn)而增強(qiáng)番茄的抗逆性 ?[18] .最近的研究發(fā)現(xiàn),ABA信號通路中的核心轉(zhuǎn)錄因子ABI5可以調(diào)控RCARs表達(dá),從而反饋調(diào)節(jié)ABA信號途徑 ?[19] . 因此,在植物中ABA受體作為ABA信號途徑中保守參與植物抗旱響應(yīng).
除此之外,RCAR家族成員作為ABA受體不僅在ABA信號通路中起核心識別作用,也能夠通過與其他蛋白質(zhì)的相互作用發(fā)揮其他的調(diào)控功能.例如,PYL6 (RCAR9)與JA應(yīng)答的關(guān)鍵轉(zhuǎn)錄因子MYC2存在互作,ABA會增強(qiáng)互作能力,從而連接了ABA和JA信號途徑 ?[20] .此外,擬南芥中RCAR3、RCAR9、RCAR10、RCAR11和RCAR12分別與 CAR(C2-domain ABA-Related proteins)家族成員在鈣離子存在的情況下互作,從而影響CAR家族的成員向磷脂囊泡中轉(zhuǎn)運 ?[21] .進(jìn)一步研究發(fā)現(xiàn),CAR聚集在膜上形成Ca ?2+ 依賴的正電膜曲率,從而招募RCARs應(yīng)對細(xì)胞應(yīng)激反應(yīng) ?[22] .
ABA受體不僅參與抗逆響應(yīng),同時在植物的生長發(fā)育過程中也起重要的作用(圖2).本實驗室的研究發(fā)現(xiàn),RCAR1在體內(nèi)外跟MYB轉(zhuǎn)錄因子MYB44相互作用 ?[23] . Zhao等也發(fā)現(xiàn)RCAR3與MYB77、MYB44 和MYB73相互作用,從而調(diào)控生長素相關(guān)基因表達(dá),促進(jìn)側(cè)根生長 ?[24] . 隨后的研究又發(fā)現(xiàn) PYL9(RCAR1)PYL8(RCAR3) 雙突導(dǎo)致ABA誘導(dǎo)的側(cè)根生長休眠期延長,并削弱了ABA對主根生長和側(cè)根形成的敏感性 ?[25] .Zhao等成功構(gòu)建ABA受體的12重突變體,并揭示了它們參與ABA非依賴性的滲透脅迫誘導(dǎo)的SnRK2.2\\2.3\\2.6活性調(diào)控的新機(jī)制 ?[26] .另外, pyl1/4/6 突變體在自然水田條件下水稻長勢好、產(chǎn)量高、種子正常休眠,但是其他的三重突變體 pyl1/2/4 、 pyl1/4/5 和 pyl1/3/4 并未出現(xiàn)這種現(xiàn)象 ?[27] .表明經(jīng)過長期的進(jìn)化,水稻PYLs在調(diào)控植株生長以及產(chǎn)量中發(fā)揮重要作用.PIFs轉(zhuǎn)錄因子PIF3\\4\\5可以與ABA受體RCAR1和RCAR3發(fā)生相互作用,而這種相互作用不受ABA的調(diào)節(jié);同時RCAR1和RCAR3在黑暗中促進(jìn)了PIF4蛋白積累,增強(qiáng)了PIF4與ABI5啟動子的結(jié)合,上調(diào)ABI5的表達(dá),但對PIF4介導(dǎo)的ABI5激活具有負(fù)調(diào)控作用 ?[28] .說明RCARs也參與植物暗形態(tài)建成.本實驗室發(fā)現(xiàn)糖基轉(zhuǎn)移酶UGT71C5有效地把ABA轉(zhuǎn)化為失活型ABA-GE(糖基化ABA),從而調(diào)控植物體內(nèi)ABA的內(nèi)穩(wěn)態(tài),進(jìn)而促進(jìn)植物生長發(fā)育 ?[29] .進(jìn)一步研究發(fā)現(xiàn),UGT71C5可以與ABA受體相互作用,從而增強(qiáng)其糖基轉(zhuǎn)移酶活性 ?[30] .Rab GTPase激活蛋白RabE1c 與ABA受體相互作用,通過未知的降解途徑降解RCAR10,進(jìn)而調(diào)控氣孔運動和干旱脅迫響應(yīng) ?[31] .
RCAR家族基因在調(diào)節(jié)植物果實成熟中也起重要作用.例如, FaPYL9 轉(zhuǎn)錄水平隨著草莓果實的成熟而升高,若干擾降低草莓果實中 FaPYL9 ( RCAR1 )表達(dá)導(dǎo)致草莓果實成熟期延遲3~5d,與草莓果實著色相關(guān)的 FaCHS 和 FaUFGT 基因的表達(dá)量以及果實中蔗糖含量以及花青素含量會降低,而ABA含量和果實硬度則會增加 ?[32] .所以,ABA受體FaPYL9在草莓果實成熟發(fā)育過程中也發(fā)揮重要作用.最近的研究發(fā)現(xiàn),過表達(dá)番茄ABA受體 SlPYL9 ,植株在種子萌發(fā)、根生長和對干旱的響應(yīng)方面表現(xiàn)出典型的ABA高敏感表型,同時,果實成熟顯著加快5~7d,這是由于內(nèi)源ABA積累增加和乙烯提前釋放所致;相反, SlPYL9 -RNAi株系果實成熟延遲、中果皮厚度增加、花瓣脫落延遲、果實呈圓錐形/橢圓形和葫蘆形 ?[33] . 在擬南芥中過表達(dá)葡萄ABA受體 VlPYL1 ( Grape Berry Skin )基因不僅能促進(jìn)花青素積累,還能誘導(dǎo)ABA響應(yīng)基因 ABF2 和 BG3 等表達(dá) ?[34] .另外,在擬南芥中過表達(dá)葡萄( Vitis vinifera ?L.)ABA 受體 VvPYL1 ?促進(jìn)根毛伸長 ?[35] . 因此,ABA受體也參與調(diào)控植物生長發(fā)育和果實成熟過程.
3 ABA受體的翻譯后修飾
蛋白質(zhì)翻譯后修飾 (Post-translational Modifications, PTMs)指蛋白質(zhì)翻譯后的化學(xué)修飾,是真核細(xì)胞生命活動中的重要調(diào)節(jié)方式.在細(xì)胞內(nèi),蛋白質(zhì)一般都是經(jīng)過翻譯后修飾才有功能.PTM不僅可以調(diào)控蛋白質(zhì)結(jié)構(gòu),還能改變其定位、穩(wěn)定性以及蛋白質(zhì)功能.其中,常見PTM有磷酸化、糖基化、甲基化、?;⒎核鼗拖趸?本文將重點闡述ABA受體磷酸化、泛素化和氧化還原修飾在ABA信號轉(zhuǎn)導(dǎo)中的作用及其最新研究進(jìn)展(圖3).
3.1 泛素化修飾
泛素是真核生物中高度保守的一類小肽,由76個氨基酸殘基組成,它通過共價連接的方式把泛素小肽連接到底物蛋白質(zhì)的賴氨酸殘基上.泛素化過程通常經(jīng)一系列的催化反應(yīng)完成,由E1泛素激活酶、E2泛素結(jié)合酶和E3泛素連接酶將泛素連接到靶蛋白中 ?[36] .根據(jù)E3結(jié)構(gòu)可以將其分為4大類: HECT(homology to E6-AP C-terminus)類、RING (really interesting new gene)類、U-box類以及CRL(cullin-ring)類 ?[37] .另外,泛素化修飾根據(jù)連接泛素的數(shù)量可分為單泛素化、多泛素化和多聚泛素化.單泛素化或多泛素化主要起修飾蛋白功能和調(diào)節(jié)蛋白定位等功能;而多聚泛素化通常偶聯(lián)蛋白酶體(ubiquitin/26Sproteasome, Ub/26S蛋白酶體系)進(jìn)行蛋白質(zhì)的選擇性降解,從而維持細(xì)胞內(nèi)蛋白質(zhì)的豐度.泛素化系統(tǒng)同樣能夠通過介導(dǎo)ABA受體RCARs在細(xì)胞水平的穩(wěn)定性來調(diào)控植物體內(nèi)對 ABA 信號的應(yīng)答. 2014年首次發(fā)現(xiàn)ABA 受體PYL8/RCAR3受到了CLU4型多亞基E3連接酶DDA1(DET1-,DDB1-ASSOCIATED1)的調(diào)控,從而負(fù)調(diào)控ABA信號 ?[38] .本實驗室也發(fā)現(xiàn)F-box型E3連接酶RIFP1泛素化RCAR3,從而調(diào)控干旱后RCAR3的水平 ?[39] .同樣,PUB型泛素連接酶PUB22和PUB23通過降解RCAR1,從而負(fù)調(diào)控植物耐旱響應(yīng) ?[40] .多亞基CUL4-DDB1-DWD型E3連接酶AtRAE1同樣也能泛素化RCAR1,進(jìn)而參與ABA信號通路的調(diào)控 ?[41] .同樣類型的E3連接酶RFA1和RFA4與E2結(jié)合酶UBC26互作后結(jié)合PYR1(RCAR11)、PYL4(RCAR10)、PYL5 (RCAR8)和PYL8(RCAR3)等ABA受體 ?[42] .
泛素化修飾后經(jīng)蛋白酶體途徑是較普遍的一種內(nèi)源蛋白質(zhì)降解方式.不過,植物在進(jìn)化過程中,為了適應(yīng)多變以及復(fù)雜的環(huán)境,進(jìn)化出不依賴于26S蛋白酶體,稱之為非26S蛋白酶體內(nèi)膜轉(zhuǎn)運體系,包括胞內(nèi)體轉(zhuǎn)運和自噬泡途徑.同樣,ABA受體也有通過非26S蛋白酶體的方式降解,維持其體內(nèi)的動態(tài)平衡.定位于質(zhì)膜上RING型E3連接酶RSL1與RCAR10/11在質(zhì)膜上互作,進(jìn)而調(diào)控它們的半衰期 ?[43] . 進(jìn)一步研究發(fā)現(xiàn)RSL1和RCAR10的互作發(fā)生在細(xì)胞質(zhì)膜和高爾基體反面網(wǎng)絡(luò)/初級內(nèi)體(TGN/EE)上,用囊泡運輸抑制劑BFA處理后,RCAR10在微粒體中的積累增加,表明RCAR10不僅通過Ub/26S體系降解,同時還存在其它降解途徑 ?[43] .隨后的研究發(fā)現(xiàn)轉(zhuǎn)運必需內(nèi)體分選復(fù)合體組分FYVE1/FREE1與RCAR10互作,通過液泡途徑降解RCAR10 ?[44] .另外,內(nèi)膜運輸途徑的ESCRT-I 復(fù)合體組分VPS23A 識別RCAR10,促進(jìn)RCAR10進(jìn)入內(nèi)膜運輸途徑,從而進(jìn)入液泡進(jìn)行降解,最終調(diào)控ABA受體的定位和穩(wěn)定性 ?[45] .進(jìn)一步的研究發(fā)現(xiàn)FYVE1、VPS23A和 ESCRT-Ⅲ相關(guān)蛋白質(zhì)ALIX (PROTEIN-X)互作,形成復(fù)合物后識別RCAR10,促進(jìn)其降解 ?[46] .2020年,謝旗課題組的研究揭示E3泛素連接酶XBAT35可以降解VPS23A,從而反饋調(diào)控ABA受體的穩(wěn)定性 ?[47] .該課題組進(jìn)一步研究發(fā)現(xiàn)去泛素連接酶UBP12/13通過去泛素化VPS23A,從而穩(wěn)定內(nèi)膜分選復(fù)合體組分VPS23A,進(jìn)而調(diào)控ABA受體的穩(wěn)定性,最終調(diào)控植物耐旱性,另外UBP12\\13也能穩(wěn)定E3連接酶XBAT35 ?[48] . 這些研究表明,植物在ABA響應(yīng)過程中進(jìn)化出精密而復(fù)雜的調(diào)控網(wǎng)絡(luò),保證植物的繁衍以及擴(kuò)張.
3.2 硝基化修飾
一氧化氮(NO)可能會抑制ABA信號轉(zhuǎn)導(dǎo),因為NO缺乏植株對ABA超敏感,而經(jīng)NO處理后,受體結(jié)合ABA能力減弱 ?[49] .因而推測NO處理后植物RCARs的酪氨酸殘基被硝基化,引發(fā)受體泛素化修飾,從而導(dǎo)致受體被26S蛋白酶體識別并降解.后來的研究發(fā)現(xiàn),NO通過調(diào)節(jié)ABA受體的穩(wěn)定來抑制植物下胚軸伸長 ?[50] .另外,二氧化氮(NO ?2 )可誘導(dǎo)PYR/PYL/RCAR的酪氨酸硝化降解,并上調(diào)雷帕霉素靶蛋白(TOR)以刺激植物生長 ?[51] .
3.3 磷酸化修飾
磷酸化修飾是一種普遍的蛋白質(zhì)翻譯后修飾方式,在細(xì)胞信號轉(zhuǎn)導(dǎo)的過程中起重要作用.同樣,ABA受體RCARs受到不同類型的蛋白質(zhì)激酶磷酸化.2018年,朱健康團(tuán)隊研究揭示了植物雷帕霉素靶蛋白(Target of Rapamycin, TOR)激酶磷酸化RCAR10的114位保守的絲氨酸(S)位點,導(dǎo)致RCAR10不能結(jié)合ABA以及抑制磷酸酶PP2C活性,從而阻斷了ABA信號傳遞 ?[52] .另外,ABA激活核心蛋白激酶SnRK2s,隨后磷酸化TOR復(fù)合體中的組分Raptor B,促進(jìn)TOR復(fù)合體解離,抑制TOR活性 ?[52] .同年,本實驗發(fā)現(xiàn)類受體蛋白激酶CARK1磷酸化RCAR3的T77位點和RCAR11的T78位點,從而抑制PP2C活性,進(jìn)而促進(jìn)ABA信號傳導(dǎo),最終正調(diào)控植物抗旱響應(yīng) ?[53] .進(jìn)一步研究發(fā)現(xiàn)CARK1/3/6偏好于磷酸化ABA受體的第三亞家族成員RCAR11-14 ?[54-56] .深入研究解析發(fā)現(xiàn),CARKs家族成員之間能形成同源或異源二聚體,因此偏好于磷酸化二聚體態(tài)的RCARs,進(jìn)而解離ABA受體的二聚態(tài),增強(qiáng)ABA結(jié)合能力;另外,還發(fā)現(xiàn)ABI5能調(diào)控 CARK1/3 轉(zhuǎn)錄 ?[57] .因此,CARKs-RCARs-ABI5形成調(diào)控環(huán),協(xié)同調(diào)控植物耐旱響應(yīng).此外,蛋白激酶AEL磷酸化 RCAR12 ?S136\\182 磷酸化位點,促進(jìn)其泛素化,使其被26S蛋白酶體降解 ?[58] .跟TOR不同,CEPR2 磷酸化RCAR10的S54位點,使其穩(wěn)定性降低,促進(jìn)其降解,從而參與植物抗 逆過程 ?[59] .因此,ABA受體受到多種蛋白質(zhì)激酶的磷酸化調(diào)控,不同的蛋白質(zhì)激酶調(diào)控機(jī)制不同,即RCARs被磷酸化后穩(wěn)定降低或者是結(jié)構(gòu)改變促進(jìn)ABA結(jié)合.
4 總結(jié)與展望
在調(diào)控植物的生長發(fā)育以及對環(huán)境脅迫的適應(yīng)性響應(yīng)方面,ABA扮演了一個非常重要的角色.自ABA受體被鑒定后,大量的分子生物學(xué)、生物化學(xué)、遺傳學(xué)和生理學(xué)研究解析了ABA受體的功能以及ABA信號途徑在植物生長發(fā)育和應(yīng)對脅迫的作用. RCARs蛋白質(zhì)翻譯后修飾對它們的功能具有重要的調(diào)控.多聚泛素化修飾可以維持RCARs在細(xì)胞水平的動態(tài)平衡,但是目前為止沒有去泛素化的報道;RCARs硝基化的研究尚淺,需要更多的數(shù)據(jù)闡述它在ABA信號通路中的功能;RCARs磷酸化修飾,不同的蛋白質(zhì)激酶靶向不同的磷酸化位點,從而引起不同響應(yīng):可能影響它們的穩(wěn)定性,也可能改變它們的結(jié)構(gòu).目前RCARs的乙?;揎棥⑻腔揎椷€未被發(fā)現(xiàn),因此,利用免疫沉淀聯(lián)動質(zhì)譜分析或者酵母雙雜交技術(shù),將找出更多RCARs的上游組分及其功能特征.在作物抗逆方面,可以利用編輯技術(shù)來平衡RCARs受體在生長發(fā)育和抗逆中的作用,在增強(qiáng)作物的耐旱性的同時提高產(chǎn)量.綜上所述,ABA作為細(xì)胞內(nèi)重要的激素分子,解析ABA信號通路在植物特別是農(nóng)作物生長發(fā)育以及逆境脅迫應(yīng)答具有重要意義.
參考文獻(xiàn):
[1] ??Park S Y, Fung P, Nishimura N, ?et al . Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins [J]. Science, 2009, 324: 1068.
[2] ?Melcher K, Ng L M, Zhou X E, ?et al . A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors [J]. Nature, 2009, 462: 602.
[3] ?Fujii H, Chinnusamy V, Rodrigues A, ?et al . In vitro reconstitution of an abscisic acid signalling pathway [J]. Nature, 2009, 462: 660.
[4] ?Miyazono K, Miyakawa T, Sawano Y, ?et al . Structural basis of abscisic acid signalling[J]. Nature, 2009, 462: 609.
[5] ?Noriyuki N, Kenichi H, Arvai A S, ?et al . Structural mechanism of abscisic acid binding and signaling by dimeric PYR1 [J]. Science, 2009, 326: 1373.
[6] ?Santiago J, Dupeux F, Round A, ?et al .The abscisic acid receptor PYR1 in complex with abscisic acid[J]. Nature, 2009, 462: 665.
[7] ?Zhang X, Zhang Q, Xin Q, ?et al. ?Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism[J]. Structure, 2012, 20: 780.
[8] ?Szostkiewicz I, Richter K, Kepka M, ?et al . Closely related receptor complexes differ in their ABA selectivity and sensitivity [J]. Plant J, 2010, 61: 25.
[9] ?Santiago J, Rodrigues A, Saez A, ?et al . Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs[J]. Plant J, 2009, 60: 575.
[10] Gonzalez-Guzman M, Pizzio G A, Antoni R, ?et al . Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J].Plant Cell, 2012, 24: 2483.
[11] Li X, Li G, Li Y, ?et al. ?ABA receptor subfamily Ⅲ enhances abscisic acid sensitivity and improves the drought tolerance of ?Arabidopsis [J]. Int J Mol Sci, 2018, 19: 1938.
[12] Chen Y, Feng L, Wei N, ?et al . Overexpression of cotton PYL genes in ?Arabidopsis ?enhances the transgenic plant tolerance to drought stress[J]. Plant Physiol Biochem, 2017, 115: 229.
[13] 顏彥, 鐵韋韋, 丁 澤紅, 等. 木薯MePYL8基因克隆及表達(dá)分析[J]. 分子植物育種, 2018, 16: 4498.
[14] Kim H, Hwang H, Hong J W, ?et al . A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth [J]. J Exp Bot, 2012, 63: 1013.
[15] Yang Z, Chan Z, Gao J, ?et al . ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proc Natl Acad Sci USA, 2016, 113: 1949.
[16] Mao H, Jian C, Cheng X, ?et al . The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency [J]. Plant Biotechnol J, 2021, 20: 846.
[17] Ren C, Kuang Y, Lin Y, ?et al . Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in ?Arabidopsis ?[J]. BMC Plant Biol, 2022, 22: 271.
[18] Nai G, Liang G, Ma W, ?et al . Overexpression VaPYL9 improves cold tolerance in tomato by regulating key genes in hormone signaling and antioxidant enzyme [J]. BMC Plant Biol, 2022, 22: 344.
[19] Zhao H, Nie K, Zhou H, ?et al. ?ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes [J]. New Phytol, 2020, 228: 596.
[20] Aleman F, Yazaki J, Lee M, ?et al. ?An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling [J]. Sci Rep, 2016, 6: 28941.
[21] Rodriguez L, Gonzalez-Guzman M, Diaz M, ?et al. ?C2-Domain abscisic acid-related proteins mediate theinteraction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in ?Arabidopsis ?[J]. Plant Cell, 2014, 26: 802.
[22] Diaz M, Sanchez-Barrena M J, Gonzalez-Rubio J M, ?et al. ?Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling [J]. Proc Natl Acad Sci USA, 2016, 113: ??E396.
[23] Li D, Li Y, Zhang L, et al. Arabidopsis ?ABA receptor RCAR1/PYL9 interacts with an R2R3-Type MYB transcriptionfactor, AtMYB44 [J]. Int J Mol Sci, 2014, 15: 8473.
[24] Zhao Y, Xing L, Wang X, ?et al. ?The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes [J]. Sci Signal, 2014, 7: ra53.
[25] Xing L, Zhao Y, Gao J, ?et al. ?The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth[J]. Sci Rep, 2016, 6: 27177.
[26] Zhao Y, Zhang Z, Gao J, ?et al. Arabidopsis ?Duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity [J]. Cell Rep, 2018, 23: 3340.
[27] Miao C, Xiao L, Hua K, ?et al. ?Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proc Natl Acad Sci USA, 2018, 115: 6058.
[28] Qi L, Liu S, Li C, ?et al. ?PHYTOCHROME-INTERACTING FACTORS interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness [J]. Mol Plant, 2020, 13: 414.
[29] Liu Z, Yan J, Li D, ?et al . UGT71C5, a major glucosyltransferase mediates ABA homeostasis in Arabidopsis thaliana[J]. Plant Physiol, 2015, 167: 1659.
[30] Ma Y, Cao J, Chen Q, ?et al . Abscisic acid receptors maintain abscisic acid homeostasis by modulating UGT71C5 glycosylation activity[J]. J Integr Plant Biol, 2021, 63: 543.
[31] Chen D, He L, Lin M, ?et al . A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors [J]. Plant Sci, 2021, 306: 110858.
[32] 顏志明, 王全智, 馮英娜, 等. FaPYL9基因調(diào)控草莓果實成熟的分子機(jī)理[J]. 西北植物學(xué)報, 2015, 35: 2379.
[33] Kai W, Wang J, Liang B, ?et al. ?PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening [J]. J Exp Bot, 2019, 70: 6305.
[34] Gao Z, Li Q, Li J, ?et al . Characterization of the ABA receptor VlPYL1 that regulates anthocyanin accumulation in grape berry skin[J]. Front Plant Sci, 2018, 9: 592.
[35] Li H, Gao Z, Chen Q, ?et al. ?Grapevine ABA receptor VvPYL1 regulates root hair development in transgenic ?Arabidopsis ?[J]. Plant Physiol Biochem, 2020, 149: 190.
[36] Morreale F E, Walden H. Types of Ubiquitin Ligases [J]. Cell, 2016, 165: 248.
[37] Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals [J]. J Exp Bot, 2018, 69: 4511.
[38] Irigoyen M L, Iniesto E, Rodriguez L, ?et al. ?Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in ?Arabidopsis ?[J]. Plant Cell, 2014, 26: 712.
[39] Li Y, Zhang L, Li D, ?et al .The ?Arabidopsis ??F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation[J]. Plant Cell Environ, 2015, 39: 571.
[40] Zhao J, Zhao L, Zhang M, ?et al . ?Arabidopsis ?E3 ubiquitin ligases PUB22 and PUB23 negatively regulate drought tolerance by targeting ABA receptor PYL9 for degradation [J]. Int J Mol Sci, 2017, 18: 1841.
[41] Li D, Zhang L, Li X, ?et al. ?AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signaling in ?Arabidopsis ?[J]. Plant Cell Environ, 2017, 41: 231.
[42] Fernandez MA, Belda-Palazon B, Julian J, ?et al. ?RBR-type E3 ligases and the Ub-conjugating enzyme UBC26 regulate ABA receptor levels and signaling [J]. Plant Physiol, 2019,182: 1723.
[43] Bueso E, Rodriguez L, Lorenzo-Orts L, ?et al. ?The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling[J]. Plant J, 2015, 80: 1057.
[44] Belda-Palazon B, Rodriguez L, Fernandez M A, ?et al . FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway[J]. Plant Cell, 2016, 28: 2291.
[45] Yu F, Lou L, Tian M, ?et al. ?ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation[J]. Mol Plant, 2016, 9: 1570.
[46] Garcia-Leon M, Cuyas L, Abd El-Moneim D, ?et al . Stomatal aperture and turnover of ABA receptors are regulated by ?Arabidopsis ?ALIX [J]. Plant Cell, 2019, 31: 2411.
[47] Yu F, Cao X, Liu G, ?et al . ESCRT-I component VPS23A is targeted by E3 ubiquitin ligase XBAT35 for proteasome-mediated degradation in modulating ABA signaling [J]. Mol Plant, 2020, 13: 1556.
[48] Liu G, Liang J, Lou L, ?et al . The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling [J]. Sci Adv, 2022, 8: eabl5765.
[49] Castillo M C, Lozano-Juste J, González-Guzmán M, et al . Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants[J]. Sci Signal, 2015, 8: ra89.
[50] Castillo M C, Coego A, Costa-Broseta , ?et al . Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways[J]. J Exp Bot, 2018, 69: 5265.
[51] Takahashi M, Morikawa H. Nitrogen dioxide at ambient concentrations induces nitration and degradation of PYR/PYL/RCAR receptors to stimulate plant growth: a hypothetical model [J]. Plants (Basel), 2019, 8: 198.
[52] Wang P, Zhao Y, Li Z, ?et al. ?Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J]. Mol Cell,2018, 69: 100.
[53] Zhang L, Li X, Li D, ?et al. ?CARK1 mediates ABA signaling by phosphorylation of ABA receptors [J]. Cell Discov, 2018, 4: 30.
[54] Wang H H, Qiu Y, Yu Q, ?et al . Close arrangement of CARK3 and PMEIL affects ABA-mediated pollen sterility in ?Arabidopsis thaliana [J]. Plant Cell Environ, 2020, 43: 2699.
[55] Wang J, Zhang Q, Yu Q, ?et al. ?CARK6 is involved in abscisic acid to regulate stress responses in ?Arabidopsis thaliana [J]. Biochem Biophys Res Commun, 2019, 513: 460.
[56] Li X, Kong X, Huang Q, ?et al. ?CARK1 phosphorylates subfamily Ⅲ members of ABA receptors[J]. J Exp Bot,2019, 70: 519.
[57] Li X, Xie Y, Zhang Q, ?et al. ?Monomerization of abscisic acid receptors through CARKs-mediated phosphorylation [J]. New Phytol, 2022, 235: 533.
[58] Chen H H, Qu L, Xu Z H, ?et al. ?EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing ABA receptors PYR/PYLs in ?Arabidopsis ?[J]. Mol Plant, 2018, 11: 706.
[59] Yu Z, Zhang D, Xu Y, ?et al. ?CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in ?Arabidopsis ?[J]. J Exp Bot, 2019, 70: 5457.