于遠(yuǎn)祥 廖安全
摘 要:
針對緩傾斜巷道在開挖擾動(dòng)、孔隙水壓及地應(yīng)力共同作用下變形破壞的高度復(fù)雜性和難以控制的顯著特點(diǎn),以馬蹄溝煤礦3506工作面緩傾斜梯形切眼為工程背景,基于彈塑性變形理論,建立了垂直地應(yīng)力、水平構(gòu)造應(yīng)力及孔隙水壓共同作用下切眼圍巖受力計(jì)算模型??紤]開挖過程中切眼圍巖內(nèi)摩擦角與黏聚力的擾動(dòng)劣化效應(yīng),推導(dǎo)了非均勻地應(yīng)力場作用下切眼圍巖的應(yīng)力和位移解析解,進(jìn)而針對性地提出了傾斜巷道開挖及其圍巖支護(hù)方案。結(jié)果表明:開挖方式、地質(zhì)強(qiáng)度、切眼傾角、地應(yīng)力、孔隙水壓及巖體應(yīng)變軟化程度是影響切眼圍巖的應(yīng)力分布與位移大小的關(guān)鍵性因素;傾斜巷道不同斷面位置所受地應(yīng)力和孔隙水壓存在差異性,不同掘進(jìn)區(qū)段圍巖變形量并不相同,應(yīng)設(shè)計(jì)不同的開挖預(yù)留量及其支護(hù)參數(shù)。最后,基于上述理論分析,將馬蹄溝煤礦3506工作面緩傾斜切眼分為4個(gè)掘進(jìn)區(qū)段,確定了切眼第一區(qū)段至第四區(qū)段掘進(jìn)預(yù)留變形量分別為300,260,220及200 mm,切眼圍巖支護(hù)加固后,其頂?shù)装遄畲笠平繛?04 mm,兩幫最大移近量為165 mm,圍巖變形控制效果良好,滿足現(xiàn)場生產(chǎn)要求。
關(guān)鍵詞:緩傾斜煤層;梯形切眼;預(yù)留變形量;支護(hù)技術(shù)中圖分類號(hào):TD 353
文獻(xiàn)標(biāo)志碼:
A
文章編號(hào):1672-9315(2023)06-1137
-12
DOI:10.13800/j.cnki.xakjdxxb.2023.0612開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Surrounding rock deformation law and support technology? of
moderately deep buried gently inclined trapezoidal cut
YU Yuanxiang,LIAO Anquan
(College of Civil and Architectural? Engineering,Xian University of Science and Technology,Xian 710054,China)
Abstract:
The deformation and failure of gently inclined roadway under the combined action of excavation disturbance,pore water pressure and in-situ stress is highly complex and difficult to control.Taking the gently inclined trapezoidal cut of the 3506 working face in Matigou coal mine as the engineering background,based on the theory of elastic-plastic deformation,a calculation model for the stress on the surrounding rock of the cut under the combined action of vertical geostress,horizontal tectonic stress and pore water pressure was established.Considering the disturbance degradation effect of friction angle and cohesion in the surrounding rock of the cut during excavation,the analytical expression of stress and displacement of the surrounding rock of the cut under the non-uniform geostress field were derived,and a targeted excavation and surrounding rock support scheme for inclined roadway was proposed.The results show that excavation method,geological strength,cut angle,geostress,pore water pressure,and degree of rock strain softening are key factors affecting the stress distribution and displacement of the cut rock mass; there are differences in ground stress and pore water pressure at different sections of inclined roadway,and the deformation of surrounding rock in different excavation sections is not the same.Therefore,different excavation reserves and support parameters should be designed.Finally,based on the above theoretical analysis,the gently inclined cut of the 3506 working face in Matigou coal mine was divided into four excavation sections,and the reserved deformation amounts for excavation from the first section to the fourth section of the cut were determined to be 300,260,220 and 200 mm,respectively.After the reinforcement of the cut surrounding rock support,the maximum displacement of the roof and floor of the surrounding rock is 204 mm,and the maximum displacement of the two sides is 165 mm,the deformation control effect of the surrounding rock is good,meeting the requirements of on-site production.
Key words:gently inclined coal seam;trapezoidal cut;reserved deformation;supporting technology
0 引 言隨著煤炭資源的消耗增加,煤炭開采的地質(zhì)條件將越來越復(fù)雜,新的工程問題不斷出現(xiàn),傾斜巷道圍巖的穩(wěn)定性一直是圍繞煤礦生產(chǎn)的重點(diǎn)與難點(diǎn)問題。閆振東等設(shè)計(jì)了滲水條件下斜井圍巖破壞機(jī)理物理模型試驗(yàn),模擬了圍巖變形破壞過程[1];包海玲系統(tǒng)分析了自重應(yīng)力場下傾斜巷道的應(yīng)力與位移情況,探討了傾斜巷道圍巖變形破壞規(guī)律[2];伍永平等分析了多次采動(dòng)條件下急傾斜煤層巷道圍巖失穩(wěn)破壞機(jī)理[3];陳旭分析了斜井圍巖的變形失穩(wěn)的主要原因,并提出針對性的支護(hù)方案[4];占有名探究了開挖步距與應(yīng)力水平對穿越富水層斜井圍巖變形影響規(guī)律[5];王渭明等根據(jù)深埋富水巖層中斜井圍巖破壞特征,對塑性區(qū)半徑經(jīng)驗(yàn)公式進(jìn)行修正[6];李晶晶求解了斜井圍巖在均勻應(yīng)力場和非均勻應(yīng)力場的彈塑性解析式[7];崔增輝依托臺(tái)格廟礦井建設(shè)工程,給出了斜井圍巖變形規(guī)律和盾構(gòu)機(jī)管片安全性[8];葉文登等對穿越煤層傾斜巷道圍巖弱結(jié)構(gòu)進(jìn)行研究,得到了不同圍巖弱結(jié)構(gòu)塑性區(qū)分布及變形規(guī)律[9];高學(xué)通分析了煤層開采過程中孔隙水壓力動(dòng)態(tài)變化過程[10];劉波等基于彈塑性理論,推導(dǎo)出考慮滲流場作用下的斜井圍巖應(yīng)力、位移解析表達(dá)式[11];熊曉輝等通過多種研究方法預(yù)估深埋段煤礦斜井圍巖變形值,并提出相應(yīng)的技術(shù)控制措施[12];周霏等探討了不同支護(hù)條件下的斜井圍巖支護(hù)效果,確定了合理的支護(hù)方案[13];郭鵬探討了斜井凍結(jié)工程中井壁變形的主要因素,為斜井凍結(jié)設(shè)計(jì)與施工提供指導(dǎo)[14];高強(qiáng)考慮了傾斜巷道軸向應(yīng)力,給出了傾斜巷道圍巖的彈塑性應(yīng)力應(yīng)變計(jì)算式[15];郝佩采用理論分析、數(shù)值模擬與工程實(shí)測等多種研究方法,分析了大斷面傾斜巷道圍巖的穩(wěn)定性,為合理優(yōu)化支護(hù)方案提供依據(jù)[16];馬輝等開展了超大坡度隧道斜井變形監(jiān)測與數(shù)據(jù)分析,提出了針對大坡度斜井變形關(guān)鍵控制技術(shù)[17];楊仁樹等分析了非均勻應(yīng)力場作用下斜井井壁應(yīng)力與位移分布規(guī)律[18];熊咸玉等根據(jù)緩傾斜煤層巷道圍巖變形破壞特征,給出針對性的支護(hù)措施[19];馬天壽探究了不同地應(yīng)力作用下巖石各向異性對井壁破壞的影響規(guī)律[20]。以上專家學(xué)者對傾斜硐室圍巖的變形破壞規(guī)律進(jìn)行了系統(tǒng)的研究,對工程實(shí)踐具有一定的指導(dǎo)意義。但工程實(shí)際中,開挖擾動(dòng)損傷和孔隙水壓對傾斜硐室圍巖的變形破壞及其穩(wěn)定性具有重要影響,目前尚缺乏考慮擾動(dòng)損傷和孔隙水壓影響下的傾斜硐室穩(wěn)定性的研究?;诖?,文中以馬蹄溝煤礦3506開切眼工程為背景,建立并簡化傾斜巷道圍巖應(yīng)力分布力學(xué)計(jì)算模型,給出圍巖應(yīng)力、位移計(jì)算公式,并提出針對性的圍巖支護(hù)技術(shù)措施,為有效控制緩傾斜巷道圍巖變形、降低工程成本提供新的技術(shù)手段。
1 工程概況3506工作面開切眼位于馬蹄溝煤礦三采區(qū)西北部,東南方向?yàn)?506工作面未采實(shí)體煤。切眼下口設(shè)計(jì)標(biāo)高為+1 105 m,上口設(shè)計(jì)標(biāo)高為+1 210 m。切眼設(shè)計(jì)傾斜長度為155 m,傾角為22.1°,埋深440.1~498.4 m,切眼斷面形狀為等腰梯形,其上掘?qū)挒?.2 m,下凈寬為7.6 m,掘進(jìn)高度為3.0m,掘進(jìn)斷面積為22.2 m2。切眼布置在5號(hào)煤層中,為實(shí)體煤層巷道,煤層厚度為14~16 m,頂煤平均厚度為10 m,底煤平均厚度為3 m。煤層老頂為灰色砂質(zhì)泥巖,厚度大于7 m,砂泥質(zhì)結(jié)構(gòu),致密;煤層直接頂為淺灰色粉砂巖,厚度1 m左右,粉砂質(zhì)結(jié)構(gòu),較堅(jiān)硬;煤層老底為砂巖,厚度大于10 m,細(xì)粒砂狀結(jié)構(gòu),鈣質(zhì)膠結(jié),老底整體堅(jiān)硬,較穩(wěn)定;煤層直接底為砂質(zhì)泥巖,灰黑色,厚度0.5 m左右,致密。5號(hào)煤層的頂?shù)装寰鶠槿鹾畮r層,據(jù)鄰近區(qū)域水文地質(zhì)情況分析,該切眼在掘進(jìn)過程中受上部含水層影響,局部巷道頂板出現(xiàn)滲水現(xiàn)象,傾斜切眼如圖1所示。
2 緩傾斜切眼力學(xué)分析模型的建立在不同斷面形狀的硐室等效分析模型方面,李桂臣等提出了“等效開挖”的概念,認(rèn)為不同斷面形狀巷道與該斷面外接圓同徑的圓形巷道圍巖塑性區(qū)分布基本一致[21];孟慶彬等認(rèn)為不同斷面形狀巷道圍巖表面位移值主要受巷道無效加固區(qū)變形的影響[22];馬德鵬等發(fā)現(xiàn)當(dāng)垂直方向應(yīng)力與水平方向應(yīng)力相等時(shí),不同斷面形狀巷道所釋放的能量相差很小,且圍巖塑性區(qū)分布相差不大[23];郭曉菲等研究了不同圍壓條件下圍巖塑性區(qū)分布規(guī)律,認(rèn)為當(dāng)垂直方向應(yīng)力與水平方向應(yīng)力接近或者相等時(shí),不同斷面形狀巷道可近似為圓形巷道形態(tài)[24]。因此,當(dāng)不同斷面形狀巷道圍巖變形計(jì)算結(jié)果相近時(shí),為便于指導(dǎo)切眼掘進(jìn)及支護(hù)設(shè)計(jì),可將梯形切眼等效為圓形巷道,斷面圖如圖2所示。
為分析傾斜切眼在開挖過程中的圍巖變形問題,考慮非均勻地應(yīng)力對傾斜切眼圍巖的影響,傾斜切眼受力模型在如圖3(a)所示??紤]孔隙水壓對傾斜切眼圍巖的影響,將孔隙水壓力看作均勻應(yīng)力,傾斜切眼受力模型如圖3(b)所示。在垂直地應(yīng)力、水平構(gòu)造應(yīng)力及孔隙水共同作用下,對傾斜切眼圍巖荷載進(jìn)行疊加分析,如圖3(c)所示。通過對傾斜切眼圍巖單元應(yīng)力分析得到傾斜切眼圍巖徑向應(yīng)力,因此可將傾斜切眼力學(xué)模型轉(zhuǎn)換為水平巷道力學(xué)模型,如圖3(d)所示。由此得到傾斜切眼徑向荷載為
Pr=P0cosθ+λP0sinθ+Pw
(1)
式中 Pr為圍巖徑向應(yīng)力,MPa。
在巷道開挖過程中,巖體受擾動(dòng)影響,造成應(yīng)力和強(qiáng)度變化,使圍巖發(fā)生變形甚至破壞,巖體物理性質(zhì)發(fā)生改變??拷媳诘膰鷰r會(huì)進(jìn)入破裂狀態(tài),形成一個(gè)破裂區(qū);在破裂區(qū)外的巖體應(yīng)力進(jìn)入塑性狀態(tài),產(chǎn)生一定塑性范圍;再往外的巖體接近巖體強(qiáng)度,圍巖處于彈性狀態(tài)。傾斜切眼圍巖荷載分布如圖4所示。
3 緩傾斜切眼圍巖彈塑性變形分析
3.1 緩傾斜切眼掘進(jìn)擾動(dòng)特征分析工程中開挖擾動(dòng)會(huì)對巖體黏聚力與內(nèi)摩擦角造成影響,在一定范圍內(nèi)影響巖體的力學(xué)性質(zhì),從而影響巖體工程的穩(wěn)定。因此,在工程設(shè)計(jì)時(shí)應(yīng)考慮擾動(dòng)狀態(tài)下的有效黏聚力與有效內(nèi)摩擦角。劉德峰基于H-B準(zhǔn)則和M-C準(zhǔn)則,推導(dǎo)出非線性巖體強(qiáng)度參數(shù)黏聚力、內(nèi)摩擦角與工程擾動(dòng)與巖體地質(zhì)強(qiáng)度指標(biāo)之間的關(guān)系表達(dá)式為[25]
4.3 切眼圍巖變形支護(hù)方案及其參數(shù)
4.3.1 頂板及兩幫錨桿參數(shù)確定1)錨桿長度的確定。由(40)可知,巷道破裂區(qū)半徑Rb=6.87 m,故破裂區(qū)范圍為
4.4 支護(hù)效果分析為分析現(xiàn)場切眼圍巖支護(hù)效果,在掘進(jìn)區(qū)段共布置4組測點(diǎn),每組測點(diǎn)布置在掘進(jìn)區(qū)段中部,采用十字交叉法對巷道兩幫、頂?shù)装宓奈灰谱冃瘟窟M(jìn)行監(jiān)測,斷面測點(diǎn)布置如圖9所示,監(jiān)測結(jié)果如圖10所示,切眼圍巖表面變形量見表3。
從圖10可以看出,切眼在支護(hù)后的20 d內(nèi),頂?shù)装寮皟蓭屠塾?jì)位移量增長明顯,20 d后,各測點(diǎn)圍巖變形逐步衰減并趨于穩(wěn)定。第40 d時(shí),頂?shù)装謇塾?jì)相對變形量為分別為204,185,167,135 mm,兩幫累計(jì)相對變形量為分別為165,144,123,97 mm。
從表3可以看出,經(jīng)過對切眼支護(hù)參數(shù)設(shè)計(jì)后,不同掘進(jìn)區(qū)段頂?shù)装?、兩幫?shí)際變形量未超過理論變形量。結(jié)果表明:在切眼掘進(jìn)時(shí)預(yù)留一定的變形量,在此基礎(chǔ)上通過合理設(shè)計(jì)錨桿(索)支
護(hù)參數(shù),為工作面的安全高效回采提供了可靠保障。
5 結(jié) 論
1)傾斜巷道開挖后,圍巖的變形破壞與開挖擾動(dòng)程度、地應(yīng)力及孔隙水壓力密切相關(guān),具體表現(xiàn)為:隨著垂直地應(yīng)力和孔隙水壓的增大,圍巖表面徑向位移越大。
2)傾斜巷道圍巖在開挖擾動(dòng)、地應(yīng)力及孔隙水壓力作用下將產(chǎn)生一定的徑向位移。由于不同斷面位置的圍巖所受地應(yīng)力和孔隙水壓存在差異性,不同掘進(jìn)區(qū)段圍巖變形量并不相同,開挖過程中應(yīng)設(shè)計(jì)不同的開挖預(yù)留量及其支護(hù)參數(shù)。
3)基于上述理論分析,將馬蹄溝煤礦3506工作面緩傾切眼分為4個(gè)掘進(jìn)區(qū)段,確定了切眼第一區(qū)段至第四區(qū)段掘進(jìn)預(yù)留變形量分別為300,260,220及200 mm,并設(shè)計(jì)了各區(qū)段的圍巖支護(hù)參數(shù)。現(xiàn)場實(shí)測表明:切眼頂?shù)装搴蛢蓭妥畲笠平糠謩e為204,165 mm,均未超過設(shè)計(jì)預(yù)留變形量,圍巖變形控制效果良好,滿足現(xiàn)場生產(chǎn)要求。
參考文獻(xiàn)(References):
[1] 閆振東,楊仁樹,岳中文,等.滲水厚礫石層斜井圍巖破壞機(jī)理模型試驗(yàn)[J].煤炭學(xué)報(bào),2009,34(12):1599-1604.YAN Zhendong,YANG Renshu,YUE Zhongwen,et al.Mode test on failure mechanism of the surrounding rock of oblique laneway in thick gravel stratum under seepage water[J].Journal of China Coal Society,2009,34(12):1599-1604.[2]
包海玲.地下傾斜巷道變形場數(shù)值分析及支護(hù)優(yōu)化[D].合肥:合肥工業(yè)大學(xué),2012.BAO Hailing.The underground inclined roadway deformation numerical analysis and optimized support[D].Hefei:Hefei University of Technology,2012.
[3]伍永平,曾佑富,解盤石,等.急傾斜重復(fù)采動(dòng)軟巖巷道失穩(wěn)破壞分析[J].西安科技大學(xué)學(xué)報(bào),2012,32(4):403-408.
WU Yongping,ZENG Youfu,XIE Panshi,et al.Analysis of unstable failure of soft rock roadway in steep cal seam during repeat mining[J].Journal Xian University of Science and Technology,2012,32(4):403-408.[4]
陳旭.采動(dòng)影響底板暗斜井圍巖破壞機(jī)理及支護(hù)技術(shù)研究[D].湘潭:湖南科技大學(xué),2014.CHEN Xu.Study on failure mechanism and supporting technology of floor roadway under mining influence[D].Xiangtan:Hunan University of Science and Technology,2014.[5]
占有名.第四系富水厚砂層段斜井圍巖穩(wěn)定性評價(jià)及其支護(hù)技術(shù)[D].西安:西安科技大學(xué),2014.ZHAN Youming.The stability evaluation of the surrounding rock of the inclined shaft during the quaternary water-rich and thick sand layer segment and its supporting technology[D].Xian:Xian University of Science and Technology,2014.[6]
王渭明,王丹,宗永宏.富含水巖層斜井塑性區(qū)分布規(guī)律與變形控制研究[J].煤炭工程,2015,47(9):39-42.WANG Weiming,WANG Dan,ZONG Yonghong.Study on deformation control and plastic zone distribution law of inclined shaft in water-rich strata[J].Coal Engineering,2015,47(9):39-42.[7]
李晶晶.TBM(盾構(gòu))施工斜井圍巖-支護(hù)相互作用機(jī)理研究[D].北京:中國礦業(yè)大學(xué)(北京),2015.LI Jingjing.Research on interaction between surrounding rock and support by TBM techniques[D].Beijing:China University of Mining and Technology(Beijing),2015.[8]
崔增輝.盾構(gòu)法施工煤礦斜井圍巖變形規(guī)律及管片安全性評價(jià)[D].北京:北京交通大學(xué),2015.CUI Zenghui.Study on the deformation of surrounding rocks and the safety assessment of lining segments during the construction of mine inclined shaft by TBM[D].Beijing:Beijing Jiaotong University,2015.[9]
葉文登,徐營,李贇,等.穿煤層傾斜巷道圍巖弱結(jié)構(gòu)分析及支護(hù)技術(shù)[J].煤礦安全,2015,46(9):221-224.YE Wendeng,XU Ying,LI Yun,et al.Weak structure of surrounding rock and support technology in inclined roadway crossing coal seam[J].Safety in Coal Mines,2015,46(9):221-224.[10]
高學(xué)通.底部含水層孔隙水壓力采動(dòng)波動(dòng)及影響機(jī)制的試驗(yàn)研究[J].礦業(yè)安全與環(huán)保,2016,43(2):8-12.GAO Xuetong.Experiment study of pore water pressure fluctuation and influence mechanism in bottom aquifer during mining[J].Mining Safety & Environmental Protection,2016,43(2):8-12.[11]
劉波,劉璐璐,徐薇,等.基于統(tǒng)一強(qiáng)度理論的TBM斜井圍巖彈塑性解[J].采礦與安全工程學(xué)報(bào),2016,33(5):819-826.LIU Bo,LIU Lulu,XU Wei,et al.Elastic-plastic analytical solution of TBM inclined shaft based on unified strength criterion[J].Journal of Mining & Safety Engineering,2016,33(5):819-826.[12]
熊曉暉,張旭東,夏明錟,等.煤礦斜井盾構(gòu)深埋段極限位移及變形控制研究[J].施工技術(shù),2016,45(22):1-5.XIONG Xiaohui,ZHANG Xudong,XIA Mingtan,et al.The control technology applied to the limit displacement and deformation of the deep-buried section in coal mine inclined shaft shield construction[J].Construction Technology,2016,45(22):1-5.[13]
周霏,景國勛.不同位置斜井井筒圍巖變形破壞規(guī)律的數(shù)值分析[J].煤炭技術(shù),2017,36(1):69-72.ZHOU Fei,JING Guoxun.Surrounding rock deformation and failure rules numerical analysis of inclined shaft in different position[J].Coal Technology,2017,36(1):69-72.[14]
郭鵬.斜井凍結(jié)壁受力與變形規(guī)律研究[J].煤炭工程,2018,50(6):100-104.GUO Peng.Stress and deformation law of inclined shaft freezing wall[J].Coal Engineering,2018,50(6):100-104.[15]
高強(qiáng).深部巷道分區(qū)破裂動(dòng)力分析及支護(hù)研究[D].濟(jì)南:山東大學(xué),2019.GAO Qiang.Study on dynamic analysis and support control of zonal disintegration in surrounding rock of deep tunnel[D].Jinan:Shandong University,2019.[16]
郝佩.變傾角變埋深大斷面巷道圍巖穩(wěn)定性控制研究[D].太原:太原理工大學(xué),2019.HAO Pei.Study on stability control of surrounding rock of large section roadway with variable inclination and buried depth[D].Taiyuan:Taiyuan University of Technology,2019.[17]
馬輝,王飛,劉澤掛,等.深埋特長大坡度斜井變形規(guī)律與影響因素分析[J].地下空間與工程學(xué)報(bào),2020,16(S2):950-956.MA Hui,Wang Fei,LIU Zegua,et al.Research on geological prediction and monitoring technology for steeply inclined and deep buried shaft[J].Chinese Journal of Underground Space and Engineering,2020,16(S2):950-956.[18]楊仁樹,王千星.非均勻荷載下斜井井壁應(yīng)力和位移場彈性分析[J].煤炭學(xué)報(bào),2020,45(11):3726-3734.YANG Renshu,WANG Qianxing.Elastic analysis of full stress and displacement field for inclined shaft liner subjected to nonuniform stresses[J].Journal of China Coal Society,2020,45(11):3726-3734.[19]
熊咸玉,戴俊.緩傾斜煤層直角梯形巷道支護(hù)技術(shù)[J].煤炭學(xué)報(bào),2020,45(S1):110-118.XIONG Xianyu,DAI Jun.Research on support technology of right angle trapezoidal roadway in generally inclined coal seam[J].Journal of China Coal Society,2020,45(S1):110-118.[20]
馬天壽,王浩男,楊赟,等.不同地應(yīng)力狀態(tài)下各向異性地層斜井井壁破裂規(guī)律[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,53(3):1123-1135.MA Tianshou,WANG Haonan,YANG Yun,et al.Wellbore fracture regularity of inclined wells in anisotropic formation under different in-situ stress states[J].Journal of Central South University(Science and Technology),2022,53(3):1123-1135.[21]
李桂臣,張農(nóng),王成,等.高地應(yīng)力巷道斷面形狀優(yōu)化數(shù)值模擬研究[J].中國礦業(yè)大學(xué)學(xué)報(bào),2010,39(5):652-658.LI Guichen,ZHANG Nong,WANG Cheng,et al.Optimizing the section shape of roadways in high stress ground by numerical simulation[J].Journal of China University of Mining & Technology,2010,39(5):652-658.[22]
孟慶彬,韓立軍,喬衛(wèi)國,等.深部高應(yīng)力軟巖巷道斷面形狀優(yōu)化設(shè)計(jì)數(shù)值模擬研究[J].采礦與安全工程學(xué)報(bào),2012,29(5):650-656.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Numerical simulation of cross-section shape optimization design of deep soft rock roadway under high stress[J].Journal of Mining & Safety Engineering,2012,29(5):650-656.[23]
馬德鵬,楊永杰,曹吉?jiǎng)伲?基于能量釋放的深井巷道斷面形狀優(yōu)化[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,46(9):3354-3360.MA Depeng,YANG Yongie,CAO Jisheng,et al.Optimization design of cross section shape of deep roadways based on characteristics of energy release[J].Journal of Central South University(Science and Technology),2015,46(9):3354-3360.[24]
郭曉菲,郭林峰,馬念杰,等.巷道圍巖蝶形破壞理論的適用性分析[J].中國礦業(yè)大學(xué)學(xué)報(bào),2020,49(4):646-653,660.GUO Xiaofei,GUO Linfeng,MA Nianjie,et al.Applicability analysis of the roadway butterfly failure theory[J].Journal of China University of Mining & Technology,2020,49(4):646-653,660.[25]劉德峰,郭兵兵,劉長武,等.考慮工程擾動(dòng)和地質(zhì)條件的巷幫極限平衡區(qū)分析[J].煤炭學(xué)報(bào),2017,42(3):597-603.LIU Defeng,GUO Bingbing,LIU Changwu,et al.Analysis of limit equilibrium zone for roadway side wall considering engineering disturbance and geological condition[J].Journal of China Coal Society,2017,42(3):597-603.[26]
陳鵬.基于Hoek-Brown準(zhǔn)則的邊坡等效Mohr-Coulomb參數(shù)估算[D].西安:長安大學(xué),2021.CHEN Peng.Estimation of equivalent Mohr-Coulomb parameters of slope based on Hoek-Brown criterion[D].Xian:Changan University,2021.[27]
于遠(yuǎn)祥,秦光,陳盼.露天礦燒變巖高邊坡卸荷機(jī)理與穩(wěn)定性研究[J].西安科技大學(xué)學(xué)報(bào),2023,43(5):941-951.
YU Yuanxiang,QIN Guang,CHEN Pan.Study on unloading mechanism and stability of high rock slope in burnt rock open-pit mine[J].Journal Xian University of Science and Technology,2023,43(5):941-951.
[28]付國彬.巷道圍巖破裂范圍與位移的新研究[J].煤炭學(xué)報(bào),1995,20(3):304-310.FU Guobin.Recent investigation of extent of fractured zone and displacement of rocks around the roadways[J].Journal of China Coal Society,1995,20(3):304-310.[29]
于遠(yuǎn)祥.矩形巷道圍巖變形破壞機(jī)理及在王村礦的應(yīng)用研究[D].西安:西安科技大學(xué),2013.YU Yuanxiang.Study on deformation mechanism of surrounding rock in rectangular roadway and its application in Wangcun coal mine[D].Xian:Xian University of Science and Technology,2013.
(責(zé)任編輯:劉潔)