張昊 邢鴻林 唐國儒 袁天賀 楊玲
摘 要:為解決云杉(Picea)屬樹種早期生長緩慢影響大徑材用材林的培育周期,可通過合理施肥和撫育措施結(jié)合處理,促進(jìn)樹高生長和地徑增加。以落葉松林下紅皮云杉(Picea koraiensis)10 年生人工幼齡林木為研究對象,隨機(jī)設(shè)置12塊10 m×10 m 的固定樣地,肥料類型選擇氮(N-尿素)、氮磷(NP-尿素+過磷酸鈣)、氮磷鉀(NPK-尿素+過磷酸鈣+磷酸鉀)。設(shè)置2種施肥時(shí)間,1)生長季前中后期施肥。每年在生長季初(5月中旬)、中(7月中旬)、后期(8月中旬)施肥3次,連續(xù)重復(fù)施肥4 a;2)生長季前中末期施肥。每年在生長季初(5月中旬)、中(7月中旬)、末期(9月中旬)施肥3次,連續(xù)重復(fù)施肥4 a。透光撫育設(shè)置,施肥一個(gè)生長季后對上層落葉松林木進(jìn)行生長伐, 撫育后林分郁閉度為0.6。通過研究施肥和透光撫育對林木生長的影響, 旨在開發(fā)促進(jìn)紅皮云杉幼樹生長的施肥管理技術(shù), 以縮短幼齡林生長周期。施NPK肥促進(jìn)紅皮云杉幼樹樹高和地徑生長的效果好于只施單一肥料或氮磷2種肥料的混合肥。生長季前中末期施加NPK肥處理的樹高、地徑年生長量比生長季前中后期施加NPK肥的處理分別高41.11%和49.81%。透光撫育后不同年份之間林木的樹高年生長量差異不顯著,地徑年生長量差異顯著,3個(gè)生長季后樹高和地徑的年生長量與撫育前相比差異不顯著。生長季前中后期施肥結(jié)合透光撫育處理2個(gè)生長季后樹高和地徑的年生長量與對照差異顯著,3個(gè)生長季后只有地徑的年生長量與對照差異顯著。生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育處理3個(gè)生長季后,地徑年生長量分別高出對照和生長季前中后期施氮磷鉀肥(NPK1)結(jié)合透光撫育的處理153.16%和10.31%。施肥與透光撫育結(jié)合處理可以提高紅皮云杉地徑的年生長量,在連續(xù)施肥4 a時(shí)達(dá)到顯著水平,生長季前中末期施肥效果好于前中后期施肥。研究結(jié)果為解決林下造林紅皮云杉人工林木幼齡期生長緩慢、縮短紅皮云杉大徑材用材林培育周期奠定了基礎(chǔ)。
關(guān)鍵詞:紅皮云杉;施肥;透光撫育;幼齡人工林;林木生長
中圖分類號(hào):S722.8 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-8023(2023)03-0021-09
Abstract:The period of cultivation of large-diameter timber stands is affected by the relatively slow initial growth of Picea species. The combination of fertilization and nurturing measures can promote the growth of tree height and ground diameter. In this paper, 12 fixed plots of 10 m×10 m were randomly set up in a larch understory with 10 a juvenile Picea koraiensis plantations as the study subjects. Fertilizer types were selected as N (N - urea), NP (NP - urea+superphosphate), NPK (NPK - urea+superphosphate+potassium phosphate). Two types of fertilization time were set: (1) pre-middle-late growing seasons fertilization: fertilizer was applied per year at the beginning (mid-May), middle (mid-July), and late (mid-August) of the growing season, with fertilization repeated for four consecutive years. (2) Pre-middle-end growing seasons fertilization: fertilizer was applied per year at the beginning (mid-May), middle (mid-July) and end (mid-September) of the growing season, with fertilization repeated for four consecutive years. Light-felling was set as follows, after one growing season of fertilization, accretion cutting the upper larch trees, and the stand density was 0.6 after tending. By studying the effects of fertilization and light-felling on the growth of trees, the aim was to develop fertilization management techniques to promote the growth of juvenile P. koraiensis, so as to shorten the growth cycle of young plantation. The effect of applying NPK fertilizer on promoting the height and diameter growth of juvenile P. koraiensis was better than applying only a single fertilizer or a mixture of nitrogen and phosphorus fertilizers. The annual tree height and ground diameter growth were 41.11 % and 49.81 % higher in the treatments NPK fertilizer applied pre-mid-end growing seasons than those treated with NPK in the pre-mid-late growing seasons. After light-felling, the annual growth of tree height between different years was not significantly different, but that of the ground diameter was significantly different. The annual growth of tree height and ground diameter after three growing seasons were not significantly different from that before light-felling. By combining fertilizer application in the pre-middle-late growing seasons with light-felling treatments, the annual growth of tree height and ground diameter were significantly different from the control group after two growing seasons, only the annual growth of ground diameter was significantly different from the control group after three growing seasons. After three growing seasons of nitrogen, phosphorus and potassium fertilizers (NPK2) combined with light-felling in the pre-mid-end of growing seasons, the annual growth of ground diameter was 153.16 % and 10.31 % higher than that of the control and pre-middle-late of growing seasons NPK fertilizers (NPK1) combined with light-felling. The combination of fertilization and light-felling treatments can increase the annual growth of P. koraiensis ground diameters, reaching a significant level at four consecutive years of fertilization. Fertilizer application at the pre-mid-end stages of the growing season is more effective than at pre-mid-late stages. The research provides a basis for solving the problem of slow growth of P. koraiensis plantation at a young age and shortening the cultivation period of large-diameter timber plantation of P. koraiensis.
Keywords:Picea koraiensis; fertilization; light-felling; young plantation; tree growth
基金項(xiàng)目:國家重點(diǎn)研發(fā)項(xiàng)目(2017YFD0600600)
第一作者簡介:張昊,碩士研究生。研究方向?yàn)槿斯ち侄ㄏ蚺嘤?。E-mail: zhanghao010015@163.com
*通信作者:楊玲,博士,教授,博士生導(dǎo)師。研究方向?yàn)槿斯ち侄ㄏ蚺嘤-mail: yangl-cf@nefu.edu.cn
0 引言
云杉(Picea)屬廣布北半球歐、亞和北美大陸,構(gòu)成高緯度和低緯度高海拔植被區(qū)的主要頂級(jí)群落建群種,在我國屬第4大樹種之一,是我國林業(yè)產(chǎn)業(yè)的基礎(chǔ)。紅皮云杉是松科(Pinaceae)云杉屬常綠喬木,可作為園林觀賞植物。紅皮云杉具有成活率高,成林、成材把握大,抗病蟲害力強(qiáng),適應(yīng)力強(qiáng)的特點(diǎn),在立地條件差的地方也能成林;但是由于其初期生長緩慢(10 a后生長迅速)[1]及生長期較長的缺點(diǎn),限制了大徑材林木的供應(yīng)。幼樹生長速度緩慢,需要人為改善環(huán)境以促進(jìn)紅皮云杉幼樹生長。促進(jìn)幼樹生長的撫育措施技術(shù)主要有間伐、施肥和除草等。施肥與透光撫育措施結(jié)合處理可減少郁閉度、增加光照強(qiáng)度、促進(jìn)幼樹生長[2-4]。人為補(bǔ)充土壤中的養(yǎng)分,為植物生長提供充足的養(yǎng)分,可促進(jìn)植物快速生長縮短成材時(shí)間,提高樹木的成材率[5]。目前林木施肥研究多集中以氮、磷、鉀配比施肥試驗(yàn)[6],不同氮磷鉀肥料的配比,對樹木生長、生理以及養(yǎng)分積累程度的影響差異較大[7-8]。除研究配比肥料之外,為了減少實(shí)際生產(chǎn)的成本,利用市場已有的不同類型復(fù)合肥,滿足樹木在生長時(shí)期的養(yǎng)分需求[9]。
國內(nèi)外研究者針對人工林施肥已經(jīng)取得了很多寶貴經(jīng)驗(yàn)[10]。Bergh等[11]對瑞典北部挪威云杉(Picea abies)重復(fù)施肥發(fā)現(xiàn),施肥后的挪威云杉生長速度明顯地上升,達(dá)到對照組的3倍。現(xiàn)階段對于紅皮云杉的研究發(fā)現(xiàn),施肥處理影響了紅皮云杉菌根真菌和AM真菌生態(tài)系統(tǒng)的多樣性。不同肥種及不同施肥量對紅皮云杉幼苗生長有差異顯著[12],此外,有關(guān)根系形態(tài)對不同氮形式的適應(yīng)情況和對不同類型氮肥的需求規(guī)律也有研究[13]。光環(huán)境對幼樹的橫向、縱向發(fā)育的影響明顯[14]。目前對施肥和透光撫育等措施結(jié)合處理的研究尚少,且對紅皮云杉對不同施肥處理組合連續(xù)多年重復(fù)施肥的響應(yīng)情況了解不足。
本研究以紅皮云杉10 年生幼樹為研究對象,在黑龍江省佳木斯市孟家崗林場做了施肥與透光試驗(yàn),通過調(diào)查紅皮云杉的生長指標(biāo),分析不同施肥措施(肥料配比、施肥時(shí)間)、透光撫育以及二者結(jié)合的經(jīng)營效果,歸納總結(jié)施肥結(jié)合透光撫育對紅皮云杉幼樹生長的影響,研究建立合理的施肥透光撫育機(jī)制,對紅皮云杉幼樹加速生長有重要意義。
1 試驗(yàn)地概況與試驗(yàn)方法
1.1 試驗(yàn)地概況
試驗(yàn)地點(diǎn)位于黑龍江省佳木斯市孟家崗林場,地理位置為130°32″42′~130°52″36′ E, 46°20″16′~46°30″50′ N,海拔170~575 m,屬于東亞大陸性季風(fēng)氣候。全年最高氣溫為35.6℃,最低氣溫為-38.6 ℃,年均氣溫為2.7 ℃,年均降水量為550 mm,無霜期為120 d左右,全年日照時(shí)間為1 955 h。土壤主要以暗棕壤為主,還有少量白漿土、草甸土、泥炭土和沼澤土。試驗(yàn)地土壤養(yǎng)分基本情況見表1。
1.2 樣地設(shè)置和施肥方法
以40 年生落葉松林下定植的10 a紅皮云杉人工林為研究對象,施肥前試驗(yàn)幼樹平均樹高為0.92 m,平均地徑為2.36 cm,郁閉度為0.9。將全部試驗(yàn)樣地設(shè)置為12塊10 m×10 m 的固定樣地。每種施肥類型設(shè)置3組重復(fù),分別施用氮肥(N)、氮磷肥(NP)、氮磷鉀復(fù)合肥(NPK)。設(shè)置2種施肥時(shí)間,1)生長季前中后期施肥:每年在生長季初(5月中旬)、中(7月中旬)、后期(8月中旬)施肥3次,連續(xù)重復(fù)施肥4 a;2)生長季前中末期施肥:于生長季前期(5月中旬)和中期(7月中旬)、生長季末期(9月中旬)施NPK肥3次,連續(xù)重復(fù)施肥4 a。施肥前先將試驗(yàn)幼樹半徑50 cm以內(nèi)的穴面雜草清除。施肥方法為所施的肥料沿幼樹兩側(cè)10 cm 處、深7~10 cm溝內(nèi)一次性施入。其中,施氮量為每株100 g,施磷量為每株50 g,施鉀量為每株100 g。根據(jù)季節(jié)溫度變化調(diào)節(jié)施肥量,5月份施30%、7 月份施40%、8 月份施30%。具體單株和各月份施肥量見表2。按照黑龍江省地方標(biāo)準(zhǔn)《森林采伐更新技術(shù)規(guī)程》(DB/2300B 64001—88)的規(guī)定操作,2018年生長季結(jié)束后對樣地內(nèi)40 a落葉松進(jìn)行30%株數(shù)強(qiáng)度的采伐。
1.3 透光撫育處理和生長量調(diào)查
2018年冬季對上層落葉松林木進(jìn)行生長伐,采伐按照黑龍江省地方標(biāo)準(zhǔn)《森林采伐更新技術(shù)規(guī)程》(DB/2300B 64001—88)的規(guī)定操作,撫育后林分郁閉度為0.6。每年生長季結(jié)束后對樣地內(nèi)紅皮云杉幼樹進(jìn)行生長指標(biāo)測量,連續(xù)調(diào)查3個(gè)生長季。每樣地紅皮云杉幼樹數(shù)量為40~75株。使用卷尺對苗高與冠幅進(jìn)行測量,精確到0.1 cm,使用游標(biāo)卡尺對地徑進(jìn)行測量,精確到0.1 mm。
1.4 數(shù)據(jù)處理與分析
用Microsoft Excel 2019進(jìn)行數(shù)據(jù)處理,使用IBM SPSS Statistics 19 統(tǒng)計(jì)分析軟件在顯著水平為5%條件下進(jìn)行單因素方差分析比較。數(shù)據(jù)結(jié)果均用“平均值±標(biāo)準(zhǔn)誤”表示。
2 結(jié)果與分析
2.1 透光撫育前施肥對紅皮云杉幼齡林林木生長的影響
透光撫育前的生長季前中后期不同施肥處理的樹高年生長量差異顯著(P<0.05),地徑年生長量差異不顯著(P>0.05)。各處理中,生長季前中后期施氮磷鉀復(fù)合肥的處理(NPK1)的地徑年生長量均高于其他處理組,比對照組高5.78%,見表3。
透光撫育前,生長季前中末期施肥處理的紅皮云杉樹高年生長量均差異顯著(P<0.05),地徑年生長量的差異不顯著(P>0.05)。施加NPK肥后,樹高和地徑年生長量分別高于對照組17.05%和58.47%,生長季前中末期施加NPK肥處理的樹高、地徑年生長量比生長季前中后期施加NPK肥的處理分別高41.11%和49.81%,見表4。
2.2 透光撫育對紅皮云杉幼齡林林木生長的影響
透光撫育后連續(xù)調(diào)查3 a未施肥處理的樣地,發(fā)現(xiàn)不同年份之間紅皮云杉幼齡林的樹高年生長量差異不顯著(P>0.05),地徑的年生長量差異顯著(P<0.05)。透光撫育3個(gè)生長季后(2021年),樹高和地徑的年生長量與撫育前相比差異不顯著(P>0.05),見表5。
2.3 施肥與透光撫育結(jié)合處理對紅皮云杉幼齡林林木生長的影響
2.3.1 生長季前中后期施肥與透光撫育結(jié)合處理的影響
生長季前中后期施肥與透光撫育結(jié)合處理的影響,如圖1所示。施肥處理結(jié)合透光撫育后的第1個(gè)生長季的樹高和地徑的年生長量與對照無顯著差異。不同施肥處理樹高和東西冠幅的年生長量均低于對照,但差異不顯著(P>0.05)。地徑年生長量由大到小依次為:NP、NPK1、N、CK(P>0.05),而南北冠幅由大到小依次為:NPK1、CK、NP、N(P>0.05)。施肥處理結(jié)合透光撫育后的第2個(gè)生長季的樹高和地徑的年生長量與對照差異顯著。不同施肥處理樹高年生長量均低于對照(P<0.05);施加NP、NPK肥結(jié)合透光撫育的地徑年生長量顯著大于對照組,分別為170.7%和156.6%(P<0.05)。南北冠幅生長量由大到小依次為:N、CK、NP、 NPK1(P<0.05),而東西冠幅由大到小依次為:N、CK、NPK1、NP(P<0.05)。施肥處理結(jié)合透光撫育后的第3個(gè)生長季的樹高的年生長量與對照差異不顯著(P>0.05),地徑的年生長量與對照差異顯著(P<0.05)。施加NPK1肥結(jié)合透光撫育的地徑年生長量顯著大于對照組和其他施肥處理(P<0.05)。南北冠幅生長量差異不顯著(P>0.05),而東西冠幅由大到小依次為:CK、N、NP、NPK1(P<0.05)。
2.3.2 生長季前中末期施肥與透光撫育結(jié)合處理的影響
生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育后的第1個(gè)生長季的樹高和地徑的年生長量與對照相比差異顯著。生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育處理的樹高、地徑和南北冠幅的年生長量均顯著高于對照和生長季前中后期施氮磷鉀肥處理(NPK1)(P<0.05)。東西冠幅的年生長量與對照和生長季前中后期施氮磷鉀肥處理(NPK1)相比差異均不顯著(P>0.05)。生長季前中末期施加NPK肥處理的樹高、地徑年生長量比生長季前中后期施加NPK肥的處理分別高36.00%和13.98%。
生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育后的2個(gè)生長季的樹高、地徑、南北和東西冠幅的年生長量與對照及生長季前中后期施氮磷鉀肥處理(NPK1)結(jié)合透光撫育的處理相比均差異不顯著。生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育處理的地徑、東西冠幅年生長量高于對照組22.3%和10.31%,樹高、南北冠幅年生長量低于對照組39.68%和3.80%。生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育處理的樹高、地徑的年生長量比生長季前中后期施氮磷鉀肥處理(NPK1)結(jié)合透光撫育的處理相比分別低5%和52.2%,南北、東西冠幅年生長量分別提高了80.95%和15.05%。
生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育后的3個(gè)生長季的樹高年生長量與對照相比差異不顯著,地徑年生長量與對照相比差異顯著。生長季前中末期施氮磷鉀肥處理(NPK2)結(jié)合透光撫育處理的地徑年生長量分別高出對照和生長季前中后期施氮磷鉀肥(NPK1)結(jié)合透光撫育的處理153.16%和10.31%(P<0.05),如圖2所示。
3 討論與結(jié)論
3.1 討論
施肥是1項(xiàng)人工林管理措施,旨在提高土壤生產(chǎn)力,從而增加樹木的橫向生長。在北方森林環(huán)境條件下,氮(N)是最重要的生長限制因子[15]。在透光撫育前的生長季前中后期連續(xù)施3次不同組合肥料對林木的影響有所不同。NPK1施肥效果均高于其他施肥處理組,其中對地徑的生長量影響最大,比對照組高5.78%。大量的施肥試驗(yàn)表明,在生長季進(jìn)行不同的施肥處理均可對幼樹的生長產(chǎn)生正向影響,其中所有處理中對幼樹橫向數(shù)據(jù)影響明顯,樹木橫向數(shù)據(jù)是表達(dá)樹木生長狀況的重要參考。Loewe-Munoz等[16]對意大利石松(Pinus pinea)施肥研究結(jié)果表明施肥對直徑生長有重要影響。施肥促進(jìn)樹冠和莖的快速生長。主要原因是施肥促進(jìn)了植物的生長,進(jìn)而導(dǎo)致根部和莖部碳水化合物含量的下降[17]。施肥增加徑部生長與碳儲(chǔ)備呈負(fù)相關(guān),施肥處理提高了根系向上運(yùn)輸碳水化合物的有效性,從而提高了林木冠幅的伸長[18]。Haynes等[19]發(fā)現(xiàn)施肥可以提高林木生長最快時(shí)期(夏季)的胸徑生長量,施肥處理的夏季每日胸徑生長量可達(dá)0.06 mm,是對照處理的3倍。同時(shí)施肥可以增加光合能力(通過增加葉面積指數(shù)或提高葉片的光合效率),或減少碳分配到細(xì)根生長,從而釋放碳以促進(jìn)莖生長。在肥沃的地方長期對蘇格蘭松 (Pinus sylvestris)施氮肥,枝條生物量增加了25%[20]。談鋒等[21]的研究進(jìn)一步表明,氮磷鉀復(fù)合肥比單一肥料更有效提高柳樹(Salix babylonica)的苗高和地徑,促進(jìn)橫向生長主要原因?yàn)榈适橇帜倔w內(nèi)蛋白質(zhì)重要組成元素,促進(jìn)生長,充足的磷肥可以促進(jìn)植物發(fā)育,促進(jìn)生殖器官發(fā)育。而鉀肥則是影響林木根系發(fā)育,使得植物莖發(fā)育粗壯。
透光撫育前的生長季前中末期施肥同樣可以對紅皮云杉幼樹的生長起到促進(jìn)作用。在缺乏常規(guī)施肥的情況下,當(dāng)幼樹的生物量繼續(xù)積累時(shí),氮儲(chǔ)量通常在秋季被稀釋,從而產(chǎn)生秋季施氮的必要性[22]。秋季施肥(生長季末期施肥)是一項(xiàng)重要的栽培和管理措施,用于在生長季節(jié)結(jié)束時(shí)的硬化階段提供養(yǎng)分、增強(qiáng)養(yǎng)分儲(chǔ)備并在第2個(gè)春季促進(jìn)額外的生長[23]。Rikala等[24]在挪威云杉(Picea abies)常規(guī)施肥和秋季施肥結(jié)果比較中發(fā)現(xiàn),秋季施肥處理后的幼苗樹高、地徑等生長指標(biāo)遠(yuǎn)高于常規(guī)施肥,而且新長出的葉片和枝條的數(shù)量是常規(guī)施肥的2倍。主要原因是秋季施肥可以提供大量養(yǎng)肥為幼樹下一年的生長貯存養(yǎng)分[25],休眠結(jié)束后能夠較快地生長發(fā)育。秋季施肥能緩解苗木生長后期的養(yǎng)分稀釋效應(yīng),保持一定的養(yǎng)分含量,在苗木中儲(chǔ)存充足的養(yǎng)分,比春季施肥、夏季施肥更能促進(jìn)生物量和養(yǎng)分積累[26]。只透光撫育處理不施肥對紅皮云杉幼齡林木的生長影響不顯著。透光撫育和施肥可以共同促進(jìn)林分發(fā)育,但徑向生長會(huì)隨著撫育強(qiáng)度的增加而增加,而高強(qiáng)度撫育措施才對縱向生長有促進(jìn)作用[27]。馬尾松(Pinus massoniana)林隨著間伐時(shí)間的增加,林下植被總生物量隨間伐強(qiáng)度的增幅也會(huì)在一定程度內(nèi)相應(yīng)增大[28]。間伐后直徑增加的類似結(jié)果在許多研究中呈現(xiàn)[29]。合理的間伐強(qiáng)度能夠促進(jìn)林分生長及其林下植被發(fā)育。間伐可以增加樹冠的開放度(光照可用性),改變土壤溫度和水分條件,影響植物養(yǎng)分的吸收,最終影響林下幼樹的生長發(fā)育[30-32]。在本研究中,透光撫育后造成紅皮云杉年生長量減少的原因可能是采伐強(qiáng)度不夠。
本研究發(fā)現(xiàn),透光撫育結(jié)合生長季前中后期、生長季前中末期施氮磷鉀肥處理3個(gè)生長季的地徑年生長量均顯著高于對照。Brockley[33]對黑松(Pinus thunbergii)幼齡林撫育結(jié)合施肥的研究表明,間伐強(qiáng)度不足會(huì)對下層幼齡林造成光照的不足從而使得光合作用等反應(yīng)減弱,生長速率也會(huì)隨之降低。根據(jù)分析得到30%透光撫育措施產(chǎn)生的林窗,對紅皮云杉幼樹的樹高生長率沒有顯著促進(jìn)作用。上層樹木被間伐后,樹木在施肥的幫助下立即有一個(gè)擴(kuò)展的樹冠空間,從而導(dǎo)致更高的單樹樹冠生長,整體增加體積增長。間伐后林分光照增加,樹枝只要接收到光就可以存活,從而使幼樹的光合作用可以繼續(xù)進(jìn)行。施肥后到冠高無明顯差異,這表明限制高度的是光照而不是養(yǎng)分。
3.2 結(jié)論
施肥可以促進(jìn)紅皮云杉幼樹生長。施氮磷鉀復(fù)合肥促進(jìn)紅皮云杉幼樹樹高和地徑生長的效果好于只施單一肥料或氮磷兩種肥料的混合肥。透光撫育3個(gè)生長季后樹高和地徑的年生長量與撫育前相比差異不顯著。生長季前中后期施肥結(jié)合透光撫育處理2個(gè)生長季后樹高和地徑的年生長量顯著增加,3個(gè)生長季后只有地徑的年生長量顯著增加。生長季前中末期施氮磷鉀肥結(jié)合透光撫育處理3個(gè)生長季后,地徑年生長量分別高出對照和生長季前中后期施氮磷鉀肥結(jié)合透光撫育的處理153.16%和10.31%。因此認(rèn)為,施肥與透光撫育結(jié)合處理可以提高紅皮云杉地徑的年生長量,且在連續(xù)施肥4 a時(shí)達(dá)到顯著水平;生長季前中末期施肥對紅皮云杉幼齡林木生長的促進(jìn)效果好于前中后期施肥。
紅皮云杉幼齡林木施肥可以解決林下造林紅皮云杉人工林木幼齡期生長緩慢的問題,可為縮短紅皮云杉大徑材用材林培育周期奠定了基礎(chǔ)。
【參 考 文 獻(xiàn)】
[1]劉盛.紅皮云杉生長特點(diǎn)的對比研究[J].吉林林學(xué)院學(xué)報(bào),1999(3):159-162.
LIU S. Contrast of the growing characteristic on Picea koraiensis[J]. Journal of Jilin Foresty University, 1999(3): 159-162.
[2]呂躍東,劉忠玲,姚穎,等.透光撫育對紅松生長及干形的影響[J].森林工程,2015,31(5):1-3.
LYU Y D, LIU Z L, YAO Y, et al. Influence of crown thinning on Korean pine growth and stem form[J]. Forest Engineering, 2015, 31(5): 1-3.
[3]李永杰,李永泉,吳瑤.林隙透光撫育對紅松林結(jié)構(gòu)穩(wěn)定性的影響[J].林業(yè)科技,2014,39(3):19-21.
LI Y J, LI Y Q, WU Y. Effect on the structural stability of the Korean pine(Pinus koraiensis Sieb. et Zucc.) plantation by tending of canopy-opening[J]. Forestry Science & Technology, 2014, 39(3): 19-21.
[4]OLIVAR J, BOGINO S, RATHGEBER C, et al. Thinning has a positive effect on growth dynamics and growth-climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes[J]. Annals of Forest Science, 2014, 71: 395-404.
[5] SULLIVAN T, SULLIVAN D. Influence of nitrogen fertilization on abundance and diversity of plants and animals in temperate and boreal forests[J]. Environmental Reviews, 2018, 26(1): 26-42.
[6]HAASE D L, ROSE R, TROBAUGH J. Field performance of three stock sizes of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium[J]. New Forests, 2006, 31(1): 1-24.
[7]趙秉強(qiáng),張福鎖,廖宗文,等.我國新型肥料發(fā)展戰(zhàn)略研究[J].植物營養(yǎng)與肥料學(xué)報(bào),2004,10(5):536-545.
ZHAO B Q, ZHANG F S, LIAO Z W, et al. Research on development strategies of fertilizer in China[J]. Plant Nutrition and Fertilizing Science, 2004, 10(5): 536-545.
[8]劉景巍,鄭德龍,王忠良,等.施用氮肥對紫杉幼樹生長的影響[J].吉林林業(yè)科技,2018,47(3):7-8,44.
LIU J W, ZHENG D L, WANG Z L, et al. Effect of nitrogen fertilizer on sapling growth of Taxus cuspidata[J]. Journal of Jilin Forestry Science and Technology, 2018, 47(3): 7-8, 44.
[9]LITTKE K M, ZABOWSKI D. Influence of calcium fertilization on Douglas-fir foliar nutrition, soil nutrient availability, and sinuosity in coastal Washington[J]. Forest Ecology and Management, 2007, 247(1/2/3): 140-148.
[10]ALLEN M F, ALLEN E B, LANSING J L, et al. Responses to chronic N fertilization of ectomycorrhizal pinon but not arbuscular mycorrhizal juniper in a pinon-juniper woodland[J]. Journal of Arid Environments, 2010, 74(10): 1170-1176.
[11]BERGH J, NILSSON U, ALLEN H L, et al. Long-term responses of Scots pine and Norway spruce stands in Sweden to repeated fertilization and thinning[J]. Forest Ecology and Management, 2014, 320: 118-128.
[12]任曉光,張士俊,才巨峰,等.紅皮云杉人工幼林施肥試驗(yàn)研究[J].吉林林業(yè)科技,2005,34(5):26-29.
REN X G, ZHANG S J, CAI J F, et al. A trial study on fertilizing after young growth plantation of Picea koraiensis[J]. Journal of Jilin Forestry Science and Technology, 2005, 34(5): 26-29.
[13]孫凱,柴源,腰政懋,等.紅皮云杉、油松幼苗根系對NH+4/NO-3 施肥的形態(tài)響應(yīng)[J].安徽農(nóng)業(yè)科學(xué),2012,40(13):7789-7792.
SUN K, CHAI Y, YAO Z M, et al. Morphological response of Picea koraiensis and Pinus tabuliformis root to different NH+4/NO-3 fertilization[J]. Journal of Anhui Agricultural Sciences, 2012, 40(13): 7789-7792.
[14]LU D L, WANG G, YAN Q L, et al. Effects of gap size and within-gap position on seedling growth and biomass allocation: is the gap partitioning hypothesis applicable to the temperate secondary forest ecosystems in Northeast China?[J]. Forest Ecology and Management, 2018, 429: 351-362.
[15]TAMM C O, ARONSSON A, POPOVIC B, et al. Optimum nutrition and nitrogen saturation in Scots pine stands[J]. Studia Forestalia Suecica, 1999: 126-206.
[16]LOEWE-MUNOZ V, DEL-RIO R, DELARD C, et al. Irrigation and fertilization as tools to boost growth stability of stone pine (Pinus pinea L.) plantations[J]. Forest Ecology and Management, 2020, 463: 0-14.
[17]LUDOVICI K H, ALLEN H L , ALBAUGH T J, et al. The influence of nutrient and water availability on carbohydrate storage in loblolly pine[J]. Forest Ecology and Management, 2002, 159(3): 261-270.
[18]GOODSMAN D W, LIEFFERS V J, LANDHUSSER S M, et al. Fertilization of lodgepole pine trees increased diameter growth but reduced root carbohydrate concentrations[J]. Forest Ecology and Management, 2010, 260(10): 1914-1920.
[19]HAYNES B E, GOWER S T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin[J]. Tree Physiology, 1995, 15(5): 317-325.
[20]MALKONEN E, KUKKOLA M. Effect of long-term fertilization on the biomass production and nutrient status of Scots pine stands[J]. Fertilizer Research, 1991, 27(1): 113-127.
[21]談峰,張健,李敏,等.氮磷鉀肥對柳樹生長的影響研究[J].現(xiàn)代農(nóng)業(yè)科技,2015(9):155-156.
TAN F, ZHANG J, LI M, et al. Research on effects of N, P and K fertilizer on growth of Salix[J]. Modern Agricultural Science and Technology, 2015(9): 155-156.
[22]OLIET J A, SALAZAR J M, VILLAR R, et al. Fall fertilization of Holm oak affects N and P dynamics, root growth potential, and post-planting phenology and growth[J]. Annals of Forest Science, 2011, 68(3): 647-656.
[23]ZHANG Y M, HAN J C, WANG L J, et al. Response of Pinus tabuliformis saplings to continuous autumn fertilization treatments in the mountains of Eastern Liaoning Province, China[J]. PeerJ, 2022, 10: e12853.
[24]RIKALA R, HEISKANEN J, LAHTI M. Autumn fertilization in the nursery affects growth of Picea abies container seedlings after transplanting[J]. Scandinavian Journal of Forest Research, 2004, 19(5): 409-414.
[25]吳小琪,楊圣賀,黃力,等.常綠闊葉林林冠環(huán)境對栲幼苗建成的影響[J].植物生態(tài)學(xué)報(bào),2019,43(1):55-64.
WU X Q, YANG S H, HUANG L, et al. Effects of forest canopy condition on the establishment of Castanopsis fargesii seedlings in a subtropical evergreen broad-leaved forest[J]. Chinese Journal of Plant Ecology, 2019, 43(1): 55-64.
[26]李國雷,劉勇,祝燕.秋季施肥調(diào)控苗木質(zhì)量研究評(píng)述[J].林業(yè)科學(xué),2011,47(11):166-171.
LI G L, LIU Y, ZHU Y. Review on advance in study of fall fertilization regulating seedling quality[J]. Scientia Silvae Sinicae, 2011, 47(11): 166-171.
[27]商添雄,韓海榮,程小琴,等.華北落葉松人工林生長對撫育間伐的響應(yīng)及其與土壤因子的關(guān)系[J].林業(yè)科學(xué)研究,2019,32(6):40-47.
SHANG T X, HAN H R, CHENG X Q, et al. Response of Larix principis-rupprechtii plantation growth to thinning and its relationship with soil factors[J]. Forest Research, 2019, 32(6): 40-47.
[28]馬履一,李春義,王希群,等.不同強(qiáng)度間伐對北京山區(qū)油松生長及其林下植物多樣性的影響[J].林業(yè)科學(xué),2007,43(5):1-9.
MA L Y, LI C Y, WANG X Q, et al. Effects of thinning on the growth and the diversity of undergrowth of Pinus tabulaeformis plantation in Beijing mountainous areas[J]. Scientia Silvae Sinicae, 2007, 43(5): 1-9.
[29]HARRI M, ANTTI L. Thinning intensity and growth of Scots pine stands in Finland[J]. Forest Ecology and Management, 2004, 201(2/3): 311-325.
[30]SIMARD S W, BLENNER-HASSETT T, CAMERON I R. Pre-commercial thinning effects on growth, yield and mortality in even-aged paper birch stands in British Columbia[J]. Forest Ecology and Management, 2004, 190(2/3): 163-178.
[31]王有良,林開敏,宋重升,等.間伐對杉木人工林生態(tài)系統(tǒng)碳儲(chǔ)量的短期影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,46(3):65-73.
WANG Y L, LIN K M, SONG C S,etal. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(3): 65-73.
[32]HALE S E. The effect of thinning intensity on the below-canopy light environment in a Sitka spruce plantation[J]. Forest Ecology and Management, 2003, 179(1/2/3): 341-349.
[33]BROCKLEY R P. Effects of fertilization on the nutrition and growth of a slow-growing Engelmann spruce plantation in south central British Columbia[J]. Canadian Journal of Forest Research, 1992, 22(11): 1617-1622.