国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

苯二甲酸異構(gòu)體的RPLC保留行為和熱力學(xué)性質(zhì)

2023-06-20 12:49張玉堂陳海相李曉蓮李沖郎巧文
現(xiàn)代紡織技術(shù) 2023年2期

張玉堂 陳海相 李曉蓮 李沖 郎巧文

摘要:在反相液相色譜(RPLC)中以C18色譜柱為固定相,用15%~45%甲醇水溶液為流動(dòng)相,研究了苯二甲酸異構(gòu)體在10~50 ℃范圍內(nèi)的色譜保留行為和熱力學(xué)性質(zhì)。結(jié)果表明:鄰苯二甲酸(PA)、對(duì)苯二甲酸(TPA)和間苯二甲酸(IPA)分子結(jié)構(gòu)上的細(xì)微差異能在RPLC中清晰地體現(xiàn)出來。同時(shí),根據(jù)苯二甲酸異構(gòu)體與固定相之間的相互作用,測定了ΔH0和ΔS0的熱力學(xué)參數(shù)變化。這些ΔH0和ΔS0的測定能為苯二甲酸異構(gòu)體與疏水界面相互作用機(jī)制的研究提供一種行之有效的方法,也可為聚酯降解回收、生態(tài)環(huán)保、食品接觸材料遷移物質(zhì)等分析任務(wù)提供基礎(chǔ)數(shù)據(jù)。

關(guān)鍵詞:苯二甲酸異構(gòu)體;反相液相色譜;保留行為;熱力學(xué)參數(shù)

中圖分類號(hào):O657.7

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1009-265X(2023)02-0080-06

因反相液相色譜有著進(jìn)樣量少、分離度好以及重復(fù)性好等優(yōu)勢,所以在色譜分析中得到廣泛的應(yīng)

用[1-3]。反相液相色譜在苯二甲酸異構(gòu)體的洗脫分離和分析方面有著許多成功的應(yīng)用,促進(jìn)了苯二甲酸異構(gòu)體反相液相色譜分離機(jī)制的深入研究[4-6]。鄰苯二甲酸(PA)、對(duì)苯二甲酸(TPA)和間苯二甲酸(IPA)通過疏水作用力與RPLC固定相配基相結(jié)合,作用力的大小和苯二甲酸異構(gòu)體的化學(xué)結(jié)構(gòu)密切相關(guān)。苯二甲酸異構(gòu)體化學(xué)結(jié)構(gòu)的不同,決定其

在RPLC中熱力學(xué)參數(shù)和保留行為。本文以甲醇-水溶液為混合流動(dòng)相研究了在不同比例流動(dòng)相、不同溫度下,苯二甲酸異構(gòu)體在C18固定相上的色譜保留行為,并求算出與固定相之間相互作用的熱力學(xué)參數(shù),為優(yōu)化液相色譜分析提供基礎(chǔ)數(shù)據(jù)。

1實(shí)驗(yàn)

1.1儀器與試劑

儀器:Agilent 1100高效液相色譜儀(美國Agilent有限公司,配DAD檢測器和自動(dòng)進(jìn)樣器);ES1035B型電子分析天平(上海析平科學(xué)儀器有限公司);XW-80A型渦旋混合器(上海精科實(shí)業(yè)有限公司);VP-10L型無油膜真空泵(群安實(shí)驗(yàn)儀器有限公司);PTFE針筒過濾器(孔徑0.22 μm,上海新亞有限公司)。

試劑:鄰苯二甲酸、間苯二甲酸和對(duì)苯二甲酸,均為AR,上海阿拉丁試劑有限公司;硝酸鈉,AR,天津科密歐化學(xué)試劑有限公司;甲醇,AR,浙江三鷹化學(xué)試劑有限公司;水為自制二級(jí)水。

1.2色譜條件

色譜柱:ZORBAX SB-C18色譜柱(150 mm×4.6 mm,5 μm),柱溫:10~50 ℃;流動(dòng)相:15%~45%甲醇水溶液,用前經(jīng)0.22 μm微孔濾膜過濾;進(jìn)樣體積:5 μL,流速:1.0 mL/min;檢測波長:241 nm,參比波長:360 nm。

1.3試驗(yàn)方法

用甲醇配制1000 mg/L的鄰苯二甲酸、對(duì)苯二甲酸、間苯二甲酸的混合儲(chǔ)備溶液,然后分別取適量的儲(chǔ)備液,配成100 mg/L的混合溶液。采用等度洗脫的方法測定混合液中苯二甲酸異構(gòu)體組分的保留時(shí)間tR,死時(shí)間tM用5%的硝酸鈉水溶液測定,容量因子k由式(1)來計(jì)算。

k=(tR-tM)/?tM(1)

2結(jié)果與討論

2.1苯二甲酸異構(gòu)體的色譜保留行為

可用式(2)來表達(dá)流動(dòng)相組成和容量因子之間關(guān)系的經(jīng)驗(yàn)公式[7]:

lnk=SΨ+lnkw(2)

式中:k為容量因子,Ψ為甲醇在流動(dòng)相中所占體積分?jǐn)?shù)。斜率S為溶劑強(qiáng)度參數(shù),用來描述溶質(zhì)和流動(dòng)相之間的相互作用力;截距kw為溶質(zhì)的外推容量因子,即以純水為流動(dòng)相時(shí)(Ψ=0),用來描述溶質(zhì)和固定相配基的親和作用力[8-10]。在1.2的色譜條件下,測定并分析了PA、TPA和IPA三者的lnk和Ψ之間的關(guān)系(如圖1所示),lnk與Ψ之間線性關(guān)系較好,相關(guān)系數(shù)r均在0.99以上,表明在本實(shí)驗(yàn)研究范圍內(nèi),控制異構(gòu)體保留行為的影響因素是連續(xù)穩(wěn)定的。并求出斜率S值與lnkw(見表1),S為負(fù)值表明溶質(zhì)為疏水洗脫[11]。

若以(-S)為橫坐標(biāo)和lnkw為縱坐標(biāo)作圖(見圖2),圖2中縱軸截距與斜率分別代表著極性作用和氫鍵作用的相對(duì)大小。在10~50 ℃范圍內(nèi),對(duì)苯二甲酸和間苯二甲酸兩組分的(-S)和lnkw呈現(xiàn)良好的線性關(guān)系,斜率相近(分別為93.23和94.01)表明對(duì)苯二甲酸和間苯二甲酸的氫鍵作用相似,而截距不同表明極性作用大小有差異;鄰苯二甲酸的(-S)和lnkw不具有線性關(guān)系,表明鄰苯二甲酸的極性作用能和氫鍵作用均存在差異。

2.2lnkw和S參數(shù)與柱溫之間的關(guān)系

溶質(zhì)的色譜保留行為可用lnkw和S兩個(gè)參數(shù)進(jìn)行表達(dá)[10,14],一般來說在流動(dòng)相中溶質(zhì)的結(jié)構(gòu)不會(huì)發(fā)生變化,而當(dāng)溫度慢慢升高,分子的熱運(yùn)動(dòng)隨之增加,lnkw應(yīng)該逐漸減小。lnkw和(-S)與柱溫的關(guān)系如圖3所示,圖3(a)中l(wèi)nkw隨溫度升高而減小符合上述推斷,而且PA、TPA和IPA3種異構(gòu)體的lnkw和溫度之間線性關(guān)系都比較良好,說明在本實(shí)驗(yàn)范圍內(nèi),溫度對(duì)3種異構(gòu)體在色譜當(dāng)中保留行為的影響是連續(xù)的。S值是lnk′對(duì)Ψ作圖得到,表示溶質(zhì)和流動(dòng)相之間的相互作用力[12-13]。圖3(b)中PA、TPA和IPA 3條直線的縱軸截距的不同,表明3種異構(gòu)體和流動(dòng)相之間的相互作用力不同,而且圖中(-S)與溫度之間線性關(guān)系均良好,說明溫度對(duì)溶質(zhì)與流動(dòng)相之間作用力的影響是單一的。圖3(b)中PA、TPA和IPA 3者斜率相近,表明3種異構(gòu)體與流動(dòng)相之間的作用力受溫度影響相似。

圖3中直線均未出現(xiàn)交叉情況,表明在10~50 ℃的范圍內(nèi)PA、TPA和IPA 3者與流動(dòng)相之間的作用力存在較小差異,能在流動(dòng)相的洗脫下得到有效分離。根據(jù)圖3 3條直線的方程作兩兩交叉求算:得出圖3(a)中PA和TPA、IPA兩直線的交點(diǎn)溫度分別為544 ℃、167 ℃,TPA和IPA的交點(diǎn)為124 ℃;圖3(b)中PA、TPA和IPA 3條直線交叉溫度均在220 ℃附近。結(jié)果說明了苯二甲酸3種異構(gòu)體能在較大溫度范圍實(shí)現(xiàn)較好的分離。

2.3苯二甲酸異構(gòu)體與C18固定相結(jié)合的熱力學(xué)參數(shù)

容量因子k又可用表達(dá)式k=k′β來表示[15],兩邊取對(duì)數(shù)得式(3):

lnk=lnk′+lnβ(3)

式中:k′為組分和色譜柱固定相的結(jié)合平衡常數(shù);β為柱相比:即固定相和流動(dòng)相的體積比。

根據(jù)熱力學(xué)第二定律ΔG0=ΔH0-TΔS0和平衡常數(shù)ln k′=-ΔG0/RT可得式(4):

ln k=-ΔH0/RT+ΔS0/R+lnβ(4)

式中:ΔG0為標(biāo)準(zhǔn)自由能變化;ΔH0為標(biāo)準(zhǔn)焓變;ΔS0為標(biāo)準(zhǔn)熵變;R為摩爾氣體常數(shù)(為8.314 J·mol·k);T為絕對(duì)溫度[10,12]。

Van't Hoff曲線可由lnk對(duì)1/T作圖所得,能用來表征溶質(zhì)在與固定相結(jié)合時(shí)的作用機(jī)制。苯二甲酸3種異構(gòu)體的Van't Hoff曲線如圖4所示,不同比例流動(dòng)相之間線性關(guān)系較為良好,相關(guān)系數(shù)r均在0.99以上,表明在本實(shí)驗(yàn)的研究條件下,PA、TPA和IPA在和C18固定相結(jié)合時(shí)結(jié)合機(jī)制不變,或者說苯二甲酸種異構(gòu)體在C18色譜柱上的保留機(jī)制不發(fā)生變化。

圖4中直線的斜率即-ΔH0/R,縱坐標(biāo)的截距即ΔS0/R+lnβ。相比β一般無法獲得準(zhǔn)確的數(shù)值,特定色譜柱的柱相比β為常數(shù),所以為了方便計(jì)算,通常令β為1[16]。因此計(jì)算得出在不同Ψ下苯二甲酸3種異構(gòu)體與C18固定相疏水配基結(jié)合時(shí)的ΔH0和ΔS0值(見表2)。

溶質(zhì)與固定相結(jié)合過程中熱量的變化可以用熱力學(xué)參數(shù)ΔH0數(shù)值變化來表征。ΔH0負(fù)值越大,表示結(jié)合時(shí)釋放的能量越多,結(jié)合更加牢固,親和力越強(qiáng);假如這種結(jié)合是疏水的,則說明溶質(zhì)的疏水作用力越大。因此苯二甲酸3種異構(gòu)體的疏水能力也可以用ΔH0值來定量表示。表2中得到的ΔH0均為負(fù)值,當(dāng)提高流動(dòng)相中甲醇的比例,PA、TPA和IPA的ΔH0數(shù)值均呈現(xiàn)遞增趨勢,表明隨著甲醇比例的增加,流動(dòng)相的洗脫作用力增強(qiáng),溶質(zhì)與固定相之間親和力下降,溶質(zhì)洗脫加快。在相同比例的甲醇條件下,TPA和IPA的ΔH0值接近,說明在同一比例

甲醇下,對(duì)苯二甲酸和間苯二甲酸與C18固定相親和力相似,而PA與其相差較大,主要是因PA兩個(gè)羧基處于鄰位,空間位阻較大,易形成分子內(nèi)氫鍵,極性較大,這在理論上驗(yàn)證了三者在色譜流出時(shí)的保留行為。結(jié)合過程中混亂度的變化可以體現(xiàn)在ΔS0值的變化上。ΔS0為負(fù)值時(shí),代表自由度減??;ΔS0為正值時(shí),代表混亂度增加。表中ΔS0值均為負(fù)值,說明溶質(zhì)在結(jié)合過程中被束縛、自由度減小,在與C18柱固定相疏水性結(jié)合時(shí),苯二甲酸3種異構(gòu)體的空間結(jié)構(gòu)不發(fā)生變化。

3結(jié)論

PA、TPA和IPA3種異構(gòu)體雙羧基在苯環(huán)上的位置差異能明顯地體現(xiàn)在RPLC的色譜保留行為上。在RPLC中固定相為C18色譜柱,用15%~45%甲醇水溶液為流動(dòng)相,研究發(fā)現(xiàn)苯二甲酸3種異構(gòu)體在10~50 ℃溫度范圍內(nèi)的Van't Hoff曲線以及l(fā)nk和Ψ間都有較好線性關(guān)系。異構(gòu)體在與C18柱固定相結(jié)合的過程中,結(jié)合機(jī)制不發(fā)生變化,流動(dòng)相組成和柱溫因素對(duì)苯二甲酸異構(gòu)體的保留行為控制也是連續(xù)且穩(wěn)定的。ΔH0和ΔS0均為負(fù)值,表明苯二甲酸異構(gòu)體在與C18柱固定相結(jié)合的過程中被束縛、自由度減小,同時(shí)釋放出能量。在相同甲醇比例下,TPA和IPA的ΔH0值和ΔS0值接近且大于PA,說明TPA和IPA與C18柱固定相結(jié)合能大于PA且隨著甲醇比例Ψ的提高而下降。

參考文獻(xiàn):

[1]康峰,趙金堯,劉釗,等.超高效液相色譜法測定食品接觸材料中間苯二甲酸和對(duì)苯二甲酸特定遷移量[J].理化檢驗(yàn)-化學(xué)分冊,2021,57(5):398-404.

KANG Feng, ZHAO Jinyao, LIU Zhao, et al. Determination of specific migrations of m-phthalic acid and p-phthalic acid in food contact materials by Ultra high performance liquid chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(5): 398-404.

[2]姚媛媛,段正康,曾航日,等.正相液相色譜保留時(shí)間漂移的影響因素和解決辦法研究[J].應(yīng)用化工,2016,45(6):1184-1186,1190.

YAO Yuanyuan, DUAN Zhengkang, ZENG Hangri, et al. The influence factors and solutions research for retention drift in the normal phase liquid chromatograph[J]. Applied Chemical Industry, 2016, 45(6): 1184-1186, 1190.

[3]林型跑,陳海相,孫巖峰,等.高效液相色譜法測定紡織品中丙烯酰胺、甲基丙烯酰胺和N-羥甲基丙烯酰胺[J].現(xiàn)代紡織技術(shù),2019,27(1):80-86.

LIN Xingpao, CHEN Haixiang, SUN Yanfeng, et al. Determination of acrylamide, methacrylamide and N-hydroxymethyl acrylamide in textiles by HPLC[J]. Advanced Textile Technology, 2019, 27(1): 80-86.

[4]李婷,侯曉東.反相高效液相色譜法同時(shí)測定食品包裝材料中對(duì)苯二甲酸和間苯二甲酸遷移量的研究[J].食品科技,2016,41(3):311-314.

LI Ting, HOU Xiaodong. Determination of terephthalic acid and isophthalic acid in food packaging materials by RP-HPLC[J]. Food Science and Technology, 2016, 41(3): 311-314.

[5]王銳,王新宇,唐川江,等.高效液相色譜法測定滌綸中的間苯二甲酸含量[J].色譜,2001,19(4):372-373.

WANG Rui, WANG Xinyu, TANG Chuanjiang, et al. Determination of Isophthalic acid in polyethylene glycol terephthalate fiber by high performance liquid chromato-graphy[J].Chinese Journal of Chromatography, 2001, 19(4): 372-373.

[6]王建玲,肖曉峰,陳彤,等.高效液相色譜-紫外檢測法同時(shí)測定食品接觸材料中7種苯多酸及其衍生物的特定總遷移量[J].色譜,2015,33(8):856-863.

WANG Jianling, XIAO Xiaofeng, CHEN Tong, et al. Simultaneous determination of total specific migration limit of seven benzene polycarbonic acids and their derivatives in food simulants by high performance liquid chromatography-ultraviolet detection[J]. Chinese Journal of Chromato-graphy, 2015, 33(8): 856-863.

[7]陳海相,王炳輝.陳文興.苯酚和苯二酚異構(gòu)體在反相色譜上的保留行為和熱力學(xué)性質(zhì)[J].浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,27(1):159-163,168.

CHEN Haixiang, WANG Binghui, CHEN Wenxing. Retention behavior and thermodynamic properties of phenol and Di-hydroxybenzene isomers on reversed-phase liquid chromatography[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2010, 27(1): 159-163, 168.

[8]盧佩章,戴朝政.色譜理論基礎(chǔ)[M].北京:科學(xué)出版社,1989.

LUO Peizhang, DAI Chaozheng. Theoretical Basis of Chromatography[M]. Beijing: Science Press, 1989.

[9]郭敏亮,Milton T W Hearn, Reinhard I Boysen.三種胰島素在反相色譜上的保留行為與熱力學(xué)性質(zhì)[J].生物化學(xué)與生物物理學(xué)報(bào),2000(3):265-269.

GUO Minliang, MILTON T W H, REINHARD I B. Retention and thermodynamic properties of three insulins variants on reversed-phase liquid chromatography[J]. Acta Biochimica et Biophysica Sinica, 2000(3): 265-269.

[10]PURCELL A W, AGUILAR M I, HEARN M T W. High-performance liquid chromatography of amino acids, peptides and proteins CXV. Thermodynamic behaviour of peptides in reversed-phase chromatography[J]. Journal of Chromatography A, 1992, 593(1/2):103-117.

[11]TAN L C, CARR P W. Extra-thermodynamic relationships in chromatography[J]. Chromatography, 1993, 656(1/2): 521-535.

[12]邱洪燈,孫亞捷,蔣生祥,等.咪唑鍵合硅膠液相色譜固定相的反相色譜行為[J].分析測試技術(shù)與儀器,2006,12(2):82-85.

QIU Hongdeng, SUN Yajie, JIANG Shengxiang, et al. Reversed phase interaction of imidazole functionalized silica stationary phase for liquid chromatography[J]. Analysis and Testing Technology and Instruments, 2006, 12(2): 82-85.

[13]李建軍,賀娜,王驪麗.溶質(zhì)在兩種反相色譜柱中的動(dòng)力學(xué)色譜行為[J].分析試驗(yàn)室,2012,31(3):66-69.

LI Jianjun, HE Na, WANG Lili. Dynamic chromatography behavior of solutes on two reversed phase chromatographic columns[J]. Chinese Journal of Analysis Laboratory, 2012, 31(3): 66-69.

[14]PURCELL A W, AGUILAR M I, HEARN M T W. Conformational effects in reversed-phase high-performance liquid chromatography of polypeptides II. The role of insulin A and B chains in the chromatographic behaviour of insulin[J]. Journal of Chromatography A, 1995, 711(1): 71-79.

[15]VAILAYA A, HORVTH C. Exothermodynamic relation-ships in liquid chromatography[J]. The Journal of Physical Chemistry, B, 1998, 102(4): 701-718.

[16]趙建國,衛(wèi)引茂,耿信篤.蛋白質(zhì)在疏水色譜中保留的熱力學(xué)參數(shù)的測定[J].分析科學(xué)學(xué)報(bào),2004,20(6):583-585.

ZHAO Jianguo, WEI Yinmao, GENG Xindu. Determina-tion of thermodynamic parameters of protein retention in hydrophobic interaction chromatography[J]. Journal of Analytical Science, 2004, 20(6): 583-585.

Retention behavior and thermodynamic properties of phthalic acid isomers by RPLC

ZHANG Yutang, CHEN Haixiang, LI Xiaolian, LI Chong, LANG Qiaowen

(Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract: Polyethylene terephthalate (PET), commonly known as polyester, is a condensation of terephthalic acid (TPA) and ethylene glycol (EG). In the process of PET production and processing, IPA and PA are widely used as important additives. In the process of production and use, the residual or degraded phthalic acid substances will seriously harm human health if they accidentally enter the human body. At home and abroad, no matter as packaging materials for food and medicine, or as fabrics for underwear, there are corresponding national standards for the residual or migratory amount of TPA, IPA and PA. Therefore, in the process of analysis and detection, it is necessary to be able to quickly separate the three and accurately quantify them.

Reversed phase liquid chromatography (RPLC) has been widely used in chromatographic analysis because of its advantages such as small sample size, good separation and excellent repeatability. In order to further optimize the separation effect of benzoic acid isomers in liquid chromatography, we studied the chromatographic retention behavior of benzoic acid isomers in C18 stationary phase with different proportions of mobile phase and different temperatures using methanol-aqueous solution as the mixed mobile phase, and calculated the thermodynamic parameters of the interaction between benzoic acid isomers and stationary phase. The stationary phase was C18 column in RPLC, and the mobile phase was 15%~45% methanol aqueous solution. It was found that the Van't Hoff curve and the lnk and Ψ had a good linear relationship in the temperature range of 10 to 50 ℃. In the process of binding with C18 column fixation, the binding mechanism did not change, and the retention behavior of terephthalic acid isomers controlled by mobile phase composition and column temperature was continuous and stable. Both ΔH0 and ΔS0 are negative values, indicating that the benzoic acid isomers are bound, the degree of freedom decreases, and energy is released during the process of C18 column fixation. Under the same methanol ratio, ΔH0 and ΔS0 values of TPA and IPA are close to and greater than PA, indicating that the binding energy of TPA and IPA with C18 column is greater than PA and decreases with the increase of methanol ratio.

The position difference of PA, TPA and IPA3 isomer dicarboxylate on the benzene ring can be obviously reflected in RPLC retention behavior. Better separation effect and accurate quantification can be obtained by adjusting the proportion of mobile phase and column temperature. The study of its retention behavior and thermodynamic properties can provide an effective method for the separation of other types of isomers, and also provide basic data for analysis tasks such as polyester degradation recovery, ecological environmental protection, and food contact material migration.

Keywords: phthalic acid isomer; RPLC; retention behavior; thermodynamic parameter

收稿日期:20220712

網(wǎng)絡(luò)出版日期:20221104

基金項(xiàng)目:浙江省文物保護(hù)科技項(xiàng)目(2022001)

作者簡介:張玉堂(1995—),男,湖北黃石人,碩士研究生,主要從事功能高分子材料及分析方面的研究。

通信作者:陳海相,E-mail:chx@zstu.edu.cn