国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

纖維狀海洋微塑料靜水沉降實驗研究

2023-06-21 02:42張金鳳唐千姿季超群張慶河
關(guān)鍵詞:纖維狀塑料顆粒靜水

張金鳳,唐千姿,陳?超,季超群,張慶河

纖維狀海洋微塑料靜水沉降實驗研究

張金鳳1, 2,唐千姿1,陳?超3,季超群1,張慶河1

(1. 天津大學(xué)水利工程仿真與安全國家重點實驗室,天津 300072;2. 中國地震局地震工程綜合模擬與城鄉(xiāng)抗震韌性重點實驗室(天津大學(xué)),天津 300350;3. 集美大學(xué)港口與海岸工程學(xué)院,廈門 361021)

海洋微塑料;纖維;靜水沉降;沉降速度;沉降形態(tài)

海洋塑料污染已經(jīng)成為全球性焦點問題[1-2].塑料垃圾被任意排放,由河口進(jìn)入海洋,在海洋中漂流、懸浮和沉降,在這個過程中受到光照老化、波浪沖刷、微生物附著分解等作用,被分解成塑料碎片.這些塑料碎片經(jīng)過長時間的物理、化學(xué)作用,又被分解成更小的塑料[3-4].Thompson等[5]首次提出微塑料的概念,即直徑小于5mm的塑料纖維、薄膜和顆粒.根據(jù)種類的不同,微塑料的密度略小于或略大于水的密度,在海洋中漂浮或沉降[6],并在沉降過程中被動物攝入,再通過食物鏈傳遞到人體中[7],導(dǎo)致近年來在人體內(nèi)部也檢測出了微塑料[8].在最新的研究中,李昀東[9]通過實地調(diào)研統(tǒng)計了水體中微塑料的種類、形態(tài)和數(shù)量,研究發(fā)現(xiàn)水體中微塑料含量從大到小依次為纖維、碎片、薄膜和顆粒[10].

纖維狀微塑料作為水體中含量最高的微塑料,主要包括聚酰胺(polyamide,PA)、聚酯(polyethylene terephthalate,PET)和聚丙烯(polypropylene,PP)[11-12]. Browne等[13]研究了纖維狀微塑料在處理廠污水中的賦存情況,發(fā)現(xiàn)聚酯、聚丙烯和聚酰胺的占比分別為67%、17%和16%,這些比例與在海岸線發(fā)現(xiàn)的比例相似.這些纖維狀微塑料的來源主要包括衣物洗滌過程中釋放的合成纖維、煙蒂降解釋放的醋酸纖維以及由于海嘯造成海事設(shè)備破裂形成的碎片等[13-14].由于其來源眾多,環(huán)境樣本中纖維狀微塑料的種類和尺寸不盡相同[15],所以對不同密度、直徑和長徑比的纖維狀微塑料沉降特性的研究具有重要的意義.

本研究針對纖維狀微塑料進(jìn)行了靜水沉降室內(nèi)實驗,得到了不同密度、直徑和長徑比纖維狀微塑料沉降速度.在此基礎(chǔ)上,將上述3個公式的計算值與實驗值進(jìn)行對比和分析.

1?實驗材料與設(shè)備

1.1?纖維狀海洋微塑料顆粒

海洋中纖維狀微塑料含量從大到小依次為聚酯、聚丙烯和聚酰胺[13].由于聚丙烯的密度小于海水的密度,在海洋中與其他物質(zhì)相互作用形成大顆粒體沉降,所以本文在研究纖維狀微塑料單顆粒靜水沉降時主要研究聚酯和聚酰胺兩種材料,這兩種材料在海洋環(huán)境中的賦存情況見表1.

針對聚酰胺材料,本文選用安徽聯(lián)眾刷業(yè)有限公司生產(chǎn)的PA纖維進(jìn)行實驗;針對聚酯材料,本研究選用同一公司生產(chǎn)的聚對苯二甲酸丁二酯(polybutylene terephthalate,PBT)纖維進(jìn)行實驗.根據(jù)表1,海洋環(huán)境樣本中的纖維狀微塑料的尺寸不盡相同[15],分布在0.02~5.00mm,所以本文選擇中等大小即直徑位于0.2~0.4mm和0.6~4.0mm的纖維狀微塑料進(jìn)行實驗.

實驗材料的具體性質(zhì)參數(shù)見表2.PA纖維的密度為1.20g/cm3,實驗采用的纖維直徑約為0.4mm,長徑比在2~4之間(圖1(a));PBT纖維的密度為1.35g/cm3,實驗采用的纖維直徑約為0.2mm和0.4mm,長徑比在3.0~8.5之間.實驗所采用的纖維狀微塑料均是未經(jīng)老化的理想材料,比表面積較小,接觸角較大,表面粗糙度較小,其表面性質(zhì)決定了實驗材料具有疏水性.此外,這兩種微塑料顆粒都具有較高的光散射效率,易于拍攝得到沉降圖像(圖1(b)).

表1?全球范圍內(nèi)海洋環(huán)境中聚酯和聚酰胺纖維狀微塑料的豐度和粒徑分布情況

Tab.1?Distribution of abundance and particle size range of PET and PAfibrous microplastics in the marine environment on a global scale

表2?實驗中纖維狀微塑料物理性質(zhì)

Tab.2?Physical properties of fibrous microplastics used in experiments

圖1?實驗中采用的纖維狀微塑料

1.2?儀器設(shè)備

本實驗在天津大學(xué)水利工程仿真與安全國家重點實驗室中進(jìn)行,采用的儀器設(shè)備包括方形有機(jī)玻璃沉降柱、高精度顆粒沉降觀測系統(tǒng)(高速攝像機(jī)、同軸變倍鏡頭、LED冷光源)和高性能計算機(jī).其中,方形有機(jī)玻璃沉降柱由有機(jī)玻璃制成,具有高透光度,長和寬均為113.5mm,高為1500mm.為使高速攝像機(jī)拍攝視野圖像更明亮清晰,在其背部貼有反光鋁箔紙.實驗采用的千眼狼高速攝像機(jī)(Revealer 5KF20,Agile Device,中國)支持對全幅(1920×1080)進(jìn)行3000幀/s的超高速攝像,長時間高速拍攝顆粒沉降,連續(xù)拍攝微塑料顆粒沉降過程.高速攝像機(jī)搭配的同軸變倍鏡頭采用大悅維佳(北京)科技有限公司生產(chǎn)的DMZH 0650,鏡頭連續(xù)無級可調(diào),放大倍數(shù)在2.4~20.0倍之間.放大倍數(shù)越大,視野范圍越小,實驗根據(jù)所用的微塑料顆粒大小選擇視野范圍可捕捉、分辨率清楚的放大倍數(shù).實驗中的入射LED冷光源采用大悅維佳(北京)科技有限公司生產(chǎn)的MLED 500,最大功率60W,可手動調(diào)節(jié)亮度.LED冷光源通過光纖連接到同軸變倍鏡頭上,使高速攝像機(jī)拍攝得更為明亮.利用粒子圖像測速法(particle image velocimetry,PIV)可以在不接觸流體的情況下,同時記錄大量空間粒子的位置分布,通過測量示蹤粒子在已知很短時間間隔內(nèi)的位移來測量粒子的瞬態(tài)速度分布,具有瞬態(tài)、多點、無接觸式的特點.

實驗中纖維狀微塑料顆粒在沉降柱內(nèi)靜水沉降,到達(dá)底部時已處于穩(wěn)定勻速下降的狀態(tài),故將高速攝像機(jī)及鏡頭布置在沉降柱底部10cm處,攝像機(jī)捕捉沉降畫面并通過USB數(shù)據(jù)接口將拍攝畫面?zhèn)鬟f到計算機(jī)上,從而實時觀察并記錄微塑料沉降過程.實驗裝置示意如圖2所示.

圖2?高精度顆粒沉降觀測系統(tǒng)裝置示意

2?實驗方案

2.1?實驗組次

以往的研究通過實地調(diào)研發(fā)現(xiàn)河口、海岸地區(qū)微塑料質(zhì)量濃度范圍為0~10mg/L[33].為了符合實際海洋環(huán)境,纖維狀微塑料靜水沉降室內(nèi)實驗將微塑料質(zhì)量濃度選擇為5mg/L,在這個濃度下微塑料的沉降狀態(tài)接近于單顆粒自由沉降.根據(jù)纖維狀微塑料密度、直徑和長徑比/的不同,每組實驗重復(fù)3次,以保證捕捉到足夠多的清晰可見的微塑料顆粒.實驗組次見表3.

表3?纖維狀微塑料靜水沉降實驗組次

Tab.3 Settling experiment groups of fibrous microplastics in quiescent water

2.2?實驗步驟

纖維狀微塑料靜水沉降實驗分為實驗預(yù)準(zhǔn)備、實驗過程和數(shù)據(jù)后處理共3個部分.

1) 實驗預(yù)準(zhǔn)備

實驗預(yù)準(zhǔn)備階段需要對同軸變倍鏡頭進(jìn)行像素尺寸標(biāo)定,即每一個放大倍數(shù)對應(yīng)一個固定的視野大小和像素尺寸,以便對數(shù)據(jù)進(jìn)行后處理.分別準(zhǔn)備3桶15L去離子水,將纖維狀微塑料顆粒在去離子水中浸泡24h,并置于20℃恒溫環(huán)境下,確保在實驗前后水體溫差控制在(20±1)℃.

2) 實驗過程

使用磁力攪拌器,保持500r/min的轉(zhuǎn)速,將準(zhǔn)備好的浸泡有纖維狀微塑料的模擬海洋水搖晃均勻,倒入方形沉降柱內(nèi),使微塑料顆粒自由沉降.在布置好的沉降柱底部以上10cm處拍攝纖維狀微塑料的沉降運動過程,拍攝其穩(wěn)定沉降狀態(tài)下的沉降速度和形態(tài).在觀察到清晰顆粒的時刻,將拍攝的顆粒運動沉降過程保存為RHVD視頻格式,每個實驗組次進(jìn)行3次平行實驗.

3) 數(shù)據(jù)后處理

在拍攝到足夠多的顆粒沉降過程視頻后,將實驗中保存的視頻序列導(dǎo)入目標(biāo)追蹤測量軟件VL 3.0中,并根據(jù)放大倍數(shù)完成坐標(biāo)設(shè)置和像素尺寸標(biāo)定.視頻中每捕捉到一個清晰的微塑料顆粒,就對其進(jìn)行手動框選,并利用VL 3.0軟件的目標(biāo)追蹤功能得到其位置、速度和加速度等信息.

2.3?纖維狀微塑料沉降公式

本文將纖維狀微塑料的靜水沉降實驗值和3個現(xiàn)有研究提出的纖維狀微塑料沉降公式計算值進(jìn)行對比.

1) Komar公式

Komar[18]通過大密度圓柱體顆粒在甘油中進(jìn)行靜水沉降實驗,提出了適用于低雷諾數(shù)的修正Stokes關(guān)系

2) Khatmullina-Isachenko公式

Khatmullina等[19]通過室內(nèi)實驗數(shù)據(jù)擬合了適用于圓柱體的微塑料半經(jīng)驗沉降公式

3) Waldschl?ger-Schüttrumpf公式

Waldschl?ger等[20]通過引入Corey形狀因子,對阻力系數(shù)進(jìn)行修正,得到了適用于圓柱體的微塑料半經(jīng)驗沉降公式為

此外,本文對纖維狀微塑料的等效粒徑、沉降速度實驗值和公式計算值進(jìn)行無量綱化處理,從而更好地對比和分析顆粒粒徑與沉降速度的關(guān)系.纖維狀微塑料的無量綱顆粒等效粒徑和無量綱沉降速度的計算式[19, 34-35]分別為

3?實驗材料與設(shè)備

3.1?纖維狀微塑料沉降速度

實驗測量了直徑約為0.4mm的PA纖維的沉降速度和直徑約為0.2mm和0.4mm的PBT纖維的沉降速度.為了避免沉降實驗的不確定性,在保證其他條件一致的情況下,每組實驗組次進(jìn)行了3組平行實驗.以PA-1組次為例,3組平行實驗的結(jié)果如圖3所示,3組實驗結(jié)果無顯著差異性.

為了能夠定量地對比和分析在實驗粒徑和長徑比范圍內(nèi)3個公式的適用性和準(zhǔn)確性,本文將纖維狀微塑料顆粒靜水沉降速度的實驗值與Komar公式[18]、Khatmullina-Isachenko公式[19]以及Waldschl?ger-Schüttrumpf公式[20]的計算值無量綱化后進(jìn)行比較,并統(tǒng)計了不同粒徑和長徑比下3個公式的平均相對誤差.平均相對誤差的計算公式[20]為

以實驗組次PA-1為例,表4給出了該組次中各微塑料顆粒的無量綱沉降速度的計算值、實驗值和相對誤差.表中的無量綱沉降速度的計算值由式(1)~(7)得到,相對誤差由式(8)計算.

圖3?PA-1組次平行實驗無量綱沉降速度分布

圖4?直徑約0.4mm的PA纖維無量綱沉降速度分布

不同組次纖維狀微塑料顆粒靜水穩(wěn)定沉降下,3個公式計算的無量綱沉降速度的平均相對誤差見表5.根據(jù)表5可知,Komar公式誤差較大,Khatmullina-Isachenko公式以及Waldschl?ger-Schüttrumpf公式在不同長徑比下的擬合度不同,就相對誤差的平均值而言,Khatmullina-Isachenko公式誤差更小.

圖5?直徑約0.2mm的PBT纖維無量綱沉降速度分布

圖6?直徑約0.4 mm的PBT纖維無量綱沉降速度分布

3.2?纖維狀微塑料沉降形態(tài)

實驗統(tǒng)計了3類纖維狀微塑料的沉降形態(tài),共計428個顆粒樣本,其各沉降形態(tài)的比例分布如圖8所示.實驗中,絕大多數(shù)纖維狀微塑料是水平沉降的.其中,對于直徑約為0.4mm的PA纖維,水平沉降的微塑料顆粒占81.72%;對于直徑約為0.2mm的PBT纖維,水平沉降的微塑料顆粒占86.54%;對于直徑約為0.4mm的PBT纖維,水平沉降的微塑料顆粒占86.61%.綜合3類纖維狀微塑料的實驗結(jié)果,在428個顆粒樣本中,水平沉降的微塑料顆粒占到85.51%.

表4?PA-1組次計算沉降速度值(*)與實驗值(*)及其相對誤差

Tab.4?Calculated settling velocity values,experimental values and relative errors for group PA-1

表5?各組次計算沉降速度值與實驗值的平均相對誤差

Tab.5 Average relative errors between calculated set-tling velocity values and experimental values for each group

圖7?纖維狀微塑料的沉降形態(tài)

圖8?纖維狀微塑料各沉降形態(tài)統(tǒng)計

4?討論與分析

纖維狀微塑料顆粒靜水沉降形態(tài)主要分為水平沉降、傾斜沉降和豎直沉降.根據(jù)實驗結(jié)果,進(jìn)行統(tǒng)計分析得到了各沉降形態(tài)占比從大到小依次為水平沉降、傾斜沉降和豎直沉降.85.51%的纖維狀微塑料為長度方向水平沉降,即以最大投影面的方式下沉,這一觀測結(jié)果與Komar在毫米級圓柱體在甘油中沉降實驗的觀測結(jié)果一致[33,37].這一現(xiàn)象的發(fā)生可能是由于纖維狀微塑料在下沉過程中有旋轉(zhuǎn)形成最大阻力形態(tài)的趨勢.纖維狀微塑料的最大阻力形態(tài)即長度方向水平沉降,在這樣的阻力形態(tài)下,圓柱體更容易達(dá)到穩(wěn)定沉降狀態(tài).

海洋環(huán)境中現(xiàn)存的微塑料分為原生來源和次生來源:原生來源是直接進(jìn)入環(huán)境中的小型塑料顆粒[38],與實驗所用的理想纖維狀微塑料材料較為一致;次生來源是由較大的塑料顆粒經(jīng)過光照氧化、波浪機(jī)械破碎及生物作用等老化過程分解成的微塑料.在老化過程中,微塑料的表面物理性質(zhì)和微觀結(jié)構(gòu)會隨著老化的過程而改變[39],例如光氧化導(dǎo)致微塑料表面粗糙度增大[40]、比表面積增大[41],進(jìn)而影響其沉降速度.Van Cauwenberghe等[42]經(jīng)測量得到老化后的微塑料尺寸位于0.08~0.16mm.和原生來源或理想材料相比,次生來源的微塑料尺寸較小,表面粗糙度和比表面積較大,所以在考慮次生來源的纖維微塑料時應(yīng)注意這些因素對沉降速度造成的影響.

5?結(jié)?論

本文利用室內(nèi)沉降柱進(jìn)行了不同密度、直徑和長徑比的纖維狀微塑料靜水沉降實驗,并對其靜水沉降速度、沉降穩(wěn)定形態(tài)等實驗結(jié)果進(jìn)行統(tǒng)計和分析,得到了如下結(jié)論.

(1) 當(dāng)纖維狀微塑料的長徑比固定時,微塑料顆粒的無量綱沉降速度隨無量綱顆粒等效粒徑的增大而增大.

(3) 纖維狀微塑料在下沉過程中有旋轉(zhuǎn)形成最大阻力形態(tài)的趨勢,水平沉降的微塑料顆粒在實驗采集的總樣本中占到85.51%.

本實驗所采用的纖維狀微塑料為理想材料,即無光照、分解和各種生物作用,而實際海洋中存在的微塑料顆粒在水環(huán)境中經(jīng)過長期光照老化后,粒徑逐漸減小,表面粗糙度和比表面積逐漸增大,這些因素會進(jìn)一步影響微塑料的聚集、沉降和遷移過程[41,43-44].老化后微塑料顆粒的物理參數(shù)變化對微塑料顆粒的沉降速度、穩(wěn)定沉降形態(tài)可能存在一定影響[45],因此使用老化后的微塑料顆粒進(jìn)行微塑料靜水沉降實驗研究是未來微塑料沉降研究的重要方向.

[1] Jambeck J R,Geyer R,Wilcox C,et al. Plastic waste inputs from land into the ocean[J]. Science,2015,347(6223):768-771.

[2] ECHA. Background Document to the Opinion on the Annex XV Report Proposing Restrictions on Intentionally-added Microplastics[R]. Finland:European Chemicals Agency,2020.

[3] Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Sources,F(xiàn)ate and Effects of Microplastic in the Marine Environment:A Global Assessment[R]. UK:International Maritime Organization,2015.

[4] Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean[R]. Kenya:UN Enviroment Programme,2019.

[5] Thompson R C,Olsen Y,Mitchell R P,et al. Lost at sea:Where is all the plastic?[J]. Science,2004,304(5672):838.

[6] Zhang Feng,Yao Chenyang,Xu Jiayi,et al. Composition,spatial distribution and sources of plastic litter on the East China sea floor[J]. Science of the Total Environment,2020,742:140525.

[7] Li Daoji,Liu Kai,Li Changjun,et al. Profiling the vertical transport of microplastics in the west pacific ocean and the east Indian ocean with a novel in situ filtration technique[J]. Environmental Science & Technology,2020,54(20):12979-12988.

[8] 安立會,李?歡,王菲菲,等. 海洋塑料垃圾污染國際治理進(jìn)程與對策[J]. 環(huán)境科學(xué)研究,2022,35(6):1334-1340.

An Lihui,Li Huan,Wang Feifei,et al. International governance progress in marine plastic litter pollution and policy recommendations[J]. Research of Environmental Sciences,2022,35(6):1334-1340(in Chinese).

[9] 李昀東. 哈爾濱城市內(nèi)河中微塑料賦存特征、源解析及環(huán)境影響因素[D]. 哈爾濱:哈爾濱師范大學(xué)地理科學(xué)學(xué)院,2022.

Li Yundong. Occurrence Characteristics,Source Appor-tionment and Environmental Influencing Factors of Microplastics in the Urban Rivers of Harbin[D]. Harbin:School of Geographical Science,Harbin Normal University,2022(in Chinese).

[10] 陳宏偉,陳燕珍,劉憲華,等. 天津入海排污口微塑料分布特征[J]. 海洋通報,2020,39(4):514-520.

Chen Hongwei,Chen Yanzhen,Liu Xianhua,et al. Distribution characteristics of microplastics in land-based outlets in Tianjin[J]. Marine Science Bulletin,2020,39(4):514-520(in Chinese).

[11] Andrady A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin,2011,62(8):1596-1605.

[12] Hidalgo-Ruz V,Gutow L,Thompson R C,et al. Microplastics in the marine environment:A review of the methods used for identification and quantification[J]. Environmental Science & Technology,2012,46(6):3060-3075.

[13] Browne M A,Crump P,Niven S J,et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science & Technology,2011,45(21):9175-9179.

[14] Wright S L,Rowe D,Reid M J,et al. Bioaccumulation and biological effects of cigarette litter in marine worms [J]. Scientific Reports,2015,5:14119.

[15] Cole M. A novel method for preparing microplastic fi-bers[J]. Scientific Reports,2016,6:34519.

[16] Chubarenko I,Bagaev A,Zobkov M,et al. On some physical and dynamical properties of microplastic particles in marine environment[J]. Marine Pollution Bulletin,2016,108(1/2):105-112.

[17] Kooi M,Besseling E,Kroeze C,et al. Erratum to:modeling the fate and transport of plastic debris in freshwaters:Review and guidance[G]//Wagner M,Lambert S. Freshwater Microplastics. Switzerland:Springer International Publishing AG,2018.

[18] Komar P D. Settling velocities of circular cylinders at low Reynolds numbers[J]. The Journal of Geology,1980,88(3):327-336.

[19] Khatmullina L,Isachenko I. Settling velocity of micro-plastic particles of regular shapes[J]. Marine Pollution Bulletin,2017,114(2):871-880.

[20] Waldschl?ger K,Schüttrumpf H. Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions[J]. Environmental Science & Technology,2019,53(4):1958-1966.

[21] Cole M,Webb H,Lindeque P K,et al. Isolation of microplastics in biota-rich seawater samples and marine organisms[J]. Scientific Reports,2014,4:4528.

[22] 代振飛. 渤海微塑料分布及其影響因素研究[D]. 煙臺:中國科學(xué)院煙臺海岸帶研究所,2018.

Dai Zhenfei. The Distribution of Microplastics in the Bo-hai Sea and Its Influencing Factors[D]. Yantai:Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences,2018(in Chinese).

[23] 羅雅丹,林千惠,賈芳麗,等. 青島4個海水浴場微塑料的分布特征[J]. 環(huán)境科學(xué),2019,40(6):2631-2638.

Luo Yadan,Lin Qianhui,Jia Fangli,et al. Distribution characteristics of microplastics in Qingdao coastal beaches[J]. Environmental Science,2019,40(6):2631-2638(in Chinese).

[24] 牛學(xué)銳. 黃河口表層水微塑料賦存特征研究[D]. 濟(jì)南:山東師范大學(xué)地理與環(huán)境學(xué)院,2020.

Niu Xuerui. Study on the Occurrence Characteristics of Microplastics in the Surface Water of the Yellow River Estuary[D]. Jinan:College of Geography and Environ-ment,Shandong Normal University,2020(in Chinese).

[25] Yan Muting,Nie Huayue,Xu Kaihang,et al. Microplas-tic abundance,distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary,China[J]. Chemosphere,2019,217:879-886.

[26] Gray A D,Wertz H,Leads R R,et al. Microplastic in two South Carolina estuaries:Occurrence,distribution,and composition[J]. Marine Pollution Bulletin,2018,128:223-233.

[27] Forero López A D,Truchet D M,Rimondino G N,et al. Microplastics and suspended particles in a strongly impacted coastal environment:Composition,abundance,surface texture,and interaction with metal ions[J]. Science of the Total Environment,2021,754:142413.

[28] Chinfak N,Sompongchaiyakul P,Charoenpong C,et al. Abundance,composition,and fate of microplastics in water,sediment,and shellfish in the Tapi-Phumduang River system and Bandon Bay,Thailand [J]. Science of the Total Environment,2021,781:146700.

[29] Choong W S,Hadibarata T,Yuniarto A,et al. Characterization of microplastics in the water and sediment of Baram River estuary,Borneo Island[J]. Marine Pollution Bulletin,2021,172:112880.

[30] Taha Z D,Md Amin R,Anuar S T,et al. Microplastics in seawater and zooplankton:A case study from Terengganu estuary and offshore waters,Malaysia[J]. Science of the Total Environment,2021,786:147466.

[31] Hosseini R,Sayadi M H,Aazami J,et al. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea,Iran[J]. Marine Pollution Bulletin,2020,160:111682.

[32] Luo Wenya,Su Lei,Craig N J,et al. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters[J]. Environmental Pollution,2019,246:174-182.

[33] 梁家雄. 河口海岸地區(qū)微塑料-海洋雪靜水沉降試驗研究[D]. 天津:天津大學(xué)建筑工程學(xué)院,2022.

Liang Jiaxiong. Experimental Study on the Settling of Microplastics-Marine Snow in the Quiescent Water of Estuarine and Coastal Areas[D]. Tianjin:School of Civil Engineering,Tianjin University,2022(in Chinese).

[34] Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research,1982,18(6):1615-1626.

[35] Kaiser D,Estelmann A,Kowalski N,et al. Sinking velocity of sub-millimeter microplastic[J]. Marine Pollution Bulletin,2019,139:214-220.

[36] Lin Jianzhong,Shi Xing,You Zhenjiang. Effects of the aspect ratio on the sedimentation of a fiber in Newtonian fluids[J]. Journal of Aerosol Science,2003,34(7):909-921.

[37] Baba J,Komar P D. Measurements and analysis of setting velocities of natural quartz sand grains[J]. Journal of Sedimentary Research,1981,51(2):631-640.

[38] Cheung P K,F(xiàn)ok L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China[J]. Water Research,2017,122:53-61.

[39] Ter Halle A,Ladirat L,Martignac M,et al. To what extent are microplastics from the open ocean weathered? [J]. Environmental Pollution,2017,227:167-174.

[40] 嚴(yán)鶴峰. 對不同老化時間的聚氯乙烯吸附甲基橙的機(jī)理研究[J]. 塑料科技,2020,48(7):31-34.

Yan Hefeng. Study on the adsorption mechanism of me-thyl orange on PVC with different aging time[J]. Plas-tics Science and Technology,2020,48(7):31-34(in Chinese).

[41] 周崇勝,范銘煜,丁云浩,等. 常見微塑料的自然光解老化[J]. 環(huán)境化學(xué),2021,40(6):1741-1748.

Zhou Chongsheng,F(xiàn)an Mingyu,Ding Yunhao,et al. Insights into natural photo-aging of common-used micro-plastics[J]. Environmental Chemistry,2021,40(6):1741-1748(in Chinese).

[42] Van Cauwenberghe L,Vanreusel A,Mees J,et al. Microplastic pollution in deep-sea sediments[J]. Environmental Pollution,2013,182:495-499.

[43] 吳小偉,黃何欣悅,石妍琦,等. 水環(huán)境中微塑料的光老化過程及影響因素研究進(jìn)展[J]. 科學(xué)通報,2021,66(36):4619-4632.

Wu Xiaowei,Huang Hexinyue,Shi Yanqi,et al. Progress on the photo aging mechanism of microplastics and related impact factors in water environment[J]. Chinese Science Bulletin,2021,66(36):4619-4632(in Chinese).

[44] 曾祥英,王姝歆,程?軍,等. 微塑料加速老化及分離過程的實驗研究[J]. 環(huán)境科學(xué)研究,2022,35(3):818-827.

Zeng Xiangying,Wang Shuxin,Cheng Jun,et al. Laboratory accelerated aging and separation process of microplastics[J]. Research of Environmental Sciences,2022,35(3):818-827(in Chinese).

[45] 馬思睿,李舒行,郭學(xué)濤. 微塑料的老化特性、機(jī)制及其對污染物吸附影響的研究進(jìn)展[J]. 中國環(huán)境科學(xué),2020,40(9):3992-4003.

Ma Sirui,Li Shuxing,Guo Xuetao. A review on aging characteristics,mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science,2020,40(9):3992-4003(in Chinese).

Study on Settling Experiment of Fibrous Marine Microplastics in Quiescent Water

Zhang Jinfeng1, 2,Tang Qianzi1,Chen Chao3,Ji Chaoqun1,Zhang Qinghe1

(1. State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China;2. Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake;Administration(Tianjin University),Tianjin 300350,China;3. College of Harbour and Coastal Engineering,Jimei University,Xiamen 361021,China)

The management of marine microplastics pollution has attracted extensive attention of researchers in recent years. The types of marine microplastics include fibers, fragments, films and particles, among which the fibrous ones are the most abundant in the sea water. However, the settling morphology and settling velocity of fibrous microplastics are still insufficiently studied, and the existing semi-empirical formulas for settling velocity need more measured data to verify. In this paper, indoor settling experiments in quiescent water were carried out on polyamide and polybutylene terephthalate fibrous microplastics with different densities, diameters and length-to-diameter (/) ratios. The settling processes of fibrous microplastics were measured directly by a high-precision particle settling observation system, and the corresponding settling velocity and settling morphology were counted. Experimental results indicate that the dimensionless settling velocity of microplastics increases with the increase in their dimensionless equivalent diameter when the/ratio is fixed. According to the comparison between measured and calculated values, the Khatmullina-Isachenko formula is more accurate if/≤6.0, with an average relative error of each group less than 23.61%. However, the Waldschl?ger-Schüttrumpf formula is more accurate if/>6.0, with an average relative error of each group less than 20.18%. In addition, it is found that 85.51% of fibrous microplastics settled along the long axis direction in experiments, since there was a tendency for the fibrous microplastics to rotate and form the maximum resistance morphology during their settling process. The fibrous microplastics used in experiments are ideal materials, while the actual microplastics in the ocean may have increased their surface roughness and specific surface area due to long-term light aging, so the effects of these factors on the settling velocity should be taken into account when applying the formulas. The research in this paper provides a reference when selecting formulas for the settling velocity of microplastics, as well as a scientific basis for marine microplastic management.

marine microplastics;fiber;sedimentation in quiescent water;settling velocity;settling morphology

10.11784/tdxbz202211034

X55

A

0493-2137(2023)08-0840-10

2022-11-25;

2023-02-20.

張金鳳(1978—??),女,博士,教授,jfzhang@tju.edu.cn.Email:m_bigm@tju.edu.cn

陳?超,chenchaojmu@126.com.

國家自然科學(xué)基金資助項目(52271289).

the National Natural Science Foundation of China(No. 52271289).

(責(zé)任編輯:武立有)

猜你喜歡
纖維狀塑料顆粒靜水
海灘上的塑料顆粒創(chuàng)下新紀(jì)錄
一種基于淺水靜水環(huán)境的浮筒構(gòu)架式水上鉆探平臺
一種環(huán)保型塑料顆粒生產(chǎn)設(shè)備
用磁鐵溶解水中的微塑料
2017年我國木漿及其他纖維狀纖維素漿,回收(廢碎)紙或紙板,紙、紙板及其制品進(jìn)口數(shù)據(jù)統(tǒng)計
小蟲蟲變身海洋清潔員
靜水深深流
可穿戴的纖維狀能源器件
靜水稱重法測坦桑石密度的不確定度評定
船模靜水橫搖試驗的不確定度分析