牛寧 孫玲玲 邢澤智 趙國(guó)棟 王秀和 吳優(yōu)優(yōu)
摘要 針對(duì)縱向加肋圓柱殼自由振動(dòng)問(wèn)題,考慮結(jié)構(gòu)邊界條件的復(fù)雜性和縱肋截面的任意性,在殼體兩端引入連續(xù)可變的彈性約束,推導(dǎo)任意截面縱肋剪切中心與圓柱殼中面位移協(xié)調(diào)關(guān)系,并利用Gram?Schmidt正交法構(gòu)造的級(jí)數(shù)表示殼體軸向振型函數(shù)。采用Novozhilov殼體理論,計(jì)及殼體和縱肋能量泛函中各向平移與轉(zhuǎn)動(dòng)慣性項(xiàng)貢獻(xiàn),基于Rayleigh?Ritz法得到結(jié)構(gòu)自由振動(dòng)的特征方程表達(dá)式,建立縱向加肋圓柱殼自由振動(dòng)的統(tǒng)一動(dòng)力學(xué)分析模型。調(diào)整約束彈簧剛度等效不同邊界條件,應(yīng)用該模型探究了相應(yīng)邊界下肋條附加位置、肋條數(shù)量和肋條偏心距對(duì)縱向加肋圓柱殼固有頻率的影響。研究表明:在一定周向波數(shù)范圍內(nèi),外部加肋和內(nèi)部加肋圓柱殼固有頻率之差的絕對(duì)值與周向波數(shù)n的變化呈正相關(guān);增加肋條數(shù)量會(huì)降低內(nèi)部加肋圓柱殼的固有頻率;增大肋條偏心距會(huì)降低內(nèi)部加肋圓柱殼固有頻率,且偏心距與肋條數(shù)量對(duì)固有頻率的影響會(huì)產(chǎn)生疊加效應(yīng)。研究結(jié)果與驗(yàn)證了所提的統(tǒng)一動(dòng)力學(xué)分析模型的精確性和有效性。
關(guān)鍵詞
自由振動(dòng); 圓柱殼; 典型邊界條件; 任意非對(duì)稱截面; Gram?Schmidt正交法; Rayleigh?Ritz法
引 言
圓柱殼體采用縱肋加強(qiáng),增強(qiáng)了結(jié)構(gòu)強(qiáng)度和穩(wěn)定性,同時(shí)可以保持較輕的結(jié)構(gòu)重量,兼具良好的力學(xué)性能和經(jīng)濟(jì)性,因此被廣泛應(yīng)用于水下機(jī)器人機(jī)身、航天器外殼等重要結(jié)構(gòu)部位。縱向加肋圓柱殼結(jié)構(gòu)常受到復(fù)雜多變的激勵(lì)作用,若被誘發(fā)共振,振動(dòng)能量的集中傳輸會(huì)嚴(yán)重影響其使用壽命與聲輻射特性。
對(duì)縱向加肋圓柱殼自由振動(dòng)問(wèn)題的研究主要有兩種方法。一種是以正交各向異性模型等效加肋圓柱殼,該方法適用于加密肋或振動(dòng)波長(zhǎng)大于肋條間距的情況;另一種是將肋條離散化處理,對(duì)肋條數(shù)量沒(méi)有限制,適用性更加廣泛[1?2]。早期研究以第一種方法為主,主要對(duì)幾種簡(jiǎn)單邊界條件下縱向加肋圓柱殼的自由振動(dòng)特性進(jìn)行了初步建模研究,部分研究給出了實(shí)驗(yàn)結(jié)果[3?6]。隨后,文獻(xiàn)[7?8]將肋條看作離散單元,并假設(shè)肋條高度遠(yuǎn)小于殼體半徑且沿周向均勻分布,考慮縱肋周向和徑向彎曲、扭轉(zhuǎn)及拉伸運(yùn)動(dòng),同時(shí)采用梁函數(shù)模擬殼體軸向振型函數(shù),在此基礎(chǔ)上研究了加肋圓柱殼的自由振動(dòng)特性。文獻(xiàn)[9?11]基于上述研究,提出的解析模型不再受肋條高度、分布間距及長(zhǎng)度參數(shù)的限制,但縱肋橫截面為規(guī)則幾何形狀,并未給出非對(duì)稱截面縱肋與殼體的位移協(xié)調(diào)關(guān)系,這在理論上限制了肋條的類型及其附加方式。文獻(xiàn)[2]指出,對(duì)于較薄(如R/h>20)或較長(zhǎng)的殼體,隨著周向波和縱向波數(shù)量的增加,殼體面內(nèi)轉(zhuǎn)動(dòng)慣量對(duì)其自由振動(dòng)求解精度的影響變大;同時(shí),采用不同殼體理論也會(huì)導(dǎo)致結(jié)構(gòu)自由振動(dòng)求解結(jié)果差異較大。近年來(lái),研究人員對(duì)加環(huán)肋和加正交肋圓柱殼自由振動(dòng)問(wèn)題進(jìn)行了進(jìn)一步研究[12?16],雖然得到一些結(jié)論,但是肋條截面為規(guī)則矩形,子結(jié)構(gòu)能量泛函則引用以往簡(jiǎn)化模型,其中殼體面內(nèi)轉(zhuǎn)動(dòng)慣量、縱肋彎扭耦合運(yùn)動(dòng)及翹曲變形等因素仍然被忽略。為探究不同殼體理論對(duì)結(jié)構(gòu)固有頻率計(jì)算精度的影響,文獻(xiàn)[17]分別運(yùn)用Donnell理論和Flugge理論對(duì)簡(jiǎn)支邊界下縱向加肋圓柱殼的自由振動(dòng)進(jìn)行了求解,得到了前者計(jì)算精度良好的結(jié)論,實(shí)際上,由于計(jì)算模型單一,上述結(jié)論具有一定局限性。文獻(xiàn)[18?21]進(jìn)一步分析了各種殼體理論對(duì)無(wú)肋圓柱殼自由振動(dòng)的計(jì)算結(jié)果,在明確給出了Donnell殼體理論應(yīng)用范圍的同時(shí),指出Novozhilov理論具備高精度特性,尤其在高頻段,可以明顯減弱厚徑比和長(zhǎng)徑比等參數(shù)波動(dòng)對(duì)殼體自由振動(dòng)求解造成的誤差。
為了有效解決工程應(yīng)用中縱向加肋圓柱殼的自由振動(dòng)問(wèn)題,本文考慮實(shí)際邊界條件的復(fù)雜性和縱肋截面的任意性,以及不同場(chǎng)合中薄殼厚徑比、長(zhǎng)徑比的變化等因素。在殼體兩端引入軸向、徑向、周向和轉(zhuǎn)動(dòng)方向的彈簧,以實(shí)現(xiàn)殼體邊界約束的連續(xù)變化,而不同邊界下殼體軸向振型函數(shù)則利用Gram?Schmidt正交法構(gòu)造的級(jí)數(shù)來(lái)統(tǒng)一表示??v肋為離散子結(jié)構(gòu),考慮其在三維空間中的各向慣性運(yùn)動(dòng),并推導(dǎo)任意截面縱肋與圓柱殼中面的位移協(xié)調(diào)關(guān)系。同時(shí),采用更為精確且適用范圍更廣的Novozhilov殼體理論,殼體動(dòng)能泛函計(jì)入轉(zhuǎn)動(dòng)慣性項(xiàng),并利用Rayleigh?Ritz法構(gòu)建縱向加肋圓柱殼的統(tǒng)一分析模型,在此基礎(chǔ)上,探究不同邊界條件下加肋方式、肋條數(shù)量及肋條偏心距對(duì)結(jié)構(gòu)自振特性的影響,驗(yàn)證模型的準(zhǔn)確性和有效性。
1 理論分析
1.1 幾何模型
圖1為規(guī)則縱肋加筋圓柱殼的幾何模型。其中,圖1(a)標(biāo)明了位于殼體中面的笛卡爾坐標(biāo)系,殼體半徑R,厚度h,長(zhǎng)度L;圖1(c)給出了內(nèi)部加縱肋時(shí)殼體截面的具體參數(shù),如第i個(gè)縱肋形心到殼體中面的距離esi,縱肋截面高度dsi,寬度bsi及其周向角度θi;圖1(b)和(d)分別為殼體兩端單位長(zhǎng)度上所受的徑向、周向、軸向和轉(zhuǎn)動(dòng)方向的彈性約束,并依次用kw,kv,ku,kθ表示。
2 數(shù)值模擬與結(jié)果討論
首先,計(jì)算文獻(xiàn)[7]模型,并將本文及各文獻(xiàn)計(jì)算結(jié)果與文獻(xiàn)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行誤差分析,驗(yàn)證本文結(jié)果的精確性,同時(shí)檢驗(yàn)本文計(jì)算方法的收斂性。然后,通過(guò)改變約束彈簧剛度調(diào)整邊界條件,詳細(xì)分析兩端簡(jiǎn)支、兩端固支和一端固支一端簡(jiǎn)支三種經(jīng)典邊界下,肋條位置、肋條數(shù)量及肋條偏心距對(duì)縱向加肋圓柱殼固有頻率的影響,進(jìn)一步驗(yàn)證本文計(jì)算方法的準(zhǔn)確性,并且為后續(xù)不同不同肋條位置、肋條數(shù)量及肋條偏心距的加肋圓柱殼振動(dòng)固有特性的研究做出初步探索。
2.1 計(jì)算方法精確性與收斂性驗(yàn)證
加肋圓柱殼的軸向、周向及徑向振動(dòng)頻譜中,同一模態(tài)下,徑向彎曲振動(dòng)對(duì)應(yīng)的固有頻率最小,對(duì)結(jié)構(gòu)優(yōu)化具有重要指導(dǎo)作用[2]。因此下文以縱向加肋圓柱殼徑向振動(dòng)固有頻率為討論對(duì)象。
簡(jiǎn)支、固支及自由邊界條件分別用S,C和F表示。表2給出了文獻(xiàn)[7]中加縱肋圓柱殼模型參數(shù),表3列出了幾種經(jīng)典邊界下約束彈簧剛度的無(wú)量綱值[15]。
表4列出了文獻(xiàn)中兩端簡(jiǎn)支縱向加肋圓柱殼固有頻率的理論結(jié)果和實(shí)驗(yàn)數(shù)據(jù),實(shí)驗(yàn)數(shù)據(jù)來(lái)自文獻(xiàn)[9]。其中,縱肋數(shù)量Ns=4,肋條位于圓柱殼內(nèi)部。以文獻(xiàn)實(shí)驗(yàn)數(shù)據(jù)為參考,給出了文獻(xiàn)[7,9,17]及本文結(jié)果與文獻(xiàn)實(shí)驗(yàn)數(shù)據(jù)之間的誤差百分比。文獻(xiàn)[7,9]的縱肋為矩形,文獻(xiàn)[17]的縱肋為帽子型。
由表4可知,本文結(jié)果與實(shí)驗(yàn)數(shù)據(jù)之間的誤差基本保持在2.7%以內(nèi),相較于文獻(xiàn)[7,9]表現(xiàn)出良好的求解精度。進(jìn)一步比較發(fā)現(xiàn),文獻(xiàn)[7]的求解結(jié)果相對(duì)于實(shí)驗(yàn)數(shù)據(jù)的誤差均大于文獻(xiàn)[9,17]及本文結(jié)果,原因是其建模過(guò)程忽略了比較重要的面內(nèi)慣性項(xiàng)。與文獻(xiàn)[9]相比,本文結(jié)果與實(shí)驗(yàn)數(shù)據(jù)之間的總體誤差更小,這是由于本文采用更為精確的Novozhilov殼體理論,同時(shí)圓柱殼動(dòng)能泛函計(jì)及轉(zhuǎn)動(dòng)慣量,并考慮其忽略的縱肋彎扭耦合運(yùn)動(dòng)和翹曲變形。與文獻(xiàn)[17]求解結(jié)果相比,本文結(jié)果誤差稍大,原因在于文獻(xiàn)[17]直接求解了結(jié)構(gòu)運(yùn)動(dòng)微分方程,而本文則采用能量原理獲取近似解,但是直接求解運(yùn)動(dòng)微分方程,僅能求得簡(jiǎn)單約束下圓柱殼自由振動(dòng)的解,而對(duì)于實(shí)際工程中其余較為復(fù)雜的邊界條件,需要處理復(fù)雜的結(jié)構(gòu)相容條件,由于耦合偏微分方程組求解的數(shù)學(xué)困難,使得工作量變得極為巨大且常常無(wú)法得到相應(yīng)的準(zhǔn)確解,在文獻(xiàn)[17]里面最終也采用了數(shù)值解,因此該方法不具備通用性。而本方法可以方便地推廣到不同類型、不同形狀、不同加筋方向的加筋圓柱殼,這是直接求解運(yùn)動(dòng)微分方程方法所無(wú)法達(dá)到的。
收斂性體現(xiàn)了計(jì)算效率,對(duì)數(shù)值模擬的實(shí)現(xiàn)起關(guān)鍵作用。文中計(jì)算特定模態(tài)下縱向加肋圓柱殼固有頻率過(guò)程中,隨著正交多項(xiàng)式累加項(xiàng)數(shù)增多,該階固有頻率的近似值也相應(yīng)增多,并最終收斂于某一恒定值,該值即為此模態(tài)下的固有頻率。將保留多位有效數(shù)字的固有頻率的相鄰近似值做差,若差值為零,則認(rèn)為計(jì)算結(jié)果收斂于該項(xiàng),其中有效數(shù)字的選取滿足求解精度即可。本文選取m=1,n=1~6階模態(tài)下,保留10位有效數(shù)字的無(wú)量綱固有頻率(f*=ω*/(2π))相鄰近似值之差的絕對(duì)值(Δf*Nt=∣∣f*Nt+1?f*Nt∣∣,Nt≥1)來(lái)評(píng)估本文計(jì)算方法的收斂性,橫坐標(biāo)(ΔNt=1,2,…,9)表示多項(xiàng)式后項(xiàng)減去前項(xiàng)的自然數(shù)計(jì)數(shù)。圖3為固有頻率相鄰近似值之差的絕對(duì)值隨多項(xiàng)式累加項(xiàng)遞增的變化情況。圖中顯示,隨著累加項(xiàng)數(shù)的遞增,Δf*Nt在ΔNt=2時(shí)迅速收斂,隨后收斂速度變緩,但固有頻率相鄰近似值的差值仍在變小。從局部放大圖可以看出,當(dāng)ΔNt=7,即Nt=8時(shí),Δf*Nt≈0,這表明固有頻率的計(jì)算結(jié)果可以迅速收斂于某一恒定值,由此證明本文所采用的固有頻率計(jì)算方法具有良好的收斂性。
2.2 加肋方式、肋條數(shù)量及肋條偏心距對(duì)自由振動(dòng)的影響
殼體結(jié)構(gòu)參數(shù)對(duì)加肋圓柱殼自由振動(dòng)特性的影響一直是研究熱點(diǎn)[14,16]。文中算例采用表2模型部分參數(shù),僅將殼體厚度擴(kuò)大10倍,并根據(jù)研究需要改變截面尺寸。以ST(Stringer)表示縱肋,CS(Cross Section)表示縱肋橫截面,其中肋條數(shù)量Ns=4,8,16,CS1:40 mm×8 mm,CS2:17.9 mm × 17.9 mm,CS3:8 mm×40 mm。例如符號(hào)ST4CS1(+)表示外部加肋(“?”為內(nèi)部加肋),肋條數(shù)量為4,橫截面為類型1。殼體長(zhǎng)徑比L/R=5,厚徑比h/R=0.024。
2.2.1 內(nèi)、外部分別加肋時(shí)圓柱殼結(jié)構(gòu)固有頻率差異
縱肋通常附加在圓柱殼體的內(nèi)側(cè)或外側(cè),若僅改變加肋位置,結(jié)構(gòu)的質(zhì)量與剛度均不發(fā)生明顯變化,但在兩種加肋方式下其固有頻率如何變化則需要進(jìn)一步研究。
圖4~6分別是三種經(jīng)典邊界條件下,內(nèi)、外部分別加肋時(shí)圓柱殼無(wú)量綱固有頻率之差(Δf*=f*(+)?f*(?))隨周向波數(shù)n的變化曲線。綜合分析圖4~6可知,Δf*隨n的變化趨勢(shì)在各邊界下基本一致,這說(shuō)明邊界條件并不是Δf*的決定因素,但是不同邊界下,當(dāng)肋條數(shù)量相等,截面相同,周向波數(shù)一定時(shí),Δf*的絕對(duì)值大小依次為∣∣Δf*(C?C)∣∣>∣∣Δf*(C?S)∣∣>∣∣Δf*(S?S)∣∣。分別分析圖4~6可知,在m=1, n=1~20范圍內(nèi),隨著n變大,Δf*>0的差值增大速度遠(yuǎn)大于Δf*<0的差值降低速度,且Δf*<0的情況僅出現(xiàn)在n≥6的偶數(shù)項(xiàng)波數(shù)中。若肋條數(shù)量成倍增加,Δf*<0的數(shù)值個(gè)數(shù)以相同比例減少,即在一定周向波數(shù)范圍內(nèi),增加肋條數(shù)量,外部加肋大于內(nèi)部加肋圓柱殼固有頻率的概率也增大。由此可以預(yù)測(cè):若繼續(xù)增加肋條數(shù)量,一定周向波數(shù)范圍內(nèi),外部加肋將全面大于內(nèi)部加肋時(shí)圓柱殼的固有頻率。上述預(yù)測(cè)恰與文獻(xiàn)[24]中加密肋時(shí)所得結(jié)論相吻合,驗(yàn)證了文中結(jié)論的一般性。
2.2.2 縱肋數(shù)量對(duì)加肋圓柱殼固有頻率的影響
從結(jié)構(gòu)角度看,肋條數(shù)量的變化會(huì)顯著改變加肋圓柱殼的剛度和質(zhì)量參數(shù);從能量角度看,不同肋條數(shù)量下結(jié)構(gòu)振動(dòng)時(shí)的動(dòng)能和勢(shì)能不盡相同,最終導(dǎo)致自由振動(dòng)特征方程中的剛度和質(zhì)量矩陣發(fā)生變化。因此,肋條數(shù)量的變化必然會(huì)對(duì)結(jié)構(gòu)固有頻率產(chǎn)生較大影響。
圖7(a)~(c)分別是三種經(jīng)典邊界下,不同肋條數(shù)量的縱向加肋圓柱殼無(wú)量綱固有頻率f*隨周向波數(shù)n的變化曲線。首先,分別分析圖7(a)~(c)可知,同一周向波數(shù)下,肋條數(shù)量增大時(shí),結(jié)構(gòu)對(duì)應(yīng)模態(tài)下的固有頻率均降低。由式(17),(18)可知,縱肋數(shù)量變化對(duì)結(jié)構(gòu)振動(dòng)時(shí)動(dòng)能的影響大于對(duì)勢(shì)能的影響。上述分析與文獻(xiàn)[10]中肋條數(shù)量變化對(duì)較大長(zhǎng)徑比薄殼固有頻率影響的結(jié)論相吻合;同時(shí)將肋條數(shù)量對(duì)結(jié)構(gòu)固有頻率的分析拓展至較高周向波數(shù),完善了該參數(shù)對(duì)縱向加肋圓柱殼自振特性影響的相關(guān)結(jié)論。然后,進(jìn)一步綜合分析圖7(a)~(c)可知,隨著周向波數(shù)的增大,由肋條數(shù)量變化引起的結(jié)構(gòu)固有頻率的差值變大,在圖中表現(xiàn)為不同曲線的間距均變大;同時(shí)可以看出,當(dāng)n≥10時(shí),曲線波動(dòng)狀態(tài)發(fā)生了明顯變化,說(shuō)明邊界條件和縱肋截面(不同偏心距)對(duì)結(jié)構(gòu)固有頻率也有一定影響,其中邊界條件的影響在文獻(xiàn)[15]中已有詳細(xì)闡述。下文將繼續(xù)分析縱肋偏心距對(duì)加肋殼體固有頻率的影響。
2.2.3 肋條偏心距對(duì)加肋圓柱殼固有頻率的影響
圖8(a)~(c)給出了三種經(jīng)典邊界下,不同縱肋橫截面尺寸的加縱肋圓柱殼無(wú)量綱固有頻率f*隨周向波數(shù)n的變化情況。保持肋條橫截面積不變,不同截面肋條偏心距大小關(guān)系為ecs1
3 結(jié) 論
(1) 相較于以往研究,本文模型不再受邊界條件和縱肋截面類型的限制。同時(shí),由于圓柱殼和縱肋子結(jié)構(gòu)的能量泛函均為精確形式,因此,對(duì)于不同厚徑比和長(zhǎng)徑比的加縱肋薄壁圓柱殼,利用本文模型均可求得較為精確的固有頻率值。本文模型同時(shí)考慮縱肋周向和徑向彎曲、扭轉(zhuǎn)及拉伸運(yùn)動(dòng),還考慮了殼體面內(nèi)轉(zhuǎn)動(dòng)慣量對(duì)自由振動(dòng)求解精度的影響,并選用了具備高精度特性的Novozhilov理論。綜上可知,本文所建理論模型兼顧一般性和精確性,可以為工程實(shí)際提供一定的理論指導(dǎo)。
(2) 在一定周向波數(shù)范圍內(nèi),外部加肋和內(nèi)部加肋圓柱殼固有頻率之差的絕對(duì)值與周向波數(shù)n的變化呈正相關(guān),此外,外部加肋大于內(nèi)部加肋圓柱殼固有頻率的概率隨縱肋數(shù)量的增多而增大;內(nèi)部加肋時(shí),增加或減少肋條數(shù)量會(huì)使縱向加肋圓柱殼固有頻率降低或升高,由此可知,縱肋數(shù)量變化對(duì)結(jié)構(gòu)振動(dòng)時(shí)動(dòng)能的影響大于對(duì)勢(shì)能的影響;保持縱肋橫截面積不變,增大肋條偏心距,縱向加肋圓柱殼的固有頻率變小,反之,固有頻率增加,同時(shí),偏心距與肋條數(shù)量對(duì)結(jié)構(gòu)固有頻率的影響會(huì)產(chǎn)生疊加效應(yīng)。與文獻(xiàn)[7,9,17]的結(jié)論對(duì)比進(jìn)一步證明了本文模型的準(zhǔn)確性和一般性。
參考文獻(xiàn)
1Amiro I Y, Zarutskii V A. Studies of the dynamics of ribbed shells[J]. Soviet Applied Mechanics, 1981, 17(11): 949-963.
2Leissa A W. Vibration of Shells[M]. New York: Acoustical Society of America, 1993.
3Hoppmann W H. Some characteristics of the flexural vibrations of orthogonally stiffened cylindrical shells[J]. The Journal of the Acoustical Society of America, 1958, 30(1): 77-82.
4Mc Elman J A, Mikulas M M. On free vibrations of eccentrically stiffened cylindrical shells and flat plates[R]. Washington D.C.: National Aeronautics and Space Administration, 1965.
5Newman M. Natural vibrations of a stiffened pressurized cylinder with an attached mass[J]. AIAA Journal, 1967, 5(6): 1139-1146.
6Sewall J L, Naumann E C. An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners[R]. National Aeronautic and Space Administration; for Sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va., 1968.
7Egle D M, Sewall J L. An analysis of free vibration of orthogonally stiffened cylindrical shells with stiffeners treated as discrete elements[J]. AIAA Journal, 1968, 6(3): 518-526.
8Egle D M, Soder K E. A theoretical analysis of the free vibration of discretely stiffened cylindrical shells with arbitrary end conditions[R]. National Aeronautic and Space Administration ,1969.
9Mustafa B A J, Ali R. An energy method for free vibration analysis of stiffened circular cylindrical shells[J]. Computers & Structures, 1989, 32(2): 355-363.
10Stanley A J, Ganesan N. Free vibration characteristics of stiffened cylindrical shells[J]. Computers & Structures, 1997, 65(1): 33-45.
11Jiang S, Li W L, Yang T, et al. Free vibration analysis of doubly curved shallow shells reinforced by any number of beams with arbitrary lengths[J]. Journal of Vibration and Control, 2016, 22(2): 570-584.
12Xiao Hanlin, Liu Tuguang, Zhang Tao, et al. Vibration analysis of composite cylindrical shells with stringer and ring stiffeners[J]. Journal of Ship Mechanics, 2007, 11(3):470-478.
13Pan Z, Li X, Ma J. A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions[J]. Journal of Sound and Vibration, 2008, 314(1-2): 330-342.
14李正良,胡浩,于偉.正交加筋圓柱殼-球殼組合結(jié)構(gòu)自由振動(dòng)分析[J].振動(dòng)與沖擊,2015,34(22):129-137.
Li Zheng-liang, Hu Hao, Yu Wei. Free vibration of joined and orthogonally stiffened cylindrical-spherical shells[J]. Journal of Vibration and Shock, 2015, 34(22): 129-137.
15劉倫, 曹登慶, 孫述鵬,等. 彈性邊界約束的正交加肋圓柱殼振動(dòng)特性分析[J]. 船舶力學(xué), 2016, 20(8): 1016-1027.
LIU Lun, CAO Deng-qin, Sun Shu-peng, et al. Vibration analysis of orthogonal stiffened cylindrical shells constrained by elastic boundary[J]. Journal of Ship Mechanics, 2016, 20(8): 1016-1027.
16王金朝,曹貽鵬,黃齊上.任意邊界條件下環(huán)肋圓柱殼振動(dòng)特性的建模與求解[J].固體力學(xué)學(xué)報(bào),2017,38(3):271-280.
WANG Jin-zhao, CAO Yi-peng, HUANG Qi-shang. Modelling and solution on viobration characteristics of ring-stiffened cylindrical shell with arbitrary boundary conditions[J]. Chinese Journal of Solid Mechanics, 2017,38(3):271-280.
17Wang J T S, Rinehart S A. Free vibrations of longitudinally stiffened cylindrical shells[J]. Journal of Applied Mechanics, 1974, 41(4):1087-1093.
18何福保.圓柱形薄殼自由振動(dòng)的微分方程式以及Donnell 型方程的適用范圍[J]. 浙江大學(xué)學(xué)報(bào), 1984, 18(2): 24-37.
HE Fu-bao. A linear equation for free vibration of thin elastic circular cylindrical shells and suitability of Donnell type equation[J].Journal of Zhejiang University, 1984, 18(2): 24-37.
19Farshidianfar A, Oliazadeh P. Free vibration analysis of circular cylindrical shells: comparison of different shell theories[J]. International Journal of Mechanics and Applications, 2012, 2(5): 74-80.
20楊明月, 孫玲玲, 王曉樂(lè), 等. 兩端剪力薄膜支撐圓柱殼體的點(diǎn)導(dǎo)納特性[J]. 振動(dòng)與沖擊, 2014, 33(23):100-105.
YANG Ming-yue, SUN Ling-ling, WANG Xiao-le. et al.Point mobilities of circular cylindrical shells with both ends supported by shear diaphragms[J]. Journal of Vibration and Shock, 2014, 33(23): 100-105.
21Lee H W, Kwak M K. Free vibration analysis of a circular cylindrical shell using the Rayleigh?Ritz method and comparison of different shell theories[J]. Journal of Sound and Vibration, 2015, 353: 344-377.
22Bhat R B. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Ritz method[J]. Journal of Sound and Vibration, 1985, 102(4): 493-499.
23Liew K A, Lim C A. Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness[J]. AIAA Journal, 1994, 32(2): 387-396.
24McDonald D. A problem in the free vibration of stiffened cylindrical shells[J]. AIAA Journal, 1970, 8(2): 252-258.
Calculation and analysis of inherent properties of stiffened cylindrical shells with longitudinal stiffeners of arbitrary cross section under typical boundary conditions
NIU Ning 1 ?SUN Ling-ling 1 ?XING Ze-zhi 2ZHAO Guo-dong 1WANG Xiu-he 2WU You-you 1
1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China;
2. School of Electrical Engineering, Shandong University, Jinan 250061, China
Abstract Aiming at the problem of free vibration of longitudinal stiffened cylindrical shells, considering the complexity of the boundary conditions of the stringer stiffened cylindrical shell and the arbitrariness of the stringer section, the elastic constraints that can vary continuously were introduced at both ends of the shell and the displacement relationship between the displacement compatibility between the center of a stiffer with arbitrary cross section and the middle surface of a cylindrical shell was deduced, the axial mode shape function of the shell was constructed by Gram-Schmidt orthogonal method. Based on the Novozhilov shell theory, taking into account the contribution of the each translational and rotational inertia terms in the energy functional of shell and stringer, a unified dynamic analysis model for free vibration of stringer stiffened cylindrical shell was established by the Rayleigh-Ritz method. The accuracy of the results was verified by literature model. The stiffness of restrained spring was adjusted to simulate different boundary conditions, and the model is used to explore the influence of the additional position of the ribs, the number of ribs and the rib eccentricity on the natural frequency of the longitudinally ribbed cylindrical shell under the corresponding boundary. Studies have shown that within a certain range of circumferential wavenumbers: the absolute value of the difference between the natural frequency of the external ribbed and the internally ribbed cylindrical shell is positively correlated with the change of the circumferential wavenumber n; increasing the number of ribs reduces the natural frequency of the internally ribbed cylindrical shell Increasing the eccentricity of the ribs reduces the natural frequency of the internally ribbed cylindrical shell, and the effect of the eccentricity and the number of ribs on the natural frequency produces a superposition effect. The comparison between the research results and the literature verifies the accuracy and validity of the unified dynamic analysis model proposed in this paper.
Keywords free vibration; cylindrical shell; typical boundary condition; arbitrary asymmetric cross section; Gram-Schmidt orthogonal method; Rayleigh-Ritz method