吳禮?!⊥趵住O芯年 孫帥恒
摘要 傳統(tǒng)的聲回波消除(Acoustic Echo Cancellation,AEC)方法使用雙端通話(huà)檢測(cè)器判斷單、雙端通話(huà)場(chǎng)景,性能受限.盲源分離(Blind Source Separation,BSS)信號(hào)模型是一個(gè)遠(yuǎn)端和近端信號(hào)并存的全雙工模型,因此基于BSS的AEC無(wú)需雙端通話(huà)檢測(cè)器.本文采用基于輔助函數(shù)的獨(dú)立分量分析(Auxiliary function based Independent Component Analysis,Aux-ICA)算法在頻域上實(shí)現(xiàn)聲回波消除,以最小化互信息為目標(biāo)函數(shù),借助輔助函數(shù)技術(shù)進(jìn)行優(yōu)化.仿真實(shí)驗(yàn)結(jié)果表明,在連續(xù)的雙端通話(huà)場(chǎng)景中,該方法具有較低的計(jì)算復(fù)雜度和較好的回波消除性能.關(guān)鍵詞 回波消除;輔助函數(shù);獨(dú)立分量分析;盲源分離;雙端通話(huà)
中圖分類(lèi)號(hào)TN912
文獻(xiàn)標(biāo)志碼A
0 引言
在網(wǎng)絡(luò)會(huì)議、免提通話(huà)等應(yīng)用中,都不同程度地存在聲回波問(wèn)題.回波的存在影響通信質(zhì)量,嚴(yán)重時(shí)會(huì)使通信系統(tǒng)不能正常工作.因此,必須采取有效措施來(lái)抑制回波,消除其影響.回波消除是通常采用的一種方法,其基本思想是估計(jì)出回波路徑,得出回波信號(hào)的估計(jì),從傳聲器信號(hào)中減去該估計(jì)信號(hào),實(shí)現(xiàn)回波消除.
自適應(yīng)濾波[1]是聲回波消除的常用方法之一.歸一化最小均方(Normalized Least Mean Square,NLMS)算法[2-3]是回波消除的典型算法,該算法通過(guò)梯度下降法使估計(jì)的回波與麥克風(fēng)信號(hào)之間的均方誤差最?。疄榱朔乐篂V波器發(fā)散,需要額外使用雙端通話(huà)檢測(cè)器(Double-Talk Detector,DTD)[4]或自適應(yīng)步長(zhǎng)策略[5]來(lái)減緩或停止雙端通話(huà)時(shí)自適應(yīng)濾波器的調(diào)整.遞歸最小二乘法(Recursive Least Square,RLS)[6]也是一種AEC算法,與NLMS算法相比,RLS算法具有更快的收斂速度,但其計(jì)算復(fù)雜度也更高.Speex MDF[7]是一種廣泛使用的自適應(yīng)濾波回聲消除算法,它以NLMS算法為基礎(chǔ),用頻域多延時(shí)(Multi Delay block Frequency domain,MDF)濾波算法實(shí)現(xiàn),推導(dǎo)出最優(yōu)步長(zhǎng)估計(jì),其優(yōu)點(diǎn)是濾波器系數(shù)基于塊更新.
前述的AEC方法存在一定的不足.基于梯度下降的方法存在收斂速度與穩(wěn)定性之間的平衡問(wèn)題[8].盡管DTD和自適應(yīng)步長(zhǎng)策略在單向通話(huà)和偶爾發(fā)生的雙端通話(huà)場(chǎng)景中都能很好地工作,但在連續(xù)雙端通話(huà)場(chǎng)景中,近端信號(hào)總是存在,它們的性能可能會(huì)下降[9].盲源分離[10-11]是一種從觀測(cè)到的混合信號(hào)中分離出期望信號(hào)來(lái)實(shí)現(xiàn)信號(hào)分離或增強(qiáng)的技術(shù).獨(dú)立分量分析(Independent Component Analysis,ICA)[12]和獨(dú)立矢量分析(Independent Vector Analysis,IVA)[13]是典型的BSS技術(shù).AEC可以被認(rèn)為是一個(gè)半盲源分離問(wèn)題,其目標(biāo)是從傳聲器(麥克風(fēng))信號(hào)中分離出回波和近端信號(hào).
近年來(lái),基于深度學(xué)習(xí)(Deep Learning)[14-15]的回波消除方法雖然展示了很好的性能,但是這種數(shù)據(jù)驅(qū)動(dòng)方法主要有兩個(gè)不足:一是需要足夠的數(shù)據(jù)進(jìn)行訓(xùn)練,目前雖然有一些開(kāi)源音頻數(shù)據(jù)庫(kù),但這些數(shù)據(jù)庫(kù)通常不足以建立魯棒的神經(jīng)網(wǎng)絡(luò);二是深度神經(jīng)網(wǎng)絡(luò)的參數(shù)無(wú)法解釋?zhuān)@對(duì)于希望從自己的需求出發(fā)來(lái)操縱和調(diào)整回波消除系統(tǒng)性能的工程師或?qū)嶋H用戶(hù)來(lái)說(shuō)是無(wú)法接受的.
與傳統(tǒng)的AEC算法相比,由于BSS信號(hào)模型是一個(gè)遠(yuǎn)端和近端信號(hào)并存的全雙工模型,所以基于BSS的AEC算法在連續(xù)雙端通話(huà)場(chǎng)景中具有更好的回波消除能力.同時(shí),Speex MDF算法的優(yōu)異性能表明頻域?qū)崿F(xiàn)AEC具有一定的優(yōu)勢(shì).因而本文采用基于輔助函數(shù)的獨(dú)立分量分析在頻域?qū)崿F(xiàn)聲回波消除,在全雙工特性的基礎(chǔ)上,利用輔助函數(shù)技術(shù),避免了顯式步長(zhǎng)參數(shù)選擇,降低了算法的計(jì)算復(fù)雜度.
1 問(wèn)題描述
1.1 信號(hào)模型
1.2 BSS模型
2 Aux-ICA算法
2.1 算法推導(dǎo)
2.2 討論
Aux-ICA AEC的目標(biāo)函數(shù)是通過(guò)最小化互信息得到的,互信息由KL散度(Kullback-Leibler divergence)測(cè)量[18],并由輔助函數(shù)技術(shù)進(jìn)行優(yōu)化.在ICA模型中,近端信號(hào)被明確地建模為一個(gè)獨(dú)立分量,ICA中的非線(xiàn)性參數(shù)β作為加權(quán)值.非線(xiàn)性參數(shù)β的使用,提高了語(yǔ)音的分離性能.又因?yàn)锽SS信號(hào)模型是遠(yuǎn)端和近端信號(hào)共存的全雙工模型,所以Aux-ICA AEC在連續(xù)雙端通話(huà)場(chǎng)景中具有良好的回波消除能力.由于式(21)包含矩陣求逆,計(jì)算量較大,并不適合在線(xiàn)應(yīng)用,可以使用QRD-RLS(QR Decomposition-RLS)算法[19]降低計(jì)算復(fù)雜度.
在頻域進(jìn)行信號(hào)處理時(shí),為防止由于第1幀的回波路徑為零矩陣而在信號(hào)前端產(chǎn)生較大誤差,仿真中需對(duì)麥克風(fēng)信號(hào)的第1幀進(jìn)行預(yù)處理,即對(duì)第1幀的所有點(diǎn)按照本文算法進(jìn)行迭代,使得第1幀的回波路徑為非全零矩陣.其余幀再根據(jù)第1幀進(jìn)行迭代.Aux-ICA AEC算法消除回波的流程如表1所示.
3 仿真實(shí)驗(yàn)
3.1 實(shí)驗(yàn)環(huán)境
3.2 結(jié)果和討論
4 結(jié)論
本文研究了一種基于輔助函數(shù)的ICA算法,在頻域上實(shí)現(xiàn)聲回波消除.在全雙工特性的基礎(chǔ)上,利用輔助函數(shù)技術(shù),可以省略顯式步長(zhǎng)參數(shù)選擇和雙端通話(huà)檢測(cè)器,降低了算法的計(jì)算復(fù)雜度.仿真驗(yàn)證了該方法具有更低的計(jì)算復(fù)雜度以及更好的回波消除性能.
參考文獻(xiàn) References
[1]張琦,王霞,王磊,等.自適應(yīng)回波抵消中變步長(zhǎng)NLMS算法[J].數(shù)據(jù)采集與處理,2013,28(1):64-68ZHANG Qi,WANG Xia,WANG Lei,et al.Variable step-size NLMS algorithms in echo cancellation[J].Journal of Data Acquisition & Processing,2013,28(1):64-68
[2] Morgan D R,Kratzer S G.On a class of computationally efficient,rapidly converging,generalized NLMS algorithms[J].IEEE Signal Processing Letters,1996,3(8):245-247
[3] Albu I,Anghel C,Paleologu C.Adaptive filtering in acoustic echo cancellation systems:a practical overview[C]//2017 9th International Conference on Electronics,Computers and Artificial Intelligence (ECAI).June 29-July 1,2017,Targoviste,Romania.IEEE,2017:1-6
[4] Valin J M.On adjusting the learning rate in frequency domain echo cancellation with double-talk[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(3):1030-1034
[5] Yang J.Multilayer adaptation based complex echo cancellation and voice enhancement[C]//2018 IEEE International Conference on Acoustics,Speech and Signal Processing.April 15-20,2018,Calgary,AB,Canada.IEEE,2018:2131-2135
[6] 丁鋒.輔助模型辨識(shí)方法(5):最小二乘辨識(shí)[J].南京信息工程大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,8(5):385-403DING Feng.Auxiliary model based identification methods.Part E:least squares identification[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2016,8(5):385-403
[7] 楊果,王亞潔,王晶.Speex編碼器中回聲消除算法的分析與評(píng)估[J].電聲技術(shù),2013,37(9):52-55YANG Guo,WANG Yajie,WANG Jing.Analysis and evaluation of echo cancellation algorithm in speex codec[J].Audio Engineering,2013,37(9):52-55
[8] Ono N,Miyabe S.Auxiliary-function-based independent component analysis for super-Gaussian sources[C]//Latent Variable Analysis and Signal Separation,2010:165-172
[9] Gunther J.Learning echo paths during continuous double-talk using semi-blind source separation[J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(2):646-660
[10] Ikram M Z.Blind source separation and acoustic echo cancellation:a unified framework[C]//2012 IEEE International Conference on Acoustics,Speech and Signal Processing.March 25-30,2012,Kyoto,Japan.IEEE,2012:1701-1704
[11] 張艷萍,李杰.回波對(duì)消中盲源分離算法的研究與仿真[J].南京信息工程大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,5(6):539-543ZHANG Yanping,LI Jie.Optimization and simulation of blind source separation in acoustic echo cancellation[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2013,5(6):539-543
[12] 石懷濤,周乾,王雨桐,等.基于相對(duì)變換的ICA故障檢測(cè)方法[J].電子測(cè)量與儀器學(xué)報(bào),2017,31(7):1040-1046SHI Huaitao,ZHOU Qian,WANG Yutong,et al.Fault detection method based on relative-transformation ICA[J].Journal of Electronic Measurement and Instrumentation,2017,31(7):1040-1046
[13] Scheibler R,Ono N.Independent vector analysis with more microphones than sources[C]//2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.October 20-23,2019,New Paltz,NY,USA.IEEE,2019:185-189
[14] Lei Q H,Chen H,Hou J F,et al.Deep neural network based regression approach for acoustic echo cancellation[C]//Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing.2019:94-98
[15] 周曉彥,王珂,李凌燕.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法綜述[J].電子測(cè)量技術(shù),2017,40(11):89-93ZHOU Xiaoyan,WANG Ke,LI Lingyan.Review of object detection based on deep learning[J].Electronic Measurement Technology,2017,40(11):89-93
[16] Taniguchi T,Ono N,Kawamura A,et al.An auxiliary-function approach to online independent vector analysis for real-time blind source separation[C]//2014 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA).May 12-14,2014,Villers-les-Nancy,F(xiàn)rance.IEEE,2014:107-111
[17] Ono N.Auxiliary-function-based independent vector analysis with power of vector-norm type weighting functions[C]//Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.December 3-6,2012,Hollywood,CA,USA.IEEE,2012:1-4
[18] 魏本征,甘潔,尹義龍.基于邊緣特征點(diǎn)互信息熵的醫(yī)學(xué)圖像配準(zhǔn)方法[J].數(shù)據(jù)采集與處理,2018,33(2):248-258WEI Benzheng,GAN Jie,YIN Yilong.Medical image registration based on mutual information entropy combined with edge correlation feature[J].Journal of Data Acquisition and Processing,2018,33(2):248-258
[19] 姜波,楊軍,張爾揚(yáng).稀疏自適應(yīng)Volterra濾波的QRD-RLS算法[J].信號(hào)處理,2008,24(4):595-599JIANG Bo,YANG Jun,ZHANG Eryang.QRD-RLS algorithm for sparse adaptive Volterra filtering[J].Signal Processing,2008,24(4):595-599
[20] Allen J B,Berkley D A.Image method for efficiently simulating small-room acoustics[J].The Journal of the Acoustical Society of America,1979,65(4):943-950
[21] Loizou P C.Speech enhancement:theory and practice[M].Florida:CRC Press,2007:492-495
Frequency domain acoustic echo cancellation using auxiliaryfunction based independent component analysis
WU Lifu WANG Lei SUN Xinnian SUN Shuaiheng
1School of Electronics & Information Engineering,Nanjing University of Information Science & Technology,Nanjing 210044
2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,
Nanjing University of Information Science & Technology,Nanjing 210044
AbstractThe performance of traditional Acoustic Echo Cancellation (AEC) is restricted due to the double-talk detector it used to determine the double-talk and single-talk scenarios.While Blind Source Separation (BSS) signal model is a full duplex model with both far-end and near-end signals,thus the BSS-based AEC does not need the double-talk detector.This paper adopts Auxiliary function based Independent Component Analysis (Aux-ICA) algorithm to realize acoustic echo cancellation in frequency domain,in which the object function is minimizing the mutual information,and the auxiliary function technique is used for optimization.Simulation results show that this method has lower computational complexity and better performance in acoustic echo cancellation under continuous double-talk scenarios.
Key words echo cancellation;auxiliary function;independent component analysis (ICA);blind source separation;double-talk