彭鳳 路承凱 梁崗
摘 要:? 鐵(Fe)是植物生長(zhǎng)發(fā)育所必需的營(yíng)養(yǎng)元素而鎘(Cd)是對(duì)植物有害的元素且對(duì)植物Fe和Cd的吸收存在拮抗作用。OsIMA是一類正調(diào)控水稻Fe吸收的一類小肽,其過(guò)表達(dá)可以促進(jìn)Fe的積累。為探究OsIMA是否參與水稻對(duì)Cd脅迫的適應(yīng)性,該研究以水稻為研究材料,利用熒光定量PCR分析了OsIMA基因的表達(dá)水平,通過(guò)遺傳轉(zhuǎn)化和CRISPR/Cas9基因編輯技術(shù)構(gòu)建了OsIMA1過(guò)表達(dá)植物和ima1突變體植物,評(píng)估了OsIMA1過(guò)表達(dá)和突變體植物在Cd逆境條件下的株高,并利用電聯(lián)耦合等離子體質(zhì)譜法測(cè)量了根和地上部的Fe和Cd含量。結(jié)果表明:(1)Cd處理后,OsIMA1和OsIMA2的轉(zhuǎn)錄水平上調(diào)。(2)OsIMA1過(guò)表達(dá)植物比野生型植物對(duì)Cd脅迫更耐受。(3)ima1功能缺失突變體比野生型植物對(duì)Cd脅迫更敏感。(4)OsIMA1過(guò)表達(dá)植株根系的Cd含量較高,而ima1突變體植株地上部的Cd含量較高。綜上所述,OsIMA1通過(guò)限制Cd從根向地上部的轉(zhuǎn)運(yùn)以增強(qiáng)水稻對(duì)Cd逆境的適應(yīng)能力,該研究結(jié)果為定向培育耐Cd作物提供了理論參考。
關(guān)鍵詞: 水稻, OsIMA, Cd, Fe, 拮抗作用
中圖分類號(hào):? Q945文獻(xiàn)標(biāo)識(shí)碼:? A 文章編號(hào):? 1000-3142(2023)06-1097-08
OsIMA1 enhances tolerance to cadmium stress in rice
PENG Feng1,2 , LU Chengkai1,2, LIANG Gang1,2*
( 1. Key Laboratory of Tropical Plant Resources and Sustainable Use,? Xishuangbanna Tropical Botanical Garden,? Chinese Academy of
Sciences,
Kunming, 650223, China; 2. College of Life Sciences,? University of Chinese Academy of Sciences, Beijing 100049, China )
Abstract:? Iron (Fe) is crucial for the growth and development of plants and cadmium (Cd) is toxic to plants. There is an antagonistical mechanism between Fe and Cd uptake in plants. OsIMAs are a class of small peptides, and their overexpression improves Fe accumulation in rice. To explore the role of? OsIMA genes in response to Cd stress, we analyzed the expression of two? OsIMA genes by qRT-PCR, generated? OsIMA1 overexpression plants and CRISPR/Cas9 edited? ima1 mutants by genetic transformation, assessed the plant heights of? OsIMA1 overexpressing plants and? ima1 mutant plants under Cd stress, and measured the Fe and Cd concentration of root and shoot. The results were as follows: (1) Transcriptional levels both? OsIMA1 and? OsIMA2 were up-regulated by Cd treatment. (2) Overexpression of? OsIMA1 gene improved the tolerance of plants to Cd stress. (3) The loss-of-function of? OsIMA1 led to the higher sensitivity of plants to Cd stress. (4) OsIMA1 overexpressing plants accumulated more Cd in the root and the? ima1 mutants accumulated more Cd in the shoot. To sum up,? OsIMA1 improves Cd tolerance by restricting Cd translocation from root to shoot, which provides the theoretical reference for breeding the Cd-tolerant rice.
Key words: rice, OsIMA, cadmium, iron, antagonism
Cd是對(duì)所有生物都有害的重金屬元素,極易在根系從土壤吸收的過(guò)程中與其他二價(jià)金屬離子(如Fe和Zn)競(jìng)爭(zhēng)。Cd還可以通過(guò)食物鏈在人體內(nèi)富集,長(zhǎng)期積累可導(dǎo)致骨質(zhì)疏松癥、癌癥和腎功能障礙等多種疾病。隨著工業(yè)化的快速發(fā)展以及化肥和農(nóng)藥的過(guò)度使用,土壤中不斷增加的Cd污染已經(jīng)嚴(yán)重威脅到糧食安全,增加了對(duì)人類健康的潛在風(fēng)險(xiǎn),并造成了巨大的經(jīng)濟(jì)損失(Kirkham, 2006; Wei & Yang, 2010)。因此,研究植物吸收Cd的分子機(jī)理并篩選和培育耐Cd脅迫或低Cd累積的農(nóng)作物,對(duì)人類健康和生態(tài)保護(hù)具有重要意義。
由于Cd和Fe具有相似的水合離子半徑,Cd極易通過(guò)與Fe競(jìng)爭(zhēng)并借助Fe離子通道或轉(zhuǎn)運(yùn)蛋白進(jìn)入植物體內(nèi)(Nightingale, 1959; Eide et al., 1996; Schutzendubel & Polle, 2002; Clemens, 2006)。Cd在植物體內(nèi)的積累導(dǎo)致幼葉明顯褪綠、壞死、生長(zhǎng)受阻甚至死亡,這與典型的缺Fe癥狀相似(Das et al., 1997; Cohen et al., 1998; Yoshihara et al., 2006)。相關(guān)研究表明,Cd脅迫改變了細(xì)胞壁成分,增強(qiáng)了細(xì)胞壁對(duì)Fe的結(jié)合能力,導(dǎo)致Fe滯留在根的質(zhì)外體中,并抑制Fe從根部到地上部的轉(zhuǎn)運(yùn)(Xu et al., 2015),這些癥狀可以通過(guò)給植物補(bǔ)給Fe元素得到改善(Bao et al., 2010; He et al., 2017; Huang et al., 2020)。Fe轉(zhuǎn)運(yùn)體(iron-regulated transporter 1,IRT1)參與Cd的吸收過(guò)程(Cohen et al., 1998; Korshunova et al., 1999; Vert et al., 2002; Fan et al., 2014; Mao et al., 2014; Guan et al., 2019; Zhu et al., 2020)。在擬南芥里,IRT1的表達(dá)直接受轉(zhuǎn)錄因子FIT(FER-like Iron deficient-induced transcription factor)和bHLH Ib亞族成員(bHLH38、bHLH39、bHLH100和bHLH101)的調(diào)控(Yuan et al., 2008)。FIT和bHLH38或bHLH39的共表達(dá)通過(guò)增加根部對(duì)Cd的螯合而減少地上部的Cd積累來(lái)提高植物對(duì)Cd脅迫的耐受性(Wu et al., 2012)。轉(zhuǎn)錄因子bHLH104正調(diào)控?cái)M南芥Fe穩(wěn)態(tài),過(guò)表達(dá)bHLH104則可提高植物對(duì)Cd的耐受性(Zhang et al., 2015; Li et al., 2016; Yao et al., 2018)。BTS(BRUTUS)負(fù)調(diào)控Fe穩(wěn)態(tài),敲除BTS顯著增強(qiáng)了擬南芥對(duì)Cd脅迫的耐受性,同時(shí)增加了Fe和Cd的積累(Kobayashi et al., 2013; Hindt et al., 2017; Zhu et al., 2020)。在水稻中,2個(gè)Fe轉(zhuǎn)運(yùn)蛋白OsNRAMP1(Natural Resistance-Associated Macrophage Protein 1)和OsIRT1可以介導(dǎo)根系從土壤中吸收Cd,并且過(guò)表達(dá)OsNRAMP1和OsIRT1可以增加水稻的Cd含量(Lee & An, 2009; Takahashi et al., 2019)。由于Fe和Cd之間存在拮抗作用,因此水稻缺Fe會(huì)顯著增加根系對(duì)Cd的吸收,外源施加Fe則會(huì)降低水稻的Cd含量并減緩Cd毒害(Shao et al., 2007)。綜上表明,改善Fe的積累和分配可以顯著減輕Cd對(duì)植物的毒害。因此,全面了解Fe和Cd的拮抗作用有利于指導(dǎo)農(nóng)業(yè)生產(chǎn)和降低Cd對(duì)植物的毒性。
小肽泛指小于100個(gè)氨基酸的蛋白質(zhì),具有短的氨基酸共有基序,參與植物生長(zhǎng)發(fā)育和非生物等逆境的脅迫響應(yīng)(Czyzewicz et al., 2013; Matsubayashi, 2014)。IMA(IRON MAN)多肽家族成員的碳末端包含一個(gè)17氨基酸的共有基序,在被子植物中高度保守,并且這17個(gè)氨基酸就足以代替其全長(zhǎng)蛋白發(fā)揮作用(Grillet et al., 2018; Li et al., 2021)。近年來(lái),小肽作為激素類信號(hào)分子受到廣泛的關(guān)注,參與器官內(nèi)通訊、植物發(fā)育和脅迫應(yīng)答(Tavormina et al., 2015; Takahashi et al., 2019)。IMA可能介導(dǎo)了Fe從地上部到根部的長(zhǎng)距離信號(hào),參與Fe的吸收、轉(zhuǎn)運(yùn)和細(xì)胞內(nèi)穩(wěn)態(tài)(Grillet et al., 2018; Li et al., 2021)。Meng等(2022)研究表明,過(guò)表達(dá)IMA可以提高在擬南芥中對(duì)Cd脅迫的適應(yīng)性。但是,目前關(guān)于IMA是否可以提高農(nóng)作物對(duì)Cd脅迫的適應(yīng)性尚不清楚。本研究探究了水稻OsIMA1調(diào)控Cd脅迫方面的作用,以期為未來(lái)利用分子育種提高水稻對(duì)Cd脅迫的耐受性提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
試驗(yàn)材料為粳稻品種“日本晴”,種植地點(diǎn)為云南省西雙版納傣族自治州勐臘縣勐侖鎮(zhèn)中國(guó)科學(xué)院西雙版納熱帶植物園的作物保護(hù)與育種基地(101°19′ E、21°52′ N)。將水稻種子用雙蒸水(ddH2O)浸泡24 h后均勻地散布在吸水濾紙中,在28 ℃人工溫室黑暗放置3 d后,轉(zhuǎn)移到1/2MS培養(yǎng)液中萌發(fā)生長(zhǎng)7 d,轉(zhuǎn)移至不含Cd或含25 μmol·L-1 氯化鎘(CdCl2)的1/2MS水培液中培養(yǎng)7 d。每2 d換1次水培液。生長(zhǎng)光周期為光16 h、暗8 h的循環(huán)。
1.2 轉(zhuǎn)基因植株的構(gòu)建
利用CRISPR-GE(http://skl.scau.edu.cn/)在線設(shè)計(jì)OsIMA1的編輯靶點(diǎn)。通過(guò)Overlapping PCR構(gòu)建包含該靶點(diǎn)的sgRNA,并融合至OsU6a啟動(dòng)子的下游,然后將OsU6a-sgRNA克隆至攜帶Cas9的pMH-SA載體(Liang et al., 2016)。將表達(dá)載體轉(zhuǎn)化至農(nóng)桿菌EHA105菌株中用于水稻轉(zhuǎn)化,并對(duì)轉(zhuǎn)基因陽(yáng)性苗進(jìn)行PCR測(cè)序。對(duì)純合植株進(jìn)行擴(kuò)繁,并進(jìn)一步對(duì)T3代植物在進(jìn)行PCR測(cè)序,獲得純合突變植株。
用玉米Ubiquitin啟動(dòng)子驅(qū)動(dòng)OsIMA1全長(zhǎng)CDS,獲得OsIMA1過(guò)表達(dá)載體。將構(gòu)建的質(zhì)粒轉(zhuǎn)化至農(nóng)桿菌EHA105菌株中用于水稻轉(zhuǎn)化。選用含潮霉素抗性的轉(zhuǎn)基因植株進(jìn)行基因表達(dá)水平檢測(cè),T3轉(zhuǎn)基因植株用來(lái)試驗(yàn)分析。
1.3 qRT-PCR
利用水飽和酚法提取水稻根(root)或地上部(shoot)的總RNA。采用RT Primer Mix (oligo dT)和PrimeScript RT Enzyme Mix for qPCR (寶生物,日本)試劑盒將RNA反轉(zhuǎn)錄成cDNA,隨后使用PrimeScriptTM RT試劑(Perfect Real Time) Kit (寶生物,日本)在Light-Cycler 480實(shí)時(shí)PCR儀(羅氏,瑞士)上進(jìn)行qRT-PCR檢測(cè)。每個(gè)基因的定量至少含3次生物學(xué)重復(fù)。以O(shè)sACTIN1和OsOBP作為內(nèi)參對(duì)照,對(duì)樣品進(jìn)行歸一化處理。
1.4 Fe和Cd含量測(cè)定
不同基因型的水稻材料于1/2MS營(yíng)養(yǎng)液體萌發(fā)生長(zhǎng)7 d后轉(zhuǎn)移至不含Cd或含25 μmol·L-1 CdCl2的1/2MS水培液培養(yǎng)7 d。分別收取根和葉,并置于65 ℃烘箱干燥7 d。用高通量組織研磨儀打磨樣品成粉末。每個(gè)樣品稱取500 mg,加入5 mL硝酸于185 ℃中消解3 h,加入2 mL高氯酸于220 ℃氧化30 min。利用美國(guó)Thermo SCIENTIFIC公司的電聯(lián)耦合等離子體質(zhì)譜儀(ICP-MS iCAP6300)測(cè)定樣品元素含量。
1.5 統(tǒng)計(jì)分析
所有試驗(yàn)數(shù)據(jù)均使用平均值±標(biāo)準(zhǔn)差(x±s)表示。每個(gè)試驗(yàn)至少有3次生物學(xué)重復(fù)。利用SPSS 17.0軟件進(jìn)行單因素方差分析(one-way variance, ANOVA) (P<0.05)。
2 結(jié)果與分析
2.1 Cd脅迫引起水稻OsIMA基因表達(dá)上調(diào)
水稻基因組包含兩個(gè)OsIMA基因(OsIMA1和OsIMA2)。近來(lái)的研究表明OsIMA1和OsIMA2受到缺Fe誘導(dǎo)(Kobayashi et al., 2021)。Cd脅迫會(huì)嚴(yán)重限制植物的生長(zhǎng)發(fā)育,從而導(dǎo)致植物表現(xiàn)出缺Fe癥狀。為研究Cd脅迫是否能影響OsIMA1和OsIMA2的表達(dá),對(duì)野生型(wild type,WT)水稻進(jìn)行Cd處理后,檢測(cè)了OsIMA1和OsIMA2的表達(dá)情況。將在正常培養(yǎng)液上生長(zhǎng)7 d的幼苗轉(zhuǎn)移至不含Cd(Cd0)或含25 μmol·L-1 CdCl2(Cd25)的培養(yǎng)液中生長(zhǎng)7 d。提取根和地上部的RNA并利用熒光定量PCR檢測(cè)OsIMA1和OsIMA2的表達(dá)水平。結(jié)果表明,在Cd脅迫條件下,無(wú)論在根還是地上部,OsIMA1和OsIMA2的表達(dá)均顯著上調(diào)(圖1)。
2.2 OsIMA1過(guò)表達(dá)植株對(duì)Cd耐受性更高
OsIMA1和OsIMA2屬于同源蛋白且二者在Fe穩(wěn)態(tài)方面的功能相近??紤]到二者的轉(zhuǎn)錄水平均受到Cd處理誘導(dǎo),本研究接下來(lái)以O(shè)sIMA1作為代表進(jìn)行研究。本研究利用玉米的Ubiquitin啟動(dòng)子驅(qū)動(dòng)OsIMA1基因,并且轉(zhuǎn)化了野生型水稻品種“日本晴”(圖2:A)。通過(guò)定量PCR篩選獲得了OsIMA1的過(guò)表達(dá)轉(zhuǎn)基因水稻植株,評(píng)估OsIMA1過(guò)表達(dá)植株對(duì)Cd脅迫的適應(yīng)能力。在正常水培溶液生長(zhǎng)一周的幼苗分別轉(zhuǎn)移到不含Cd (Cd0)或含25 μmol·L-1? CdCl2 (Cd25)的溶液再生長(zhǎng)一周,觀察和分析其表型。結(jié)果表明,在Cd0生長(zhǎng)條件下,OsIMA1的過(guò)表達(dá)植株與野生型植株無(wú)明顯區(qū)別,而在Cd25處理?xiàng)l件下,過(guò)表達(dá)植株的株高顯著高于野生型植株(圖2:B,C)。綜上表明,OsIMA1過(guò)表達(dá)增強(qiáng)了植物對(duì)Cd脅迫的適應(yīng)性。
2.3 OsIMA1的功能缺失突變體對(duì)Cd脅迫更敏感
為了進(jìn)一步研究OsIMA1在適應(yīng)Cd脅迫方面的作用,本研究利用CRISPR-Cas9基因編輯技術(shù)對(duì)OsIMA1基因進(jìn)行了編輯,并獲得了兩個(gè)ima1突變體。本研究在OsIMA1基因的編碼區(qū)設(shè)計(jì)了一個(gè)特異性的靶點(diǎn),用OsUba啟動(dòng)子驅(qū)動(dòng)整合了該靶點(diǎn)的sgRNA,并構(gòu)建了相應(yīng)的表達(dá)載體。通過(guò)轉(zhuǎn)化野生型水稻愈傷組織,獲得了轉(zhuǎn)基因植株。通過(guò)PCR鑒定及后代分離純化,得到2個(gè)純合的突變體株系ima1-1和ima1-2。2個(gè)株系均因基因編碼區(qū)插入一個(gè)堿基導(dǎo)致移碼突變(圖3:A)。此外,本研究對(duì)野生型和2個(gè)功能缺失突變體的植株進(jìn)行了Cd處理試驗(yàn)。在正常水培液生長(zhǎng)條件下,2個(gè)突變體株系與野生型植株無(wú)明顯差別(圖3:B,C)。在Cd處理?xiàng)l件下,突變體植株表現(xiàn)出幼葉缺綠甚至萎蔫等癥狀(圖3:B)。綜上表明,OsIMA1功能缺失增加了植物對(duì)Cd的敏感性。
2.4 OsIMA1負(fù)調(diào)控Cd從根向葉的轉(zhuǎn)運(yùn)
本研究結(jié)果表明OsIMA1過(guò)表達(dá)植株比野生型更耐Cd脅迫,而ima1突變體則相反。為了進(jìn)一步分析OsIMA1正調(diào)控Cd耐受的分子機(jī)制,本研究測(cè)定了野生型、OsIMA1過(guò)表達(dá)株系和ima1突變體的根和葉片中的Cd和Fe含量。先將在正常培養(yǎng)液中生長(zhǎng)7 d的幼苗分別轉(zhuǎn)移到不含Cd或含有25 μmol·L-1 CdCl2的培養(yǎng)液中培養(yǎng)7 d,然后分別取根和葉用來(lái)檢測(cè)Fe和Cd的含量。與野生型相比,OsIMA1過(guò)表達(dá)植株的根和地上部都積累了更多的Fe,而ima1突變體則積累了較少的Fe;OsIMA1過(guò)表達(dá)植物在根中積累了較多的Cd,而ima1突變體在地上部積累了較多的Cd(圖4)。綜上表明,OsIMA1負(fù)調(diào)控Cd從根向地上部的運(yùn)輸。
3 討論與結(jié)論
Cd對(duì)動(dòng)植物的生長(zhǎng)發(fā)育有害,近年來(lái)水稻受到Cd污染的事件頻頻發(fā)生。因此,減少植物的Cd吸收或提高植物對(duì)Cd脅迫的適應(yīng)性,有利于保障糧食安全。Fe是植物生長(zhǎng)發(fā)育所必需的營(yíng)養(yǎng)元素,而缺Fe是導(dǎo)致人類貧血癥的一個(gè)主要原因。水稻作為主糧作物,是人類Fe元素的一個(gè)主要來(lái)源。因此,培育富Fe稻米有益于改善人類健康。由于Fe和Cd之間的拮抗作用,額外施加Fe可以減少植物對(duì)Cd的吸收(Wu et al., 2012; Sebastian & Prasad, 2016)。因此,利用Fe和Cd的拮抗機(jī)制可以提高植物對(duì)Cd脅迫的適應(yīng)性。水稻中存在兩個(gè)OsIMA基因:OsIMA1和OsIMA2,它們的過(guò)表達(dá)能激活缺Fe誘導(dǎo)基因的表達(dá),從而增加Fe的累積(Kobayashi et al., 2021)。本研究發(fā)現(xiàn),Cd脅迫時(shí)OsIMA1和OsIMA2的表達(dá)顯著上調(diào)。Cd處理試驗(yàn)發(fā)現(xiàn)OsIMA1的功能缺失突變體提高了水稻對(duì)Cd的敏感性,主要表現(xiàn)在植株葉片白化萎蔫。OsIMA1過(guò)表達(dá)一方面增加了Fe的積累,另一方面卻抑制了Cd從根向地上部的轉(zhuǎn)運(yùn),這可能是OsIMA1過(guò)表達(dá)植株對(duì)Cd耐受性提高的原因。因此,增加OsIMA1的表達(dá)水平是緩解植物Cd毒害的一個(gè)有效策略。
Meng等(2022)研究表明,IMA過(guò)表達(dá)可以提高擬南芥對(duì)Cd脅迫的適應(yīng)能力。本研究發(fā)現(xiàn)OsIMA1過(guò)表達(dá)提高了水稻對(duì)Cd脅迫的耐受性。水稻根攝入的Fe和Cd經(jīng)地上部轉(zhuǎn)運(yùn)至稻米中。OsIMA1過(guò)表達(dá)既促進(jìn)了Fe在根部的累積,又促進(jìn)了Cd在根部的積累。但是,OsIMA1過(guò)表達(dá)促進(jìn)了Fe在地上部積累的同時(shí),也抑制了Cd從根向地上部的轉(zhuǎn)運(yùn)。這表明OsIMA1可以通過(guò)特異性地抑制Cd從根向地上部的轉(zhuǎn)運(yùn),提高植物對(duì)鎘脅迫的適應(yīng)性。Fe和Cd同屬于二價(jià)離子,在體內(nèi)可能被類似的轉(zhuǎn)運(yùn)蛋白識(shí)別。OsIMA1過(guò)表達(dá)植株根部累積的Fe可能競(jìng)爭(zhēng)抑制了Cd與這些轉(zhuǎn)運(yùn)蛋白的結(jié)合。OsIMA1這種限制植物從根向地上部轉(zhuǎn)運(yùn)Cd的能力可能有助于減少稻米中的Cd累積。未來(lái)可以測(cè)試OsIMA過(guò)表達(dá)是否可減少稻米中的Cd含量。無(wú)論在擬南芥還是在水稻中,IMA均具有增加Fe吸收、增強(qiáng)Cd耐受的生物學(xué)功能,揭示了IMA在不同物種中的功能保守。IMA的高度保守性可能有助于打破基因功能物種特異性的限制(Grillet et al., 2018)。因此,未來(lái)研究可以測(cè)試IMA是否可以提高其他作物的耐Cd能力。
IMA小肽碳末端的17個(gè)氨基酸就足以發(fā)揮其分子功能(Grillet et al., 2018; Li et al., 2021)。目前,人工合成小分子多肽的技術(shù)已經(jīng)非常流行。因此,未來(lái)有望將IMA開發(fā)為一種商用多肽,通過(guò)施肥的方式提高植物對(duì)Cd耐脅迫的適應(yīng)性。綜上所述,IMA可作為減輕植物Cd毒害的一個(gè)潛在可利用的小分子。進(jìn)一步研究IMA調(diào)控Cd脅迫的機(jī)制,將為基因工程技術(shù)改造植物或培育耐Cd脅迫的農(nóng)作物提供理論依據(jù)。
參考文獻(xiàn):
BAO T, SUN LN, SUN TH, 2010. Evaluation of iron on cadmium uptake by tomato, morel and leaf red beet in hydroponic culture [J]. J Plant Nutr, 33(5): 713-723.
CLEMENS S, 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants [J]. Biochimie, 88(11): 1707-1719.
COHEN CK, FOX TC, GARVIN DF, et al., 1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants [J]. Plant Physiol, 116(3): 1063-1072.
CZYZEWICZ N, YUE K, BEECKMAN T,et al., 2013. Message in a bottle: small signalling peptide outputs during growth and development [J]. J Exp Bot, 64(17): 5281-5296.
DAS P, SAMANTARAY S, ROUT GR, 1997. Studies on cadmium toxicity in plants: a review [J]. Environ Poll, 98(1): 29-36.
EIDE D, BRODERIUS M, FETT J, et al., 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J]. Proc Natl Acad Sci USA, 93(11): 5624-5628.
FAN SK, FANG XZ, GUAN MY,et al., 2014. Exogenous abscisic acid application decreases cadmium accumulation in? Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake [J]. Front Plant Sci, 5(1): 721.
GRILLET L, LAN P, LI WF, et al., 2018. IRON MAN is a ubiquitous family of peptides that control iron transport in plants [J]. Nat Plants, 4(11): 953-963.
GUAN MY, ZHU YX, LIU XX, et al., 2019. Induction of S-nitrosoglutathione reductase reduces root cadmium uptake by inhibiting iron-regulated transporter 1 [J]. Plant Soil, 438(1): 251-262.
HE XL, FAN SK, ZHU J, et al., 2017. Iron supply prevents Cd uptake in? Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake [J]. Plant Soil, 416(1): 453-462.
HINDT MN, AKMAKJIAN GZ, PIVARSKI KL,et al., 2017. BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in? Arabidopsis thaliana [J]. Metallomics, 9(7): 876-890.
HUANG G, DING C, LI Y, et al., 2020. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)? [J]. J Hazard Mat, 398(1): 122860.
KIRKHAM MB, 2006. Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments [J]. Geoderma, 137(1): 19-32.
KOBAYASHI T, NAGANO AJ, NISHIZAWA NK, 2021. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice [J].J Exp Bot, 72(6): 2196-2211.
KOBAYASHI T, NAGASAKA S, SENOURA T,et al., 2013. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation [J]. Nat Commun, 4(1): 2792.
KOBAYASHI T, NAGANO AJ, NISHUIZAWA NK. 2021. Iron deficieney-inducible peptide codin genes OsIMA1 and OsIMA2 positiveiy regulate a major pathway of iron uptake and translocation in rice [J]. J Exper Bot, 72(6): 2196-2211.
KORSHUNOVA YO, EIDE D, CLARK WG, et al., 1999. The IRT1 protein from? Arabidopsis thaliana is a metal transporter with a broad substrate range [J]. Plant Mol Biol, 40(1): 37-44.
LEE S, AN G, 2009. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice [J]. Plant Cell Environ, 32(4): 408-416.
LI J, LIU JC, YAN CL, et al., 2019. The alleviation effect of iron on cadmium phytotoxicity in mangrove A. marina. Alleviation effect of iron on cadmium phytotoxicity in mangrove? Avicennia marina (Forsk.) Vierh [J]. Chemosphere, 226(1): 413-420.
LI XL, ZHANG HM, AI Q, et al., 2016. Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in? Arabidopsis thaliana [J]. Plant Physiol, 170(4): 2478-2493.
LI Y, LU CK, LI CY, et al., 2021. IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis [J]. Proc Natl Acad Sci USA, 118(39): e2109063118.
LIANG G, ZHANG HM, LOU DJ, et al., 2016. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing [J]. Sci Rep, 6(1): 21451.
MAO QQ, GUAN MY, LU KX, et al., 2014. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis [J]. Plant Physiol, 166(2): 934-U730.
MATSUBAYASHI Y, 2014. Posttranslationally modified small-peptide signals in plants [J]. Ann Rev Plant Biol, 65(1): 385-413.
MENG X, LI W, SHEN R, et al., 2022. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in? Arabidopsis through activating the iron deficiency response [J]. J Hazard Mat, 422(1): 126913.
NIGHTINGALE ER, 1959. Phenomenological theory of ion solvation-effective radii of hydrated ions [J]. J Physiol Chem, 63(9): 1381-1387.
SCHUTZENDUBEL A, POLLE A, 2002. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization [J]. J Exp Bot, 53(372): 1351-1365.
SEBASTIAN A, PRASAD MN, 2016. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron [J]. Plant Biol, 18(6): 1008-1015.
SHAO GS, CHEN MX, WANG WX, et al., 2007. Iron nutrition affects cadmium accumulation and toxicity in rice plants [J]. Plant Growth Regul, 53(1): 33-42.
TAKAHASHI F, HANADA K, KONDO T, et al., 2019. Hormone-like peptides and small coding genes in plant stress signaling and development [J].Curr Opin Plant Biol, 51(1): 88-95.
TAKAHASHI R, ISHIMARU Y, SENOURA T, et al., 2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice [J]. J Exp Bot, 62(14): 4843-4850.
TAVORMINA P, DE CONINCK B, NIKONOROVA N, et al., 2015. The plant peptidome: an expanding repertoire of structural features and biological functions [J]. Plant Cell, 27(8): 2095-2118.
VERT G, GROTZ N, DEDALDECHAMP F, et al., 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth [J]. Plant Cell, 14(6): 1223-1233.
WEI BG, YANG LS, 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China [J]. Microchem J, 94(2): 99-107.
WU HL, CHEN CL, DU J, et al., 2012. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots [J]. Plant Physiol, 158(2): 790-800.
XU SS, LIN SZ, LAI ZX, 2015. Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls [J]. Plant Soil, 392(1): 71-85.
YAO XN, CAI YR, YU DQ, et al., 2018. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana [J]. J Integr Plant Biol, 60(8): 691-702.
YOSHIHARA T, HODOSHIMA H, MIYANO Y, et al., 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants [J]. Plant Cell Rep, 25(4): 365-373.
YUAN YX, WU HL, WANG N, et al., 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis [J]. Cell Res, 18(3): 385-397.
ZHANG J, LIU B, LI MS, et al., 2015. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis [J]. Plant Cell, 27(3): 787-805.
ZHU YX, DU WX, FANG XZ, et al., 2020. Knockdown of BTS may provide a new strategy to improve cadmium-phytoremediation efficiency by improving iron status in plants [J]. J Hazard Mat, 384(1): 121473.
(責(zé)任編輯 李 莉 王登惠)
收稿日期:? 2022-05-28
基金項(xiàng)目:? 云南省科技廳科技計(jì)劃項(xiàng)目(202003AD150007)。
第一作者: 彭鳳(1996-),碩士研究生,主要從事植物鐵營(yíng)養(yǎng)代謝研究,(E-mail)1272277231@qq.com。
*通信作者:? 梁崗,博士,研究員,主要從事植物礦質(zhì)營(yíng)養(yǎng)研究,(E-mail)lianggang@xtbg.ac.cn。