国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

云端算力芯片為什么是“科技石油”?

2023-07-21 12:24劉浩然
計(jì)算機(jī)應(yīng)用文摘 2023年14期
關(guān)鍵詞:算力云端挑戰(zhàn)

劉浩然

導(dǎo)語

在追逐智能化的道路上,云端算力芯片扮演著不可或缺的角色。其強(qiáng)大的計(jì)算能力和無限的潛力,推動(dòng)著科技的創(chuàng)新和進(jìn)步。隨著技術(shù)的不斷發(fā)展,我們有理由相信云端算力芯片將繼續(xù)引領(lǐng)人工智能的未來,為我們帶來更加智能、高效的世界。

自人類開采第一口油井開始,石油就深深融入了人類生活的方方面面。小到鍋碗瓢盆芯片,大到飛機(jī)火箭航母,沒有哪個(gè)環(huán)節(jié)離得開石油的參與。如果說石油是工業(yè)的血液,電力與網(wǎng)絡(luò)是信息時(shí)代社會(huì)的骨架,那么算力就是AI 時(shí)代構(gòu)建萬物的基礎(chǔ)。

21 世紀(jì)前后,人類逐漸從工業(yè)時(shí)代步入信息時(shí)代,當(dāng)下AI 時(shí)代的大門又再度緩緩開啟。2023 年以來,以ChatGPT 為首的生成式AI 逐漸滲透各行各業(yè),有人說,這或許又是一個(gè)IPhone 時(shí)刻?!?AI 起舞,算力搭臺(tái)”,算力或者說是算力芯片就是AI 時(shí)代的石油、電力與網(wǎng)絡(luò)。

算力從哪來? 如何理解算力? 國(guó)產(chǎn)云端算力芯片如今怎么樣了。本文多位企業(yè)專家進(jìn)

行了對(duì)AI 時(shí)代下云端算力芯片發(fā)展的挑戰(zhàn)和機(jī)遇的探討。

AI 時(shí)代,算力有多重要?

所謂算力,其本質(zhì)就是計(jì)算能力,它可以反映芯片對(duì)信息數(shù)據(jù)的收集、處理與輸出能力。計(jì)算本質(zhì)上是一種抽象概念,加減乘除是計(jì)算,三角運(yùn)算是計(jì)算,積分與微分也是計(jì)算。在如今的計(jì)算機(jī)時(shí)代,每一種復(fù)雜的計(jì)算都可以拆分成多個(gè)簡(jiǎn)單的計(jì)算,現(xiàn)在通常用每秒鐘計(jì)算的浮點(diǎn)運(yùn)算次數(shù)作為評(píng)價(jià)算力的指標(biāo)。每秒計(jì)算1 次就是1 FLOPS。不過,算力這個(gè)概念并不是芯片獨(dú)有的,人類的大腦也無時(shí)無刻不在進(jìn)行著計(jì)算,從買菜購(gòu)物到數(shù)學(xué)考試,從雞兔同籠到多元微分,計(jì)算貫穿了人類的一生。

放眼人類的發(fā)展歷史,人類對(duì)計(jì)算的渴求就一直在進(jìn)步。石器時(shí)代人類就開始結(jié)繩計(jì)數(shù),后來各類算籌、算盤等輔助計(jì)算技術(shù)誕生,讓人類擁有了更大規(guī)模的計(jì)算能力。如果這時(shí)算力能被計(jì)算出具體數(shù)值,那么一根系滿繩結(jié)的繩子的算力會(huì)低于1 FLOPS。1946 年, 世界上第一臺(tái)計(jì)算機(jī)“ 埃尼阿克(ENIAC)”出現(xiàn),使人類的計(jì)算得到進(jìn)一步提升,計(jì)算速度也進(jìn)一步提升,其計(jì)算速度達(dá)到了300 FLOPS,也就是每秒鐘可以進(jìn)行300 次浮點(diǎn)運(yùn)算,遠(yuǎn)超當(dāng)時(shí)任何人類與機(jī)械計(jì)算器的計(jì)算速度。

緊接著人類便進(jìn)入到集成電路大發(fā)展時(shí)代。

1978 年,英特爾推出了跨時(shí)代的8086 芯片,它包含29 000個(gè)晶體管,主頻達(dá)到4.77 MHz,其算力也達(dá)到了700 000 FLOPS 以上。此后,集成電路產(chǎn)業(yè)飛速發(fā)展,至今已經(jīng)形成英特爾、AMD、英偉達(dá)3 家爭(zhēng)霸,還有TI,ST 和瑞薩等MCU 大廠緊隨其后,不同廠商不同種類的芯片用途五花八門,但其證明芯片性能的關(guān)鍵參數(shù)仍是“算力”。

不過,算力一詞使用頻率最高的領(lǐng)域仍舊是GPU。GPU 起初是用來專門處理圖像的硬件,相比CPU,GPU 具有更多計(jì)算核心,也更擅長(zhǎng)進(jìn)行并行計(jì)算。如今,世界上單芯片算力頂峰是英偉達(dá)的Thor 芯片, 其算力已經(jīng)達(dá)到200 TOPS。TOPS 即teraoperations per second,1 TOPS 代表該芯片可以每秒計(jì)算1×1 012 次運(yùn)算。

在AI 時(shí)代,算力已經(jīng)不僅是一項(xiàng)描述芯片計(jì)算能力的參數(shù),它更像是一種資源,和石油與電力一樣,成為信息時(shí)代不可或缺的重要一環(huán)。而算力之所以如此重要,在于它對(duì)于AI 來說的必要性。

AI 模型,本質(zhì)上是算力與算法的結(jié)合。模型的“大”與“小”,其實(shí)就是算法規(guī)模量的區(qū)別,模型輸出的精度也與訓(xùn)練AI 的數(shù)據(jù)量呈正相關(guān),然而計(jì)算機(jī)處理越大的數(shù)據(jù)量,它所需要的算力也呈指數(shù)上升。

其原因是AI 算法可以理解為超大規(guī)模的矩陣運(yùn)算,矩陣的維度就是數(shù)據(jù)特征數(shù)量,即數(shù)據(jù)的參數(shù)量。矩陣維度越多,參數(shù)越多,模型越復(fù)雜,它輸出的數(shù)據(jù)準(zhǔn)確度就越高,但所需的算力也就越大。AI 時(shí)代,算力已經(jīng)不僅是一項(xiàng)描述芯片計(jì)算能力的參數(shù),它更像是一種資源,和石油與電力一樣,成為信息時(shí)代不可或缺的重要一環(huán)。AI 時(shí)代,也可以說是算力時(shí)代。

算力芯片也可以分為云端與終端2 種。云端算力芯片通常負(fù)責(zé)訓(xùn)練和推理2 種場(chǎng)景,可在不要求延時(shí)與高網(wǎng)絡(luò)帶寬下運(yùn)行幾乎全流程的AI 算法。終端算力芯片通常用于自動(dòng)駕駛、智能家居、智慧城市等AIOT 場(chǎng)景中。通常來說,云算力芯片的難度更高,成本也更高,還需要用戶負(fù)擔(dān)額外的網(wǎng)絡(luò)通信費(fèi)用,那是不是云端就不重要了?

若沒有云計(jì)算,則企業(yè)在需要算力場(chǎng)景的時(shí)候就要搭建私有云,也就是自己的服務(wù)器。而為了應(yīng)對(duì)更加復(fù)雜的應(yīng)用,以及支撐更加穩(wěn)定的計(jì)算環(huán)境,企業(yè)就必須不停地升級(jí)采購(gòu)新設(shè)備,如服務(wù)器、存儲(chǔ)、帶寬等,還需要組建完整的運(yùn)維團(tuán)隊(duì)來保證這些設(shè)備的正常運(yùn)行。綜合計(jì)算下來,布置企業(yè)自身的算力中心花銷巨大。這對(duì)于中小微企業(yè)來說更是一筆難以承受的支出。

而云計(jì)算可以一勞永逸地解決上述問題,相當(dāng)于多個(gè)企業(yè)共享硬件設(shè)施,只有當(dāng)企業(yè)需要算力的時(shí)候才會(huì)購(gòu)買,并不需要一直持有大量空閑算力。簡(jiǎn)單來說,云計(jì)算就相當(dāng)于家庭用電,只有打開電燈,電表才會(huì)計(jì)數(shù)。

總體而言,“云端+邊端”能夠滿足AI 時(shí)代下所有應(yīng)用場(chǎng)景的要求。如今,AI 大模型不斷涌現(xiàn),同時(shí)滿足訓(xùn)練與推理,還具有性價(jià)比優(yōu)勢(shì)的云算力芯片已經(jīng)成為AI“大亂斗”背景下的必爭(zhēng)之地。但在高需求刺激下,極速涌入云端算力芯片的資本還面臨著更加嚴(yán)峻的問題———高門檻。

挑戰(zhàn)與變局

過去,云端算力芯片僅受到部分企業(yè)關(guān)注。普通人對(duì)它的理解往往僅限于大型服務(wù)器、云計(jì)算、神威太湖之光等名詞上。自2023 年以來,ChatGPT 的橫空出世讓普通人對(duì)AI 的了解更進(jìn)一步。AI 大模型爆火后,給全球AI 芯片市場(chǎng)帶來了哪些影響?

摩爾線程專家認(rèn)為,大模型的火熱對(duì)芯片市場(chǎng)的影響,最直接的就是對(duì)算力基礎(chǔ)設(shè)施的需求猛增,GPU 作為大模型背后的關(guān)鍵算力基礎(chǔ)設(shè)施,尤其受到追捧。與此同時(shí),大模型全新的算法方式對(duì)傳統(tǒng)的芯片架構(gòu)提出了挑戰(zhàn)。

那么,挑戰(zhàn)是什么?

隨著OpenAI 的一聲炮響,全世界都被轟開了AI世界的大門。不過,大規(guī)模計(jì)算所需要的高算力芯片挑戰(zhàn)頗多。摩爾線程專家認(rèn)為挑戰(zhàn)主要來自芯片的通用性、功耗墻與顯存墻上。

奇異摩爾聯(lián)合創(chuàng)始人兼產(chǎn)品及解決方案副總裁祝俊東認(rèn)為,目前云端算力芯片還面對(duì)著5 大挑戰(zhàn),即架構(gòu)、系統(tǒng)、場(chǎng)景、互聯(lián)以及快速迭代。

從架構(gòu)上來說,運(yùn)算算力芯片對(duì)算力提升的需求與日俱增,但目前傳統(tǒng)SoC 提升單芯片面積已經(jīng)達(dá)到瓶頸,摩爾定律極限在時(shí)刻限制芯片發(fā)展,內(nèi)存墻的限制也使得傳統(tǒng)架構(gòu)芯片難以提升,更讓芯片在散熱、功耗等方面處處掣肘。因此,需要異構(gòu)計(jì)算架構(gòu)來尋求芯片新的突破,其中就包括繞開摩爾定律的more than more———異構(gòu)計(jì)算。

從系統(tǒng)角度來看,隨著大模型的廣泛應(yīng)用,模型參數(shù)與規(guī)模都呈現(xiàn)指數(shù)級(jí)增長(zhǎng),因此需要更大規(guī)模的整合計(jì)算系統(tǒng)來應(yīng)對(duì)大模型訓(xùn)練和計(jì)算的需求。換言之,盡管芯片算力不斷增長(zhǎng),但仍舊需要軟件端配合才能更好地發(fā)揮硬件性能。畢竟兵器是否趁手得看使用者的功力高低。

從應(yīng)用場(chǎng)景來看,隨著ChatGPT 爆火,AICG 賽道上涌現(xiàn)了越來越多的玩家,未來AI 領(lǐng)域還將出現(xiàn)更多應(yīng)用場(chǎng)景,這也意味著還會(huì)有新賽道出現(xiàn)。因此,作為“AI 起舞的舞臺(tái)”,運(yùn)算算力芯片需要具備一定的通用性,也要有能力應(yīng)對(duì)當(dāng)今乃至未來日益多元化的專用計(jì)算場(chǎng)景。

從互聯(lián)來看,云端算力芯片需要高帶寬配合傳輸數(shù)據(jù)。未來大模型大算力應(yīng)用涌現(xiàn),云與端之間的快速交互,也將對(duì)帶寬和延時(shí)提出更高要求。

最后,AICG 與算力芯片市場(chǎng)還處于快速變化階段,競(jìng)爭(zhēng)者不斷入行,藍(lán)??赡芤灰怪g就變成紅海。因此,企業(yè)必須快速迭代產(chǎn)品,尤其在云端算力芯片上,需要不斷調(diào)整產(chǎn)品策略來迎合未來產(chǎn)品的新需求,同時(shí)要縮短TTM 乃至量產(chǎn)時(shí)間。

總體而言,云端算力芯片目前挑戰(zhàn)頗多,無論是從技術(shù)角度還是市場(chǎng)角度,國(guó)內(nèi)涌現(xiàn)的諸多AICG 與算力芯片玩家都需要更多的突破。更重要的一點(diǎn)是,目前全球算力芯片絕大部分市場(chǎng)都在英偉達(dá)手中,國(guó)產(chǎn)算力芯片在市場(chǎng)上仍舊處于弱勢(shì)。但在新興市場(chǎng)中,有著強(qiáng)力GPU 先發(fā)優(yōu)勢(shì)的英偉達(dá)面對(duì)的問題是什么呢?

除了AICG 之外,目前自動(dòng)駕駛技術(shù)同樣發(fā)展迅速,這也激發(fā)出了全新的算力芯片需求。在自動(dòng)駕駛中,受限于延時(shí)與傳輸,對(duì)于雷達(dá)與攝像頭信號(hào)處理屬于邊或終端計(jì)算。但云計(jì)算對(duì)自動(dòng)駕駛算法與系統(tǒng)的支持仍舊重要,云與端的結(jié)合成為更多汽車廠商的選擇,譥?鵢m曌_新的挑戰(zhàn)也如期而至。英偉達(dá)技術(shù)專家在自動(dòng)駕駛上的云端結(jié)合的挑戰(zhàn)上指出,云在用于自動(dòng)駕駛汽車的人工智能軟件的開發(fā)中發(fā)揮著重要作用。

數(shù)據(jù)被收集、整理、攝取、標(biāo)記并用于訓(xùn)練深度神經(jīng)網(wǎng)絡(luò),從計(jì)算角度來看是一項(xiàng)艱巨的任務(wù)。這是一個(gè)增強(qiáng)人工智能模型的迭代過程。創(chuàng)建模型后,將使用模擬在云中對(duì)其進(jìn)行測(cè)試和驗(yàn)證。

英偉達(dá)的專家表示,自動(dòng)駕駛汽車運(yùn)行時(shí),不需要連接到云,但這是一個(gè)額外的好處,可以從交通、基礎(chǔ)設(shè)施和天氣等各種來源獲取信息,以實(shí)現(xiàn)安全駕駛??????????????????????????????????????????????? 操作。但自動(dòng)駕駛汽車必須完全保持自主性,因此駕駛決策必須在車上做出,而不是在云端做出。連接到云的軟件定義汽車還為汽車制造商提供了新的商業(yè)模式和訂閱服務(wù)機(jī)會(huì),同時(shí)為消費(fèi)者帶來價(jià)值。過去,汽車在購(gòu)買時(shí)處于最佳狀態(tài),但隨后就會(huì)貶值。對(duì)于軟件定義的汽車來說,它處于最基本的銷售水平,隨著時(shí)間的推移,通過基于云,也就是云端算力芯片支持下的軟件更新,它會(huì)變得更好、更安全。

在挑戰(zhàn)中育新機(jī),于變局中開新局

在AI“躁動(dòng)”的這幾年,也讓下游應(yīng)用場(chǎng)景百花齊放,其中AI 與國(guó)產(chǎn)電動(dòng)汽車全面崛起,讓AI 駕駛(也就是自動(dòng)駕駛技術(shù))成為資本的寵兒。

針對(duì)自動(dòng)駕駛領(lǐng)域的云端算力芯片機(jī)遇,??|認(rèn)為,受自動(dòng)駕駛技術(shù)的快速發(fā)展驅(qū)動(dòng),大算力AI 芯片正在汽車領(lǐng)域迎來廣闊的機(jī)遇和前景。通過高效的計(jì)算和深度學(xué)習(xí)算法,大算力AI 芯片可以提供更精準(zhǔn)和可靠的駕駛決策,從而提升行車安全性和駕駛體驗(yàn)。而在云和端的結(jié)合中,最大的難點(diǎn)在于自動(dòng)駕駛技術(shù)對(duì)實(shí)時(shí)性和低延遲要求非常高,將算力分布在云端和邊緣端之間會(huì)面臨數(shù)據(jù)傳輸和處理的挑戰(zhàn)。

大量的傳感器數(shù)據(jù)和圖像到云端進(jìn)行處理可能會(huì)導(dǎo)致較高的網(wǎng)絡(luò)延遲和消耗大量的帶寬。

他認(rèn)為,異構(gòu)芯片可以將AI 算力和邏輯算力集成在一起,在不同的計(jì)算場(chǎng)景中發(fā)揮不同的作用。這種集成能夠提供更高的計(jì)算性能和效率,滿足自動(dòng)駕駛技術(shù)對(duì)算力的需求。同時(shí),異構(gòu)集成高帶寬、低延時(shí)的互聯(lián)特性,也能有效幫助自動(dòng)駕駛進(jìn)行云與端的交互,且有效地提升了自動(dòng)駕駛系統(tǒng)的性能和效率。

跳出應(yīng)用,回頭看云端算力芯片本身。GPU 或GPGPU 是云端算力芯片或AI 芯片的主流形態(tài)。不過,也有人認(rèn)為目前的AI 芯片是過渡形態(tài),未來所有AI 芯片還會(huì)向ASIC 方向靠攏。針對(duì)這一觀點(diǎn),摩爾線程專家認(rèn)為,目前AI 算法還在快速迭代和變化,在這個(gè)過程沒有放緩或停止之前,GPU 仍具有特別強(qiáng)的優(yōu)勢(shì)。對(duì)于云端算力芯片未來的看法,摩爾線程專家認(rèn)為,云端基礎(chǔ)設(shè)施需要具備對(duì)未來技術(shù)的兼容性,GPU 仍是首選。未來的變化,在摩爾線程看來主要包括幾個(gè)方面:工藝制程向前推進(jìn),算力、帶寬不斷上升;通過chiplet 方案,進(jìn)一步提高芯片級(jí)別的計(jì)算密度和系統(tǒng)集成度3、云端AI 芯片將不斷融合新算法所需的功能和加速模塊。

??|認(rèn)為,在AI 芯片領(lǐng)域,作為通用芯片和專用芯片的代表,GPU 和ASIC 各有優(yōu)勢(shì)。但是專用芯片與通用芯片永遠(yuǎn)都不是互相替代的關(guān)系,二者必須協(xié)同工作才能發(fā)揮出最大的價(jià)值。通過異構(gòu)計(jì)算架構(gòu),可以把如GPU 為代表的通用芯片與ASIC 等專用芯片集合起來,兼顧通用性和專用性的雙重優(yōu)勢(shì),提供更全面和高效的解決方案。異構(gòu)計(jì)算也有助于客戶根據(jù)AI 任務(wù)的實(shí)際需求,調(diào)整通用芯片和專用芯片的比重,以滿足不斷變化的AI 應(yīng)用領(lǐng)域的需求。

寫在最后

云端算力芯片為AI 時(shí)代的創(chuàng)新和應(yīng)用注入了無限活力,它已經(jīng)成為當(dāng)之無愧的“AI 石油”。面臨挑戰(zhàn)與機(jī)遇,云端算力芯片未來還會(huì)不斷突破創(chuàng)新,驅(qū)動(dòng)著智能化世界的前行。

在追逐智能化的道路上,云端算力芯片扮演著不可或缺的角色。以其強(qiáng)大的計(jì)算能力和無限的潛力,推動(dòng)著科技的創(chuàng)新和進(jìn)步。隨著技術(shù)的不斷發(fā)展,我們有理由相信云端算力芯片將繼續(xù)引領(lǐng)人工智能的未來,為我們帶來更加智能、高效的世界。

猜你喜歡
算力云端挑戰(zhàn)
首屆算力互聯(lián)互通大會(huì)在京召開 共話算力產(chǎn)業(yè)機(jī)遇與挑戰(zhàn)
衛(wèi)星通信在算力網(wǎng)絡(luò)中的應(yīng)用研究
中國(guó)電信董事長(zhǎng)柯瑞文:算力成為數(shù)字經(jīng)濟(jì)的主要生產(chǎn)力
基于SiteAI算力終端的交通態(tài)勢(shì)感知系統(tǒng)
云端之城
美人如畫隔云端
行走在云端
云端創(chuàng)意
第52Q 邁向新挑戰(zhàn)
罗平县| 尖扎县| 乐至县| 晋城| 冕宁县| 绥中县| SHOW| 珠海市| 正宁县| 师宗县| 怀仁县| 吉安市| 会宁县| 通城县| 沈丘县| 乡城县| 平昌县| 武宣县| 郴州市| 长治县| 沐川县| 铜鼓县| 乌兰察布市| 天台县| 乌鲁木齐市| 兴义市| 霞浦县| 大厂| 勃利县| 富源县| 肇源县| 防城港市| 麻阳| 西丰县| 诏安县| 湛江市| 科尔| 阿克陶县| 突泉县| 黎平县| 墨玉县|