張彥 熊和麗 張斌 相德才 劉韶娜 趙智勇
張彥(1986-),博士,現(xiàn)為云南生豬產(chǎn)業(yè)前沿技術(shù)頂尖團(tuán)隊(duì)主要成員,近期重點(diǎn)開展地方豬雜交組合篩選及功能基因挖掘、地方豬性別分選精子差異蛋白篩查等研究工作。主持國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目子課題“肉用山羊種畜場疫病防控技術(shù)示范基地建設(shè)”、云南省青年科學(xué)基金項(xiàng)目“云南地方豬性別分選精子差異表達(dá)蛋白鑒定與分析”,作為主要成員參與國家自然科學(xué)基金項(xiàng)目“膜穿透性海藻糖在豬卵母細(xì)胞玻璃化冷凍中的保護(hù)作用及機(jī)制研究”、云南省重大科技專項(xiàng)“云南地方家畜(豬、羊)種質(zhì)資源開發(fā)平臺建設(shè)及成果轉(zhuǎn)化”等省部級以上科研項(xiàng)目5項(xiàng);在《Journal of Proteomics》《中國畜牧雜志》《南方農(nóng)業(yè)學(xué)報(bào)》等國內(nèi)外期刊發(fā)表學(xué)術(shù)論文10余篇;獲授權(quán)發(fā)明專利4項(xiàng)、實(shí)用新型專利10項(xiàng);參與制定地方標(biāo)準(zhǔn)4項(xiàng)。
摘要:【目的】從全基因組水平解析藏豬與大白豬間的遺傳差異,并鑒定出與藏豬脂質(zhì)沉積相關(guān)的基因,為藏豬優(yōu)質(zhì)肉質(zhì)特征的利用及新品種培育提供理論參考。【方法】選用5份自測云南迪慶藏豬的全基因組重測序數(shù)據(jù),以及NCBI數(shù)據(jù)庫中來自西藏、四川、甘肅地區(qū)34份藏豬和具有低脂肪沉積特征的14份大白豬全基因組重測序數(shù)據(jù),獲得全基因組SNP后以VCFtools進(jìn)行選擇信號檢測,采用VCFtools分別計(jì)算候選SNP在藏豬和大白豬中的等位基因頻率,再利用自編Python腳本及所有SNP注釋文件進(jìn)行注釋以確定候選基因,最后運(yùn)用DAVID對候選基因進(jìn)行GO功能注釋和KEGG信號通路富集分析,進(jìn)一步鑒定與脂質(zhì)沉積相關(guān)的功能基因。【結(jié)果】經(jīng)全基因組重測序及與參考基因組比對、過濾后得到19374832個高質(zhì)量的SNPs,根據(jù)受選擇區(qū)域條件篩選出370778個候選SNPs,其中符合在藏豬中等位基因頻率>0.5而在大白豬中等位基因頻率<0.5條件的SNPs有152877個,共注釋到1486個候選基因。GO功能注釋分析結(jié)果顯示,1486個候選基因注釋到17個GO功能簇(Cluster1~Cluster17),其中Cluster11和Cluster12與脂肪生成相關(guān),涉及與脂滴轉(zhuǎn)運(yùn)、結(jié)合過程相關(guān)的基因NME4、C4BPA、AP2M1、CD36、FABP5、PMP2、PDZD8、OSBPL6、APOD和OSBPL1A,與脂肪酸合成、延伸和代謝過程相關(guān)的基因TECR、ELOVL7、HACD2,以及與脂肪形成相關(guān)的細(xì)胞外基質(zhì)基因(CCN3、EGFL6、KAZALD1、ASPN、ADAMTS18、ECM2、COL18A1、COL3A1和COL4A5);通過文獻(xiàn)分析還發(fā)現(xiàn)8個基因(APOOL、PLAG1、PLAUR、SUCLG2、CPE、AKR1B1、SLC4A4和CHPT1)在藏豬與大白豬皮下脂肪或肌肉組織呈差異表達(dá),且與脂肪形成相關(guān)?!窘Y(jié)論】藏豬與大白豬間的脂肪沉積差異涉及脂肪形成的多個過程和多個基因,細(xì)胞外基質(zhì)基因也可能與藏豬脂肪形成相關(guān),且這些基因在藏豬中均具有較高的等位基因頻率。
關(guān)鍵詞: 藏豬;脂質(zhì)沉積;選擇信號;等位基因頻率;全基因組重測序
中圖分類號:S828.89? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2023)02-0325-11
Abstract:【Objective】Exploring the genetic differences between Tibetan pigs (TIB) and Large white pigs(LW) at the whole-genome level, and identifying genes related to lipid deposition in TIB, to provide informative insights into the genetic utilization of its high meat quality traits. 【Method】 Whole genome re-sequencing data of 5 Yunnan Diqing TIB and whole-genome re-sequencing data of 34 TIB from Tibet, Sichuan and Gansu, and 14 LW with low fat characteristics in NCBI database were selected, which were totally 53 whole genome re-sequencing data for followed analysis.Whole genome SNPs were obtained and selection sweep analysis was performed using VCFtools. Allele frequencies for candidate SNPs in TIB and LW populations were calculated using VCFtools, and candidate SNPs were annotated using in house Pythonscript and all annotation files. Then, DAVID? was used for GO functional annotation and KEGG pathway enrichment analysis to further identify genes related to lipid deposition. 【Result】By mapping whole genome sequence to refere-nce genome, 19374832 high quality SNPs were obtained. The selection region contained 370778 candidate SNPs, among which 152877 SNPs met the condition of allele frequency>0.5 in TIB and <0.5 in LW and were annotated into 1486 genes. The GO analysis showed that 1486 candidate genes were enriched into 17 GO functional clusters (Cluster 1-Cluster 17),? among which Cluster 11 and Cluster 12 were related to lipid synthesis. The two clusters included genes involved in lipid droplet transport, binding processes (NME4, C4BPA, AP2M1, CD36, FABP5, PMP2, PDZD8, OSBPL6, APOD and OSBPL1A), fatty acid synthesis, elongation, and metabolism (TECR, ELOVL7, and HACD2), as well as extracellular matrix genes (CCN3, EGFL6, KAZALD1, ASPN, ADAMTS18, ECM2, COL18A1, COL3A1 and COL4A5). In addition,by surveying literature, eight genes (APOOL, PLAG1, PLAUR, SUCLG2, CPE, AKR1B1, SLC4A4 and CHPT1) were found to have differential expression in subcutaneous adipose tissue or muscle tissue between TIB and LW, and related to lipid formation. 【Conclusion】This study reveals that the difference in lipid deposition between TIB and LW involves multiple processes and genes related to lipid formation, extracellular matrix genes might also involved in fat depostition of TIB,and these genes have a relatively high allele frequencies in TIB.
Key words: Tibetan pigs; lipid deposition; selective signal; allele frequency; whole genome re-sequencing
Foundation items:Yunnan Major Science and Technology Project(202102AE090039);General Project of Yunnan Fundamental Research Plan(202101AT070061)
0 引言
【研究意義】藏豬是世界上少有能適應(yīng)高原海拔氣候的豬種,具有耐寒、耐低氧、抗逆性強(qiáng)、耐粗飼等特點(diǎn),且肉質(zhì)鮮美,素有藏香豬的美譽(yù),是培育新品種的獨(dú)特優(yōu)質(zhì)遺傳素材(李明洲等,2008;裴利君等,2021;楊燁城等,2021)。目前,國內(nèi)主要利用藏豬與瘦肉型豬種(大白、長白、杜洛克等)雜交以培育適應(yīng)當(dāng)?shù)厍揖哂袃?yōu)質(zhì)肉質(zhì)性狀的高效豬種(龔建軍等,2007),但由于肌內(nèi)脂肪不易活體測量,導(dǎo)致其肉質(zhì)很難通過性狀測定進(jìn)行選育。因此,解析藏豬脂質(zhì)沉積的遺傳機(jī)理及鑒定脂肪沉積相關(guān)基因,可為分子標(biāo)記輔助育種提供理論參考,對推進(jìn)高效優(yōu)質(zhì)新品種培育具有重要意義?!厩叭搜芯窟M(jìn)展】至今,已有較多學(xué)者以藏豬和具有低脂肪沉積特征的大白豬(瘦肉型)為研究對象,通過轉(zhuǎn)錄組及蛋白組學(xué)揭示藏豬肌內(nèi)脂肪及皮下脂肪沉積的調(diào)控作用機(jī)制,為藏豬脂肪沉積機(jī)制的解析提供了大量候選基因(Wang et al.,2015;Shang et al.,2019)。Wang等(2015)對180日齡藏豬—滇南小耳豬與大白—長白的背最長肌mRNA和miRNA進(jìn)行差異表達(dá)分析,結(jié)果發(fā)現(xiàn)FASN、SCD、ADORA1、miR-4332、miR-182、miR-92b-3p、miR-let-7a和miR-let-7e等是調(diào)節(jié)藏豬及滇南小耳豬肌內(nèi)脂肪沉積的關(guān)鍵基因或miRNA;而蛋白組學(xué)分析發(fā)現(xiàn)LPL、APOA1、APOC3、ACADM、FABP3、ACADVL、ACAA2、ACAT1、HADH和PECI等基因參與藏豬及滇南小耳豬的肌內(nèi)脂肪沉積(Wang et al.,2017)。Tao等(2017)對藏豬肌內(nèi)脂肪和皮下脂肪進(jìn)行轉(zhuǎn)錄組分析,發(fā)現(xiàn)多種基因參與藏豬脂肪沉積調(diào)控,其中,部分基因同時參與肌內(nèi)脂肪和皮下脂肪沉積,而部分基因分別是肌內(nèi)脂肪或皮下脂肪沉積調(diào)控的關(guān)鍵基因。Shang等(2019)對180日齡藏豬和大白豬皮下脂肪的轉(zhuǎn)錄組測序分析發(fā)現(xiàn),F(xiàn)GF2、PLAG1、ADIPOQ、IRX3、MIF、IL-34、ADAM8、HMOX1、Vav1和TLR8等基因與藏豬皮下脂肪沉積調(diào)控相關(guān)。Gong等(2022)通過轉(zhuǎn)錄組分析發(fā)現(xiàn)ACACA、SLC2A4和THRSP基因正調(diào)控藏豬皮下脂肪沉積,CHPT1基因則產(chǎn)生負(fù)調(diào)控作用。近年來,隨著測序技術(shù)的快速發(fā)展,基因組測序成本不斷降低,越來越多學(xué)者利用全基因組重測序從基因組水平進(jìn)行動物重要經(jīng)濟(jì)性狀候選基因定位,包括狗(Axelsson et al.,2013)、豬(Lü et al.,2016)、鴨(Zhou et al.,2018)、猴(Liu et al.,2020)、牛(Luo et al.,2020)、山羊(Zheng et al.,2020)等物種經(jīng)濟(jì)性狀或適應(yīng)性相關(guān)基因的定位。Zhou等(2018)對40羽綠頭鴨、30羽本地鴨和30羽北京鴨進(jìn)行全基因組重測序,結(jié)果發(fā)現(xiàn)Mitf 基因是北京鴨白羽形成的關(guān)鍵基因;李恒等(2022)通過全基因組重測序發(fā)現(xiàn),PRLHR外顯子G529A與DRD1外顯子A281T突變可能是調(diào)控山羊多羔性狀的關(guān)鍵遺傳標(biāo)記?!颈狙芯壳腥朦c(diǎn)】目前,關(guān)于藏豬脂質(zhì)沉積機(jī)制的研究主要從轉(zhuǎn)錄組或蛋白組學(xué)角度進(jìn)行探究,為揭示藏豬脂質(zhì)沉積調(diào)控機(jī)制提供了大量候選基因,但從基因組水平解析藏豬脂質(zhì)沉積遺傳機(jī)制的研究鮮見報(bào)道?!緮M解決的關(guān)鍵問題】從全基因組水平解析藏豬與大白豬間的遺傳差異,并鑒定出與藏豬脂質(zhì)沉積相關(guān)的基因,為藏豬優(yōu)質(zhì)肉質(zhì)特征的利用及新品種培育提供理論參考,最終有效促進(jìn)藏豬種質(zhì)資源的保護(hù)與開發(fā)利用。
1 材料與方法
1. 1 試驗(yàn)材料
試驗(yàn)材料為5份自測云南迪慶藏豬的全基因組重測序數(shù)據(jù),以及NCBI數(shù)據(jù)庫中來自西藏、四川、甘肅地區(qū)34份藏豬和具有低脂肪沉積特征的14份大白豬全基因組重測序數(shù)據(jù),樣本信息詳見表1。
1. 2 試驗(yàn)方法
1. 2. 1 全基因組重測序及變異檢測 提取5頭云南迪慶藏豬血液DNA,瓊脂糖凝膠電泳檢測DNA完整性,NanoDrop檢測DNA純度(OD260/OD280),選擇OD在1.8~2.0及含量在1 μg以上的DNA樣品用于構(gòu)建文庫;檢驗(yàn)合格的DNA樣品通過破碎機(jī)隨機(jī)打斷成350 bp的片段,建庫后采用Illumina NovaSeq 6000進(jìn)行測序。獲得的5份原始序列(Sequenced reads)與NCBI數(shù)據(jù)庫中的48份全基因組重測序數(shù)據(jù)一起進(jìn)入下游分析。利用Fastp_0.20.0進(jìn)行過濾,去除帶接頭、含N(無法確定堿基信息的位點(diǎn))比例大于5%及質(zhì)量值Q≤10堿基數(shù)占整個測序片段20%以上的Reads,過濾后的測序數(shù)據(jù)通過BWA比對到豬參考基因組Sscrofa11.1,然后采用SAMtools對比對結(jié)果進(jìn)行排序(Li et al.,2009),再以Picard標(biāo)記重復(fù)序列(Zhou et al.,2018),使用GATK 4.0.4.0檢測SNP(DePristo et al.,2011),并對檢測到的SNP進(jìn)行過濾,以獲得高質(zhì)量的SNP。過濾條件:(1)SNP的Reads支持?jǐn)?shù)低于4;(2)SNP的質(zhì)量值Q?20;(3)次等位基因頻率(Minor allele frequency,MAF)<0.05;(4)缺失率>0.1。最后以SnpEff對獲得的高質(zhì)量SNP進(jìn)行注釋分析(Cingolani et al.,2012)。
1. 2. 2 選擇信號檢測 根據(jù)藏豬與大白豬基因組的等位基因頻率分化及多樣性差異檢測藏豬受選擇區(qū)域,利用VCFtools以50 kb的滑動窗口進(jìn)行檢測(Danecek et al.,2011),并計(jì)算遺傳分化系數(shù)(FST)及核苷酸遺傳多樣性(π)。在定義受選擇區(qū)域時,考慮到中國家豬與歐洲家豬起源于不同野豬,二者的遺傳差異較大,遺傳分化明顯(Groenen et al.,2012),因此擴(kuò)大受選擇區(qū)域的閾值范圍,將同時滿足等位基因FST>0.5且π(LW/TIB)最高5%(Top 5%)和最低5%(Low 5%)的區(qū)域定義為受選擇區(qū)域(Li et al.,2013),利用自編Python腳本提取出受選擇區(qū)域中的所有SNP。
1. 2. 3 候選基因等位基因頻率分析 藏豬具有較高的脂肪沉積能力,而大白豬脂質(zhì)沉積力較低,即與脂質(zhì)沉積相關(guān)的基因在藏豬群體中應(yīng)具有較高的等位基因頻率,因此進(jìn)一步統(tǒng)計(jì)候選SNP在藏豬和大白豬中的等位基因頻率。首先利用自編Python腳本從VCF文件中取出受選擇區(qū)域的所有SNP,采用VCFtools分別計(jì)算候選SNP在藏豬和大白豬中的等位基因頻率,然后以自編Python腳本過濾篩選在藏豬中等位基因頻率>0.5且在大白豬中等位基因頻率<0.5的SNP,獲得的SNP利用自編Python腳本及所有SNP注釋文件進(jìn)行注釋分析,SNP所在的基因即為候選基因。
1. 2. 4 藏豬脂質(zhì)沉積相關(guān)基因鑒定 利用在線DAVID對候選基因進(jìn)行GO功能注釋及KEGG信號通路富集分析,富集到與脂肪合成及代謝相關(guān)通路的基因可能就是藏豬脂質(zhì)沉積相關(guān)基因。
2 結(jié)果與分析
2. 1 全基因組重測序數(shù)據(jù)統(tǒng)計(jì)及變異檢測結(jié)果
5份自測云南迪慶藏豬及NCBI數(shù)據(jù)庫中34份藏豬和14份大白豬的全基因組重測序數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表2所示,其中原始序列(Raw reads)約135億條,平均比對率為99.12%,平均測序深度為9.77×。通過與參考基因組比對并過濾后得到19374832個高質(zhì)量的SNPs。
2. 2 選擇信號分析結(jié)果
利用VCFtools以50 kb的滑動窗口進(jìn)行檢測,結(jié)果共檢測到46912個區(qū)間,其FST介于0~0.98,平均為0.32(圖1-A),π(LW/TIB)介于0~39.19,平均為0.59(圖1-B),其中389個區(qū)間的π為0,即這些區(qū)間SNP只存在于藏豬或大白豬中,并非在2個品種共有,說明這些SNP是相對于另一品種的特有SNP,因此在后續(xù)研究中將這些區(qū)間也定義為受選擇區(qū)域。通過選取FST>0.5,且滿足π(LW/TIB)最高5%(>1.18)及最低5%(<0.05)的區(qū)間,以及π為0的區(qū)間,共有1379個區(qū)間定義為受選擇區(qū)間,包含370778個SNPs,即為候選SNP。
2. 3 候選SNP等位基因頻率分析結(jié)果
通過分析370778個SNPs在藏豬和大白豬2個群體中的等位基因頻率,結(jié)果發(fā)現(xiàn)在藏豬群體中的等位基因頻率介于0~1(圖2-A),平均等位基因頻率0.47,等位基因頻率>0.5的SNPs有160016個;在大白豬中的等位基因頻率也介于0~1(圖2-B),平均等位基因頻率0.12,等位基因頻率>0.5的SNPs有42285個,等位基因頻率<0.5的SNPs有328494個。說明通過選擇壓力分析篩選獲得的候選區(qū)間包含大量分別在2個群體中具有低等位基因頻率和高等位基因頻率的SNPs,因此需要進(jìn)一步篩選。本研究聚焦于在藏豬中等位基因頻率>0.5,但在大白豬中等位基因頻率<0.5的SNPs。經(jīng)篩選,共有152877個SNPs符合條件(圖2-C),其中73050個SNPs位于基因間區(qū)、73595個SNPs分布在內(nèi)含子區(qū),其他位置的SNPs有6234個;符合條件的SNPs共注釋到1486個基因。
2. 4 藏豬脂肪沉積相關(guān)基因鑒定結(jié)果
為進(jìn)一步篩選出藏豬脂肪沉積相關(guān)基因,利用DAVID對候選基因進(jìn)行GO功能注釋分析,結(jié)果(圖3-A)發(fā)現(xiàn)有1486個候選基因注釋到17個GO功能簇(Cluster1~Cluster17),其中Cluster11和Cluster12與脂肪生成相關(guān)。Cluster11包含3個GO功能集(圖3-B),分別是BP_Lipid binding、MF_Lipid transport和MF_ Cholesterol binding,涉及10個基因(NME4、C4BPA、AP2M1、CD36、FABP5、PMP2、PDZD8、OSBPL6、APOD和OSBPL1A);Cluster12包含4個與脂肪細(xì)胞外基質(zhì)相關(guān)的GO功能集(圖3-C),分別是BP_Extracellular matrix organization、CC_Extracellular matrix、CC_Collagen trimer和MF_Extracellular matrix structural constituent,涉及14個基因(CCN3、EGFL6、KAZALD1、RXFP1、NYX、ASPN、ADAMTS18、ECM2、ADAMTS3、MMP16、ADAMTS17、COL18A1、COL3A1和COL4A5)。
同時利用DAVID對1486個候選基因進(jìn)行KEGG信號通路富集分析,結(jié)果富集到10個KEGG通路富集簇(Cluster1~Cluster10),其中Cluster6與脂肪生成相關(guān)(圖4)。Cluster6包含3條KEGG信號通路:Fatty acid elongation、Biosynthesis of unsaturated fatty acids和Fatty acid metabolism,涉及3個基因(TECR、ELOVL7和HACD2)。GO功能簇和KEGG富集簇中與脂肪形成相關(guān)的基因所包含的SNPs,在藏豬群體中具有中等及以上等位基因頻率,而在大白豬中的等位基因頻率均較低或?yàn)?(表3)。
通過查閱文獻(xiàn)發(fā)現(xiàn),1486個候選基因中有28個是Tao等(2017)研究報(bào)道180日齡藏豬與大白豬皮下脂肪組織的差異調(diào)控基因,44個是Shang等(2019)研究報(bào)道180日齡藏豬與大白豬皮下脂肪組織的差異調(diào)控基因。其中,有19個基因在上述2個研究中均被報(bào)道,分別是APOOL、ARMCX1、ASPN、BEX1、CD48、COL4A5、CPE、CRISPLD1、FSTL5、HCLS1、KCNQ1、LRRIQ3、LTBP4、PCDH11X、PDE1C、PLAG1、PLAUR、PURG和SUCLG2基因,而APOOL、ASPN、PLAG1、PLAUR、SUCLG2、COL4A5和CPE等7個基因已知與脂肪形成相關(guān)(表4)。在1486個候選基因中,有7個是Tao等(2017)研究報(bào)道180日齡藏豬與大白豬背最長肌的差異調(diào)控基因,分別是APOOL、AKR1B1、ITGB1BP2、RAP1GDS1、SLC26A7、SLC4A4和SNCA,其中APOOL、AKR1B1和SLC4A4基因與脂肪形成相關(guān)。另外,候選基因CHPT1在Gong等(2022)的研究中是180日齡藏豬與大白豬皮下脂肪組織的差異表達(dá)基因。
3 討論
脂肪形成是脂肪細(xì)胞形成、脂肪合成與脂肪水解相平衡的過程,包括脂肪前體細(xì)胞在細(xì)胞外因子作用下啟動脂肪前體細(xì)胞分化為成熟脂肪細(xì)胞,成熟脂肪細(xì)胞內(nèi)脂肪的形成,以及甘油三酯的合成與分解,因此脂肪形成涉及一系列級聯(lián)反應(yīng):脂肪細(xì)胞分化與增殖、脂肪酸合成、脂肪鏈延長及脂肪酸轉(zhuǎn)運(yùn)等。目前,已有大量研究證實(shí)這一系列級聯(lián)反應(yīng)中有眾多基因參與,如參與脂肪前體細(xì)胞分化過程的基因PPARγ(Peroxisome proliferator-activated receptor gamma)、CEBPβ(CCAAT/enhancer-binding protein)、CEBPδ、CEBPα、SREBP(Sterol regulatory element-binding proteins)、LPL(Lipoprotein lipase)、FABP(Fatty acid-binding proteins)及GLUT4(Glucose transporter type 4)等,與脂肪從頭合成相關(guān)的基因GLUT4(Glucose transporter type 4)、ACLY(ATP-citrate lyase)、FATP(Fatty acid transport protein-1)、FASN(Fatty acid synthase)及ACACA(Acetyl-CoA carboxylase-α)等(Malgwi et al.,2022)。本研究從基因組水平比較藏豬與大白豬間的基因組SNP,結(jié)果鑒定出1486個是藏豬與大白豬間存在遺傳差異的基因,通過GO功能注釋及KEGG信號通路富集分析,發(fā)現(xiàn)藏豬與大白豬間的脂肪沉積差異涉及多個過程的多個基因,主要包括與脂滴轉(zhuǎn)運(yùn)、結(jié)合過程相關(guān)的基因NME4、C4BPA、AP2M1、CD36、FABP5、PMP2、PDZD8、OSBPL6、APOD和OSBPL1A,以及與脂肪酸合成、延伸及代謝過程相關(guān)的基因TECR、ELOVL7和HACD2。但在已報(bào)道的研究中這些基因在180日齡藏豬與大白豬皮下脂肪組織并未表現(xiàn)出差異表達(dá),因此是否在其他生長階段或脂肪組織中發(fā)生轉(zhuǎn)錄且翻譯為功能蛋白,并最終調(diào)控藏豬脂肪沉積還有待進(jìn)一步探究。
細(xì)胞外基質(zhì)對細(xì)胞起支撐和固定作用,同時對促進(jìn)細(xì)胞間交流發(fā)揮重要調(diào)節(jié)作用,其成分主要包括葡糖氨基葡聚糖、糖復(fù)合物、蛋白聚糖、膠原蛋白及層黏連蛋白(Divoux and Clément,2011)。在體外培養(yǎng)過程中,細(xì)胞外基質(zhì)成分對原血管基質(zhì)組分分化為脂肪前體細(xì)胞的過程有重要影響,層黏連蛋白與整合蛋白在脂肪前體細(xì)胞發(fā)育過程中對脂肪細(xì)胞形態(tài)起關(guān)鍵作用,其中,層黏連蛋白能促進(jìn)脂肪前體細(xì)胞吸附(Hausman,2012),而整合蛋白avb3有利于脂肪形成過程中的血管生成(Crandall et al.,2000)。Hausman等(2014)通過采用乙基-3,4-二氫-苯甲酸異丙酯(EDHB)抑制劑抑制膠原蛋白合成,證實(shí)了細(xì)胞外基質(zhì)膠原蛋白在脂肪前體細(xì)胞分化過程中的重要性,EDHB抑制膠原蛋白合成后能有效降低牛肌內(nèi)脂肪前體細(xì)胞、豬脂肪前體細(xì)胞克隆細(xì)胞系及其他脂肪前體細(xì)胞系的脂肪細(xì)胞分化。本研究共鑒定到14個細(xì)胞外基質(zhì)相關(guān)基因在藏豬與大白豬間存在遺傳差異,且已有研究證實(shí)部分基因與脂肪形成相關(guān),如ASPN基因能促進(jìn)脂肪細(xì)胞的生成。3個膠原蛋白類基因均與脂肪形成相關(guān),其中,COL18A1基因支持脂肪前體細(xì)胞分化,并維持脂肪細(xì)胞的分化狀態(tài)及白色脂肪組織大小和脂質(zhì)的儲存與清除(Aikio et al.,2014),缺失特定的COL18A1基因異構(gòu)體會影響小鼠脂肪細(xì)胞分化(Pet?ist? et al.,2020);COL3A1基因是脂肪細(xì)胞形成的重要調(diào)控基因(Al Hasan et al.,2021);COL4A5基因則表達(dá)成脂肪細(xì)胞基底膜成分(Ninomiya et al.,1995)。敲除基質(zhì)金屬蛋白酶基因ADAMTS18后,小鼠脂肪比重增加,且內(nèi)臟脂肪細(xì)胞增大(Zhu et al.,2018);與細(xì)胞外基質(zhì)相互作用的CCN3基因是一種脂肪細(xì)胞因子,其缺失能抑制肥胖(Martinerie et al.,2016);EGFL6基因能促進(jìn)脂肪前體細(xì)胞增殖,與脂肪細(xì)胞體積增大極顯著相關(guān)(Landgraf et al.,2022);KAZALD1基因是胰島素生長因子結(jié)合蛋白(IGFBP)超家族成員,而IGFBP是以自分泌或旁分泌形式調(diào)節(jié)脂肪前體細(xì)胞形成前的血管基質(zhì)細(xì)胞增殖(Hausman et al.,2014)。在14個細(xì)胞外基質(zhì)相關(guān)基因中,ASPN和COL4A5基因已被證實(shí)在180日齡藏豬皮下脂肪組織中呈差異表達(dá)(Tao et al.,2017;Shang et al.,2019),其他基因在180日齡藏豬與大白豬皮下脂肪組織中并未表現(xiàn)出差異表達(dá),其是否最終翻譯成功能蛋白調(diào)控藏豬脂肪沉積還有待進(jìn)一步驗(yàn)證。
Poklukar等(2020)通過綜述近年來27項(xiàng)通過轉(zhuǎn)錄組解析脂肪型豬與瘦肉型豬脂肪沉積差異相關(guān)的關(guān)鍵基因研究,發(fā)現(xiàn)不同脂肪型豬的脂肪沉積關(guān)鍵基因存在差異,可能與采樣日齡、試驗(yàn)豬營養(yǎng)供給、脂肪組織部位等差異有關(guān),由此推測不同脂肪型豬的脂肪沉積具有特異調(diào)控機(jī)制。Tao等(2017)同時比較7個180日齡中國地方豬種與大白豬皮下脂肪和背最長肌的轉(zhuǎn)錄表達(dá)譜,發(fā)現(xiàn)中國地方豬種與大白豬間的差異表達(dá)基因只有極少部分在7個中國地方豬種間同時表達(dá),也表明不同地方豬種的脂肪沉積可能存在特異調(diào)控機(jī)制。本研究鑒定到10個已證實(shí)在180日齡藏豬與大白豬皮下脂肪組織差異表達(dá)的基因,其中,COL4A5基因是Tao等(2017)研究報(bào)道成華豬、藏豬、內(nèi)江豬、青峪豬、烏金豬、丫杈豬與大白豬皮下脂肪組織的差異表達(dá)基因,APOOL基因是藏豬、內(nèi)江豬、雅南豬與大白豬皮下脂肪組織的差異表達(dá)基因,同時又是藏豬、成華豬、青峪豬與大白豬肌內(nèi)脂肪的差異表達(dá)基因,SLC4A4基因是藏豬、成華豬、雅南豬與大白豬肌內(nèi)脂肪的差異表達(dá)基因,CPE基因是藏豬、內(nèi)江豬與大白豬皮下脂肪組織的差異表達(dá)基因,而ASPN、PLAG1、SUCLG2、PLAUR、AKR1B1和CHPT1基因是藏豬與大白豬皮下脂肪和肌內(nèi)脂肪組織的差異表達(dá)基因,故推測這些基因是藏豬脂肪沉積的特異調(diào)控基因。
4 結(jié)論
藏豬與大白豬間的遺傳差異基因涉及脂肪形成的多個過程,包括脂滴轉(zhuǎn)運(yùn)、結(jié)合過程(NME4、C4BPA、AP2M1、CD36、FABP5、PMP2、PDZD8、OSBPL6、APOD和OSBPL1A基因),脂肪酸合成、延伸及代謝過程(TECR、ELOVL7和HACD2基因),以及與脂肪形成相關(guān)的細(xì)胞外基質(zhì)基因(CCN3、EGFL6、KAZALD1、ASPN、ADAMTS18、ECM2、COL18A1、COL3A1和COL4A5基因);APOOL、PLAG1、PLAUR、SUCLG2、CPE、AKR1B1、SLC4A4及CHPT1等8個基因在180日齡藏豬與大白豬脂肪組織中差異表達(dá)。藏豬與大白豬間的脂肪沉積差異涉及脂肪形成的多個過程和多個基因,細(xì)胞外基質(zhì)基因也可能與藏豬脂肪形成相關(guān),且這些基因在藏豬中均具有較高的等位基因頻率。
參考文獻(xiàn):
龔建軍,何志平,李正確,呂學(xué)斌,應(yīng)三成,陳曉軍. 2007. 藏豬及不同雜交組合肥育與胴體性能研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),20(5):1109-1112. [Gong J J,He Z P,Li Z Q,Lü X B,Ying S C,Chen X J. 2007. Investigation on fattening and carcass traits in Tibtan pigs and its combinations[J]. Southwest China Jounal of Agricultrual Sciences,20(5):1109-1112.] doi:10.3969/j.issn.1001-4829.2007.05.052.
李恒,字向東,王會,熊燕,呂明杰,劉宇,蔣旭東. 2022. 基于全基因組重測序的山羊產(chǎn)羔數(shù)性狀關(guān)鍵調(diào)控基因的篩選[J]. 中國農(nóng)業(yè)科學(xué),55(23):4753-4768. [Li H,Zi X D,Wang H,Xiong Y,Lü M J,Liu Y,Jiang X D. 2022. Screening of key regulatory genes for litter size trait based on whole genome re-sequencing in goats (Capra hircus)[J]. Scientia Agricultura Sinica,55(23):4753-4768.] doi:10.3864/j.issn.0578-1752.2022.23.015.
李明洲,李學(xué)偉,帥素容,朱礪,劉海峰,王金勇,蔣忠榮,滕曉坤. 2008. 雌性藏豬不同生長發(fā)育階段肌肉生長和脂肪沉積相關(guān)基因的表達(dá)模式[J]. 動物學(xué)報(bào),54(3):442-452.[Li M Z,Li X W,Shuai S R,Zhu L,Liu H F,Wang J Y,Jiang Z R,Teng X K. 2008. Expression patterns of genes associated with muscle growth and adipose deposition during growth and development of female Tibetan pigs[J]. Acta Zoologica Sinica,54(3):442-452.]
裴利君,楊巧麗,王鵬飛,滾雙寶. 2021. 合作豬夏冬季的腸道菌群結(jié)構(gòu)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),56(4):8-15. [Pei L J,Yang Q L,Wang P F,Gun S B. 2021. Study on the structure of intestinal microflora in Hezuo pigs in summer and winter[J]. Journal of Gansu Agricultural University,56(4):8-15.] doi:10.13432/j.cnki.jgsau.2021.04.002.
楊燁城,黃秋艷,辛海云,李寶紅,杜宗亮,孟繁明,朱向星,李劍豪,王塑天,唐冬生. 2022. 藏豬和杜藏豬生長、肉質(zhì)性狀及脂肪沉積相關(guān)基因的表達(dá)差異分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),53(4):926-934. [Yang Y C,Huang Q Y,Xin H Y,Li B H,Du Z L,Meng F M,Zhu X X,Li J H,Wang S T,Tang D S. 2022. Analysis of differences in growth,meat quality traits and expression of genes related to fat deposition between Tibetan and Duzang pigs[J]. Journal of Southern Agriculture,53(4):926-934.] doi:10.3969/j.issn.2095-1191.2022.04.005.
Ai H H,F(xiàn)ang X D,Yang B,Huang Z Y,Chen H,Mao L K,Zhang F,Zhang L,Cui L L,He W M,Yang J,Yao X M,Zhou L S,Han L J,Li J,Sun S L,Xie X H,Lai B X,Su Y,Lu Y,Yang H,Huang T,Deng W J,Nielsen R,Ren J,Huang L S. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing[J]. Nature Genetics,47(3):217-225. doi:10. 1038/ng.3199.
Aikio M,Elamaa H,Vicente D,Izzi V,Kaur I,Seppinen L,Speedy H E,Kaminska D,Kuusisto S,Sormunen R,Heljasvaara R,Jones E L,Muilu M,Jauhiainen M,Pihlajamaki J,Savolainen M J,Shoulders C C,Pihlajaniemi T. 2014. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition[J]. Proceedings of National Academy of Sciences of the United States of America,111(30):E3043-E3052. doi:10.1073/pnas.1405879111.
Al Hasan M,Martin P E,Shu X H,Patterson S,Bartholomew C. 2021. Type III collagen is required for adipogenesis and actin stress fibre formation in 3T3-L1 preadipocytes[J]. Biomolecules,11(2):156. doi:10.3390/biom11020
156.
Axelsson E,Ratnakumar A,Arendt M L,Maqbool K,Webster MT,Perloski M,Liberg O,Arnemo J M,Hedhammar ?,Lindblad-Toh K. 2013. The genomic signature of dog domestication reveals adaptationto a starch-rich diet[J]. Nature,495(7441):360-364. doi:10.1038/nature11837.
Cingolani P,Platts A,Wang L L,Coon M,Nguyen T,Wang L,Land S J,Lu X Y,Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms,SnpEff:SNPs in the genome of Droso-phila melanogaster strain w1118;iso-2;iso-3[J]. Fly (Austin),6(2):80-92. doi:10.4161/fly.19695.
Crandall D L,Busler D E,McHendry-Rinde B,Groeling T M,Kral J G. 2000. Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1[J]. The Journal of Clinical Endocrinology and Metabolism,85(7):2609-2614. doi:10.1210/jcem.85.7.6678.
Danecek P,Auton A,Abecasis G,Albers C A,Banks E,DePristo M A,Handsaker R E,Lunter G,Marth G T,Sherry S T,McVean G,Durbin R. 2011. The variant call format and VCFtools[J]. Binformatics,27(15):2156-2158. doi:10.1093/bioinformatics/btr330.
DePristo M A,Banks E,Poplin R,Garimella K V,Maguire J R,Hartl C,Philippakis A A,Angel G D,Rivas M A,Hanna M,McKenna A,F(xiàn)ennell T J,Kernytsky A M,Siva-chenko A Y,Cibulskis K,Gabriel S B,Altshuler D,Daly M J. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data[J]. Nature Genetics,43(5):491-498. doi:10.1038/ng.806.
Divoux A,Clément K. 2011. Architecture and the extracellular matrix:The still unappreciated components of the adipose tissue[J]. Obesity Reviews,12(5):e494-e503. doi:10.1111/j.1467-789X.2010.00811.x.
Gong X L,Zheng M,Zhang J,Ye Y R,Duan M Q,Chamba Y Z,Wang Z B,Shang P. 2022. Transcriptomics-based study of differentially expressed genes related to fat deposition in Tibetan and Yorkshire pigs[J]. Froniers in Veteri-nary Science,9:919904. doi:10.3389/fvets.2022.919904.
Groenen M A M,Archibald A L,Uenishi H,Tuggle C K,Takeuchi Y,Rothschild M F,Rogel-Gaillard C,Park C,Milan D,Megens H J,Li S T,Larkin D M,Kim H,F(xiàn)rantz L A F,Caccamo M,Ahn H,Aken B L,Anselmo A,Anthon C,Auvil L,Badaoui B,Beattie C W,Bendixen C,Berman D,Blecha F,Blomberg J,Bolund L,Bosse M,Botti S,Zhan B J,Bystrom M,Capitanu B,Carvalho-Silva D,Chardon P,Chen C L,Cheng R,Choi S H,Chow W,Clark R C,Clee C,Crooijmans R P M A,Dawson H D,Dehais P,de Sapio F,Dibbits B,Drou N,Du Z Q,Eversole K,F(xiàn)adista J,F(xiàn)airley S,F(xiàn)araut T,F(xiàn)aulkner G J,F(xiàn)owler K E,F(xiàn)redholm M,F(xiàn)ritz E,Gilbert J G R,Giuffra E,Gorodkin J,Griffin D K,Harrow J L,Hayward A,Howe K,Hu Z L,Humphray S J,Hunt T,Hornshoj H,Jeon J T,Jern P,Jones M,Jurka J,Kanamori H,Kapetanovic R,Kim J,Kim J H,Kim K W,Kim TH,Larson G,Lee K,Lee K T,Leggett R,Lewin H A,Li Y R,Liu W S,Loveland J E,Lu Y,Lunney J K,Ma J,Madsen O,Mann K,Matthews L,McLaren S,Morozumi T,Murtaugh M P,Narayan J,Nguyen D T,Ni P X,Oh S J,Onteru S,Panitz F,Park E W,Park H S,Pascal G,Paudel Y,Perez-Enciso M,Ramirez-Gonzalez R,Reecy J M,Rodriguez-Zas S,Rohrer G A,Rund L,Sang Y M,Schachtschneider K,Schraiber J G,Schwartz J,Scobie L,Scott C,Searle S,Servin B,Southey B R,Sperber G,Stadler P,Sweedler J V,Tafer H,Thomsen B,Wali R,Wang J,Wang J,White S,Xu X,Yerle M,Zhang G J,Zhang J G,Zhang J,Zhao S H,Rogers J,Churcher C,Schook L B. 2012. Analyses of pig genomes provide insight into porcine demography and evolution[J]. Nature,491(7424):393-398. doi:10. 1038/nature11622.
Hausman G J,Basu U,Wei S,Hausman D B,Dodson M V. 2014. Preadipocyte and adipose tissue differentiation in meat animals:Influence of species and anatomical location[J]. Annual Review of Animal Biosciences,2:323-351. doi:10.1146/annurev-animal-022513-114211.
Hausman G J. 2012. Meat science and muscle biology symposium:The influence of extracellular matrix on intramuscular and extramuscular adipogenesis[J]. Journal of Animal Science,90(3):942-949. doi:10.2527/jas.2011-4616.
Kanno Y,Matsuno H,Kawashita E,Okada K,Suga H,Ueshima S,Matsuo O. 2010. Urokinase-type plasminogen activator receptor is associated with the development of adipose tissue[J]. Thrombosis Haemostasis, 104(6):1124-1132. doi:10.1160/TH10-02-0101.
Konieczna A,Szczepańska A,Sawiuk K,W?grzyn G,?y?eń R. 2015. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase[J]. BMC Cell Biology,16:16. doi:10.1186/s12860-015-0062-8.
Labrecque J,Michaud A,Gauthier M F,Pelletier M,Julien F,Bouvet-Bouchard L,Tchernof A. 2019. Interleukin-1β and prostaglandin-synthesizing enzymes as modulators of human omental and subcutaneous adipose tissue function[J]. Prostaglandins Leukot Essent Fatty Acids,141:9-16.doi:10.1016/j.plefa.2018.11.015.
Landgraf K,Kühnapfel A,Schlanstein M,Biemann R,Isermann B,Kempf E,Kirsten H,Scholz M,K?rner A. 2022. Transcriptome analyses of adipose tissue samples identify EGFL6 as a candidate gene involved in obesity-related adipose tissue dysfunction in children[J]. International Journal of Molecular Sciences,23(8):4349. doi:10.3390/ijms23084349.
Li H,Handsaker B,Wysoker A,F(xiàn)ennell T,Ruan J,Homer N,Marth G,Abecasis G,Durbin R. 2009. The sequence alignment/map format and SAMtools[J]. Binformatics,25(16):2078-2079. doi:10.1093/bioinformatics/btp352.
Li M Z,Tian S L,Jin L,Zhou G Y,Li Y,Zhang Y,Wang T,Yeung C K L,Chen L,Ma J D,Zhang J B,Jiang A A,Li J,Zhou C W,Zhang J,Liu Y K,Sun X Q,Zhao H W,Niu Z X,Lou P E,Xian L J,Shen X Y,Liu S Q,Zhang S H,Zhang M W,Zhu L,Shuai S R,Bai L,Tang G Q,Liu H F,Jiang Y Z,Mai M M,Xiao J,Wang X,Zhou Q,Wang Z Y,Stothard P,Xue M,Gao X L,Luo Z G,Gu Y R,Zhu H M,Hu X X,Zhao Y F,Plastow G S,Wang J Y,Jiang Z,Li K,Li N,Li X W,Li R Q. 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J]. Nature Genetics,45(12):1431-1438. doi:10.1038/ng.2811.
Li S J,Khan R,Raza S H A,Hong J Y,Mei C G,Kaster N,Cheng G,Zhao C P,Schreurs N M,Zan L S. 2020. Function and characterization of the promoter region of perilipin 1 (PLIN1):Roles of E2F1,PLAG1,C/EBPbeta,and SMAD3 in bovine adipocytes[J]. Genomics,112(3):2400-2409. doi:10.1016/j.ygeno.2020.01.012.
Liu Z J,Zhang L Y,Yan Z Z,Ren Z J,Han F M,Tan X X,Xiang Z Y,Dong F,Yang Z M,Liu G J,Wang Z M,Zhang J L,Que T C,Tang C H,Li Y F,Wang S,Wu J Y,Li L G,Huang C M,Roos C,Li M. 2020. Genomic mechanisms of physiological and morphological adaptations of limestone langurs to karst habitats[J]. Molecular Biology and Evolution,37(4):952-968. doi:10.1093/molbev/msz301.
Lü M D,Han X M,Ma Y F,Irwin D M,Gao Y,Deng J K,Adeola A C,Xie H B,Zhang Y P. 2016. Genetic variationsassociated with six-white-point coat pigmentation in Diannan small-ear pigs[J]. Scientific Reports,6(1):27534.doi:10.1038/srep27534.
Luo X E,Zhou Y,Zhang B,Zhang Y,Wang X B,F(xiàn)eng T,Li Z P,Cui K Q,Wang Z Q,Luo C,Li H,Deng Y F,Lu F H,Han J L,Miao Y W,Mao H M,Yi X X,Ai C,Wu S G,Li A L,Wu Z C,Zhuo Z J,da Giang D,Mitra B,Vahidi M F,Mansoor S,Al-Bayatti S A,Sari E M,Gorkhali N A,Prastowo S,Shafique L,Ye G Y,Qian Q,Chen B S,Shi D S,Ruan J,Liu Q Y. 2020. Understanding divergent domestication traits from the whole-genome sequencing of swamp-and river-buffalo populations[J]. National Scien-ce Review,7(3):686-701. doi:10.1093/nsr/nwaa024.
Malgwi I H,Halas V,Grunvald P,Schiavon S,Jocsák I. 2022. Genes related to fat metabolism in pigs and intramuscular fat content of Pork:A focus on nutrigenetics and nutrigenomics[J]. Animals (Basel),12(2):150. doi:10.3390/ani12020150.
Martinerie C,Garcia M,Do T T H,Antoine B,Moldes M,Dorothee G,Kazazian C,Auclair M,Buyse M,Ledent T,Marchal P O,F(xiàn)esatidou M,Beisseiche A,Koseki H,Hi-raoka S,Chadjichristos C E,Blondeau B,Denis R G,Luquet S,F(xiàn)ève B. 2016. NOV/CCN3:A new adipocytokine involved in obesity-associated insulin resistance[J]. Diabetes,65(9):2502-2515. doi:10.2337/db15-0617.
Moon Y,Moon R,Roh H,Chang S,Lee S,Park H. 2020. HIF-1α-dependent induction of carboxypeptidase A4 and carboxypeptidase E in hypoxic human adipose-derived stem cells[J]. Molecules and Cells,43(11):945-952. doi:10.14348/molcells.2020.0100.
Ninomiya Y,Kagawa M,Iyama K,Naito I,Kishiro Y,Seyer J M,Sugimoto M,Oohashi T,Sado Y. 1995. Differential expression of two basement membrane collagen genes,COL4A6 and COL4A5,demonstrated by immunofluorescence staining using peptide-specific monoclonal antibo-dies[J]. Journal of Cell Biology,130(5):1219-1229. doi:10.1083/jcb.130.5.1219.
Pet?ist? T,Vicente D,M?kel? K A,F(xiàn)innil? M A,Miinalainen I,Koivunen J,Izzi V,Aikio M,Karppinen S M,Devarajan R,Thevenot J,Herzig K H,Heljasvaara R,Pihlajaniemi T. 2020. Lack of collagen XVIII leads to lipodystrophy and perturbs hepatic glucose and lipid homeostasis[J]. The Journal of Physiology,598(16):3373-3393. doi:10.1113/JP279559.
Petersen C,Nielsen M D,Andersen E S,Basse A L,Isidor M S,Markussen L K,Viuff B M,Lambert I H,Hansen J B,Pedersen S F. 2017. MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism[J]. Scientific Reports,7(1):13101. doi:10.1038/s41598-017-13298-z.
Poklukar K,Candek-Potokar M,Batorek L N,Tomazin U,Skrlep M. 2020. Lipid deposition and metabolism in local and modern pig breeds:A review[J]. Animals (Basel),10(3):424. doi:10.3390/ani10030424.
Sakashita H,Yamada S,Kinoshita M,Kajikawa T,Iwayama T,Murakami S. 2021. Mice lacking PLAP-1/asporin counteracts high fat diet-induced metabolic disorder and alveolar bone loss by controlling adipose tissue expansion[J]. Scitific Reports,11(1):4970. doi:10.1038/s41598-021-84512-2.
Shang P,Li W T,Liu G,Zhang J,Li M R,Wu L C,Wang K J,Chamba Y Z. 2019. Identification of lncRNAs and genes responsible for fatness and fatty acid composition traits between the Tibetan and Yorkshire pigs[J]. International Journal of Genomics,2019:5070975. doi:10.1155/2019/5070975.
Tao X,Liang Y,Yang X M,Pang J H,Zhong Z J,Chen X H,Yang Y K,Zeng K,Kang R M,Lei Y F,Ying S C,Gong J J,Gu Y R,Lv X B. 2017. Transcriptomic profiling in muscle and adipose tissue identifies genes related to growth and lipid deposition[J]. PLoS One,9(12):e184120. doi:10.1371/journal.pone.0184120.
Wang Z X,Li Q G,Chamba Y Z,Zhang B,Shang P,Zhang H,Wu C X. 2015. Identification of genes related to growth and lipid deposition from transcriptome profiles of pig muscle tissue[J]. PLoS One,10(10):e141138. doi:10.1371/journal.pone.0141138.
Wang Z X,Shang P,Li Q G,Wang L Y,Chamba Y Z,Zhang B,Zhang H,Wu C X. 2017. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs[J]. Scientific Reports,7:46717. doi:10.1038/srep46717.
Weber TA,Koob S,Heide H,Wittig I,Head B,van der Bliek A,Brandt U,Mittelbronn M,Reichert A S. 2013. APOOL is a cardiolipin-binding constituent of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria[J]. PLoS One,8(5):e63683. doi:10.1371/journal.pone.0063683.
Zheng Z Q,Wang X H,Li M,Li Y J,Yang Z R,Wang X L,Pan X Y,Gong M,Zhang Y,Guo Y W,Wang Y,Liu J,Cai Y D,Chen Q M,Okpeku M,Colli L,Cai D W,Wang K,Huang S S,Sonstegard TS,Esmailizadeh A,Zhang W G,Zhang T T,Xu Y B,Xu N Y,Yang Y,Han J L,Chen L,Lesur J,Daly K G,Bradley D G,Heller R,Zhang G J,Wang W,Chen Y L,Jiang Y. 2020. The origin of domestication genes in goats[J]. Science Advances,6(21):z5216. doi:10.1126/sciadv.aaz5216.
Zhou Z K,Li M,Cheng H,F(xiàn)an W L,Yuan Z R,Gao Q,Xu Y X,Guo Z B,Zhang Y S,Hu J,Liu H H,Liu D P,Chen W H,Zheng Z Q,Jiang Y,Wen Z G,Liu Y M,Chen H,Xie M,Zhang Q,Huang W,Wang W,Hou S S,Jiang Y. 2018. An intercross population study reveals genes associated with body size and plumage color in ducks[J]. Nature Communications,9(1):2648. doi:10.1038/s41467-018-04868-4.
Zhu R,Cheng M T,Lu T T,Yang N,Ye S,Pan Y H,Hong T,Dang S Y,Zhang W. 2018. A disintegrin and metalloproteinase with thrombospondin Motifs 18 deficiency leads to visceral adiposity and associated metabolic syndrome in mice[J]. The American Journal of Pathology,188(2):461-473. doi:10.1016/j.ajpath.2017.10.020.
(責(zé)任編輯 蘭宗寶)