国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

大麻素Ⅱ型受體對(duì)LPS誘導(dǎo)小鼠黑質(zhì)區(qū)COX-2和iNOS基因表達(dá)的影響

2023-08-26 01:15王炳超孫琳朱天立馬澤剛
關(guān)鍵詞:受體炎癥

王炳超 孫琳 朱天立 馬澤剛

[摘要]目的探索大麻素Ⅱ型(CB2)受體對(duì)脂多糖(LPS)誘導(dǎo)小鼠黑質(zhì)(SN)區(qū)炎癥反應(yīng)的作用。方法將18只8周齡雄性野生型(WT)C57BL/6小鼠隨機(jī)分為WT對(duì)照組、WT LPS組和WT LPS+JWH133(CB2受體激動(dòng)劑)組,12只8周齡雄性CB2受體敲除(CB2-KO)C57BL/6小鼠隨機(jī)分為CB2-KO對(duì)照組和CB2-KO LPS組。對(duì)照組小鼠單次雙側(cè)SN立體定位注射生理鹽水,其余各組小鼠注射等體積的LPS,然后連續(xù)腹腔注射JWH133或生理鹽水14 d。應(yīng)用實(shí)時(shí)熒光定量PCR技術(shù)檢測(cè)各組小鼠SN中環(huán)氧化酶2(COX-2)和誘導(dǎo)型一氧化氮合酶(iNOS)基因的表達(dá)。結(jié)果與WT對(duì)照組相比,WT LPS組小鼠SN區(qū)COX-2和iNOS基因表達(dá)水平升高,差異有統(tǒng)計(jì)學(xué)意義(F=20.9、21.4,q=5.536、5.518,P<0.01);JWH133能明顯抑制LPS誘導(dǎo)的COX-2和iNOS基因表達(dá)上調(diào)(q=5.170、4.553,P<0.05);與WT LPS組相比,CB2-KO LPS組小鼠COX-2和iNOS基因表達(dá)明顯上調(diào),差異有統(tǒng)計(jì)學(xué)意義(q=4.150、5.496,P<0.05)。結(jié)論激活CB2受體能夠抑制LPS誘導(dǎo)小鼠SN區(qū)COX-2和iNOS基因的表達(dá),缺失CB2受體能夠促進(jìn)LPS誘導(dǎo)小鼠SN區(qū)COX-2和iNOS基因的表達(dá)。

[關(guān)鍵詞]受體,大麻酚,CB2;脂多糖類;炎癥;環(huán)氧化酶2;一氧化氮合酶

[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0371-04

doi:10.11712/jms.2096-5532.2023.59.086[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.r.20230731.1044.001.html;2023-07-3117:11:34

EFFECT OF CANNABINOID TYPE Ⅱ RECEPTORS ON LIPOPOLYSACCHARIDE-INDUCED GENE EXPRESSION OF CYCLOO-XYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE IN THE SUBSTANTIA NIGRA OF MICEWANG Bingchao, SUN Lin, ZHU Tianli, MA Zegang (Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)

[ABSTRACT]ObjectiveTo investigate the effect of cannabinoid receptor-2 (CB2) on lipopolysaccharide (LPS)-induced inflammatory response in the substantia nigra (SN) of mice. MethodsA total of 18 male C57BL/6 wild-type (WT) mice, aged 8 weeks, were randomly divided into WT control group, WT LPS group, and WT LPS+JWH133 (a CB2 receptor agonist) group, and 12 male CB2 receptor-knockout (CB2-KO) C57BL/6 mice were randomly divided into CB2-KO control group and CB2-KO LPS group. The mice in the control group received a single stereotactic injection of normal saline into the bilateral SN, and those in the other groups were injected with an equal volume of LPS, followed by the intraperitoneal injection of JWH133 or normal saline for 14 consecutive days. Quantitative real-time PCR was used to measure the mRNA expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the SN.? ResultsCompared with the WT control group, the WT LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS in the SN (F=20.9,21.4;q=5.536,5.518;P<0.01). JWH133 significantly inhibited the upregulated mRNA expression of COX-2 and iNOS induced by LPS (q=5.170,4.553;P<0.05). Compared with the WT LPS group, the CB2-KO LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS (q=4.150,5.496;P<0.05). ConclusionActivation of CB2 receptor can inhibit LPS-induced mRNA expression of COX-2 and iNOS in the SN of mice, while deletion of CB2 receptor can promote LPS-induced mRNA expression of COX-2 and iNOS.

[KEY WORDS]receptor, cannabinoid, CB2; lipopolysaccharides; inflammation; cyclooxygenase 2; nitric oxide synthase

炎癥是免疫系統(tǒng)保護(hù)生物體免受有害因素傷害的一種生物反應(yīng),然而過度的炎癥反應(yīng)可能導(dǎo)致機(jī)體損傷和疾病的產(chǎn)生[1-2]。近年來研究發(fā)現(xiàn),神經(jīng)炎癥是帕金森?。≒D)發(fā)病的關(guān)鍵因素[3]。有臨床研究證實(shí),在PD病人死后的中腦黑質(zhì)(SN)中,除了觀察到多巴胺(DA)能神經(jīng)元丟失之外,還檢測(cè)到活化的膠質(zhì)細(xì)胞和大量的炎癥因子[4-5],這表明神經(jīng)炎癥參與了PD的發(fā)病。因此,有效抑制膠質(zhì)細(xì)胞介導(dǎo)的炎癥反應(yīng),可能有助于PD的治療。大麻素Ⅱ型(CB2)受體屬于G蛋白偶聯(lián)受體,在中樞神經(jīng)系統(tǒng)中主要表達(dá)于膠質(zhì)細(xì)胞[6]。最近CB2受體成為治療PD的關(guān)鍵靶點(diǎn)[7]。本實(shí)驗(yàn)室研究發(fā)現(xiàn),激活CB2受體能夠抑制1-甲基-4-苯基-吡啶陽離子引起的星形膠質(zhì)細(xì)胞環(huán)氧化酶2(COX-2)和誘導(dǎo)性一氧化氮合酶(iNOS)的表達(dá),抑制星形膠質(zhì)細(xì)胞的炎癥反應(yīng)[8]。iNOS和COX-2是調(diào)節(jié)炎癥反應(yīng)的關(guān)鍵酶,參與炎癥因子的過度產(chǎn)生[9]。然而CB2受體在PD體內(nèi)模型中研究較少,激活該受體能否抑制脂多糖(LPS)誘導(dǎo)的SN區(qū)COX-2和iNOS基因表達(dá),目前尚不清楚。因此,本研究應(yīng)用LPS制備PD小鼠炎癥模型,探討CB2受體對(duì)LPS誘導(dǎo)小鼠SN區(qū)COX-2和iNOS基因表達(dá)的影響?,F(xiàn)將結(jié)果報(bào)告如下。

1材料與方法

1.1實(shí)驗(yàn)動(dòng)物及試劑

SPF級(jí)雄性健康C57BL/6野生型(WT)以及CB2受體敲除(CB2-KO)小鼠,8周齡,體質(zhì)量18~22 g,其中WT小鼠購于北京維通利華公司,CB2-KO小鼠由美國巴羅神經(jīng)研究所贈(zèng)予。小鼠每3~4只一籠,飼養(yǎng)環(huán)境:室溫23~26 ℃,濕度為40%~60%,12-12 h晝夜循環(huán)光照,可自由飲水進(jìn)食。實(shí)驗(yàn)開始前小鼠需要適應(yīng)飼養(yǎng)環(huán)境1周。JWH133(CB2受體激動(dòng)劑)購于美國APE x BIO公司;LPS購于美國Sigma公司;TRIzol購于美國Life Technologies公司;RNA逆轉(zhuǎn)錄試劑盒、SYBR Green購于南京諾唯贊生物科技股份有限公司;PCR引物購于日本Takara公司;其他試劑均為國產(chǎn)分析純。

1.2動(dòng)物分組及處理

將18只8周齡雄性WT C57BL/6小鼠隨機(jī)分為WT對(duì)照組(A組)、WT LPS組(B組)和WT LPS+JWH133組(C組),12只8周齡雄性CB2-KO C57BL/6小鼠隨機(jī)分為CB2-KO對(duì)照組(D組)和CB2-KO LPS組(E組),每組6只。小鼠預(yù)先腹腔注射JWH133(100 μg·kg-1·d-1)或生理鹽水2 d。24 h后,參照以往文獻(xiàn)的方法,以腦立體定位注射的方式,單次雙側(cè)SN區(qū)注射0.2 g/L的LPS 0.6 μL建立PD動(dòng)物模型[10-11],對(duì)照組小鼠注射等體積的生理鹽水。SN區(qū)注射LPS 1 h后,再連續(xù)腹腔注射JWH133(100 μg·kg-1·d-1)或生理鹽水14 d[12]。

1.3實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)COX-2和iNOS mRNA水平

藥物處理后,用異氟烷完全麻醉小鼠,迅速斷頭取腦,用刀片將小腦部位切除,然后沿大腦腹側(cè)視神經(jīng)根部垂直切開腦組織,SN的輪廓在大腦的冠狀切面即可見到,用眼科鑷夾取出SN置于離心管中,加入500 μL的TRIzol,提取小鼠SN總RNA。取1 μg總RNA使用反轉(zhuǎn)錄試劑盒進(jìn)行反轉(zhuǎn)錄,加入4×gDNA wiper Mix 4 μL,加入RNase free water至16 μL,混勻。反應(yīng)(42 ℃ 2 min,4 ℃ 3 min)完成后加入5×HiScript Ⅲ qRT SuperMix 4 μL,總體積20 μL,混勻。反應(yīng)(37 ℃ 15 min,85 ℃ 5 s)后得到cDNA。采用SYBR Green染料法定量檢測(cè)COX-2、iNOS以及GAPDH基因的表達(dá)[13]。采用2-△△CT法計(jì)算目的基因相對(duì)表達(dá)量。qRT-PCR檢測(cè)所用引物及序列見表1。

1.4統(tǒng)計(jì)學(xué)處理

應(yīng)用GraphPad Prism 7.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理。實(shí)驗(yàn)所得數(shù)據(jù)以±s表示,多組間比較采用單因素方差分析(One-way ANOVA),并應(yīng)用Turkey法進(jìn)行兩兩比較,P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。

2結(jié)果

與WT對(duì)照組相比較,WT LPS組小鼠SN區(qū)COX-2和iNOS基因表達(dá)水平升高,差異有統(tǒng)計(jì)學(xué)意義(F=20.9、21.4,q=5.536、5.518,P<0.01);JWH133處理能夠明顯抑制LPS誘導(dǎo)的COX-2和iNOS基因表達(dá)上調(diào)(q=5.170、4.553,P<0.05);與WT LPS組小鼠比較,CB2-KO LPS組小鼠SN區(qū)COX-2和iNOS基因表達(dá)明顯上調(diào),差異有統(tǒng)計(jì)學(xué)意義(q=4.150、5.496,P<0.05);CB2-KO對(duì)照組小鼠COX-2和iNOS基因表達(dá)水平與WT對(duì)照組相比較差異無統(tǒng)計(jì)學(xué)意義(q=1.071、0.940,P>0.05)。見表2。

3討論

PD是繼阿爾茨海默病(AD)之后最常見的慢性神經(jīng)退行性疾病,其病理學(xué)特征是中腦SN中DA能神經(jīng)元的進(jìn)行性丟失[14]。PD炎癥反應(yīng)的特征是SN中膠質(zhì)細(xì)胞激活,引起COX-2和iNOS等炎癥遞質(zhì)增加,誘導(dǎo)產(chǎn)生大量的炎癥因子,造成對(duì)DA能神經(jīng)元的損傷。有研究表明,SN區(qū)微量注射LPS可以引起局部的免疫反應(yīng),并產(chǎn)生PD特征性的黑質(zhì)紋狀體通路局部病變[10-11]。因此,本實(shí)驗(yàn)應(yīng)用腦立體定位技術(shù)在SN區(qū)注射LPS建立PD小鼠模型,并且采用qRT-PCR方法檢測(cè)SN中COX-2和iNOS基因表達(dá)水平。COX-2和iNOS是炎癥反應(yīng)的重要參與者。當(dāng)有炎癥刺激時(shí),COX-2表達(dá)增加,催化合成更多的前列腺素,產(chǎn)生的前列腺素一方面加重了炎癥反應(yīng),另一方面誘導(dǎo)iNOS表達(dá)增加,從而催化產(chǎn)生更多的一氧化氮,進(jìn)一步加重炎癥反應(yīng),造成神經(jīng)元的死亡[9]。所以,有效地抑制SN區(qū)COX-2和iNOS的表達(dá),可對(duì)DA能神經(jīng)元發(fā)揮保護(hù)作用。CB2受體是內(nèi)源性大麻素系統(tǒng)(ECS)的組成部分之一,ECS由兩種內(nèi)源性大麻素和大麻素Ⅰ、Ⅱ型(CB1和CB2)受體以及合成和降解它們的酶組成[15-16]。不同于CB1受體的激活,CB2受體的激活沒有精神副作用,而且廣泛地分布在神經(jīng)膠質(zhì)細(xì)胞中[17]。因此,CB2受體及其特定配體近年來獲得更多的關(guān)注。最近的研究證實(shí),CB2受體可以調(diào)節(jié)中樞神經(jīng)系統(tǒng)的免疫功能和神經(jīng)炎癥反應(yīng)[18-19]。LI等[20]在腦出血模型中研究發(fā)現(xiàn),激活膠質(zhì)細(xì)胞的CB2受體可抑制iNOS等表達(dá)的增加,發(fā)揮神經(jīng)保護(hù)作用。ASO等[21]研究發(fā)現(xiàn),應(yīng)用CB2受體激動(dòng)劑JWH133的AD小鼠在主動(dòng)回避測(cè)試和V迷宮記憶檢測(cè)中表現(xiàn)出認(rèn)知缺陷的部分緩解,這種認(rèn)知能力的改善伴隨炎癥因子的減少。既然CB2受體在神經(jīng)炎癥中發(fā)揮保護(hù)作用,那么是否可以通過激活膠質(zhì)細(xì)胞的CB2受體抑制PD模型中SN區(qū)的炎癥反應(yīng)?

本實(shí)驗(yàn)選用對(duì)CB2受體具有高選擇性的合成激動(dòng)劑JWH133,探討了激活CB2受體對(duì)LPS誘導(dǎo)的COX-2和iNOS基因表達(dá)的影響。實(shí)驗(yàn)結(jié)果顯示,LPS處理后小鼠SN區(qū)COX-2和iNOS基因表達(dá)水平顯著增加。JWH133腹腔注射2周可以抑制LPS處理引起的COX-2和iNOS基因表達(dá)升高,說明激活CB2受體可以抑制炎癥遞質(zhì)的產(chǎn)生,緩解炎癥反應(yīng)。與LPS處理的WT小鼠相比較,CB2-KO小鼠經(jīng)LPS處理后腦SN區(qū)COX-2和iNOS基因的表達(dá)明顯增加。在LPS誘導(dǎo)下SN區(qū)COX-2和iNOS基因表達(dá)明顯上調(diào),而敲除CB2受體又能進(jìn)一步促進(jìn)COX-2和iNOS基因表達(dá),說明CB2受體的缺失加劇了LPS誘導(dǎo)的炎癥反應(yīng),證實(shí)CB2受體激活在PD的發(fā)病中發(fā)揮了抗炎作用,但其具體機(jī)制還有待進(jìn)一步探究。在臨床研究方面,雖然有不同的試驗(yàn)分析了基于大麻的藥物在PD病人中的應(yīng)用[22-24],但目前尚無專門研究CB2受體作用或CB2受體激動(dòng)劑對(duì)PD病人影響的臨床試驗(yàn)。然而,人類全基因組關(guān)聯(lián)研究分析顯示,CB2受體基因CNR2與PD相關(guān)[25]。此外,在PD病人的死后腦組織中發(fā)現(xiàn)了CB2受體表達(dá)的改變[26]。CB2受體在PD中的保護(hù)作用提示,CB2受體可能是PD潛在的新治療靶點(diǎn)。

[參考文獻(xiàn)]

[1]METSIOS G S, MOE R H, KITAS G D. Exercise and inflammation[J]. Best Practice & Research Clinical Rheumatology, 2020,34(2):101504.

[2]YONG H Y F, RAWJI K S, GHORBANI S, et al. The benefits of neuroinflammation for the repair of the injured central nervous system[J]. Cellular & Molecular Immunology, 2019,16(6):540-546.

[3]KWON H S, KOH S H. Neuroinflammation in neurodegene-rative disorders: the roles of microglia and astrocytes[J]. Translational Neurodegeneration, 2020,9(1):42.

[4]XU S B, LU J N, SHAO A W, et al. Glial cells: role of the immune response in ischemic stroke[J]. Frontiers in Immuno-logy, 2020,11:294.

[5]LEE S L, HSU J Y, CHEN T C, et al. Erinacine A prevents lipopolysaccharide-mediated glial cell activation to protect dopaminergic neurons against inflammatory factor-induced cell death in vitro and in vivo[J]. International Journal of Molecular Sciences, 2022,23(2):810.

[6]STASIULEWICZ A, ZNAJDEK K, GRUDZIE? M, et al. Aguide to targeting the endocannabinoid system in drug design[J]. International Journal of Molecular Sciences, 2020,21(8):2778.

[7]VAN NIEKERK G, MABIN T, ENGELBRECHT A M. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective[J]. Inflammopharmacology, 2019,27(1):39-46.

[8]JIA Y, DENG H, QIN Q Y, et al. JWH133 inhibits MPP+-induced inflammatory response and iron influx in astrocytes[J]. Neuroscience Letters, 2020,720:134779.

[9]ZHANG W Q, LU J H, WANG Y Y, et al. Canagliflozin attenuates lipotoxicity in cardiomyocytes by inhibiting inflammation and ferroptosis through activating AMPK pathway[J]. International Journal of Molecular Sciences, 2023,24(1):858.

[10]HUMBERT-CLAUDE M, DUC D, DWIR D, et al. Tollip, an early regulator of the acute inflammatory response in the substantia nigra[J]. Journal of Neuroinflammation, 2016,13(1):303.

[11]DU Z R, GU Y, XIE X M, et al. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2021,214:105989.

[12]CHUNG Y C, SHIN W H, BAEK J Y, et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinsons disease[J]. Experimental & Molecular Medicine, 2016,48(1):e205.

[13]JIANG M C, CHEN X H, ZHAO X, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells[J]. European Journal of Pharmacology, 2016,786:53-59.

[14]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurology, 2021,20(5):385-397.

[15]DI MARZO V, PISCITELLI F. The endocannabinoid system and its modulation by phytocannabinoids[J]. Neurotherapeutics, 2015,12(4):692-698.

[16]BISOGNO T, MACCARRONE M. Endocannabinoid signaling and its regulation by nutrients[J]. BioFactors, 2014,40(4):373-380.

[17]NAGOOR MEERAN M F, SHARMA C, GOYAL S N, et al. CB2 receptor-selective agonists as candidates for targeting infection, inflammation, and immunity in SARS-CoV-2 infections[J]. Drug Development Research, 2021,82(1):7-11.

[18]JEAN-GILLES L, BRAITCH M, LATIF M L, et al. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells[J]. Acta Physiologica, 2015,214(1):63-74.

[19]CAPOZZI A, CAISSUTTI D, MATTEI V, et al. Anti-inflammatory activity of a CB2 selective cannabinoid receptor agonist: signaling and cytokines release in blood mononuclear cells[J]. Molecules, 2021,27(1):64.

[20]LI L, TAO Y H, FENG Z, et al. Inflammatory regulation by driving microglial M2 polarization: neuroprotective effects of cannabinoid receptor-2 activation in intracerebral hemorrhage[J]. Frontiers in Immunology, 2017,8:112.

[21]ASO E, JUVS S, MALDONADO R, et al. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice[J]. Journal of Alzheimers Disease: JAD, 2013,35(4):847-858.

[22]PAES-COLLI Y, AGUIAR A F L, ISAAC A R, et al. Phytocannabinoids and Cannabis-based products as alternative pharmacotherapy in neurodegenerative diseases: from hypothesis to clinical practice[J]. Frontiers in Cellular Neuroscience, 2022,16:917164.

[23]OIKONOMOU P, JOST W H. Randomized controlled trials on the use of cannabis-based medicines in movement disorders: a systematic review[J]. Journal of Neural Transmission, 2022,129(10):1247-1256.

[24]PEBALL M, WERKMANN M, ELLMERER P, et al. Nabilone for non-motor symptoms of Parkinsons disease: a randomized placebo-controlled, double-blind, parallel-group, enriched enrolment randomized withdrawal study (The NMS-Nab Study)[J]. Journal of Neural Transmission, 2019,126(8):1061-1072.

[25]LIU Q R, CANSECO-ALBA A, ZHANG H Y, et al. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol prefe-rence[J]. Scientific Reports, 2017,7(1):17410.

[26]G?MEZ-G?LVEZ Y, PALOMO-GARO C, FERNNDEZ-RUIZ J, et al. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinsons disease[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2016,64:200-208.

(本文編輯馬偉平)

猜你喜歡
受體炎癥
鍛煉肌肉或有助于抵抗慢性炎癥
脯氨酰順反異構(gòu)酶Pin 1和免疫炎癥
《感染、炎癥、修復(fù)》雜志版權(quán)轉(zhuǎn)讓約定
歡迎訂閱《感染、炎癥、修復(fù)》雜志
作用于GABA受體殺蟲劑的代謝、作用機(jī)制及開發(fā)研究
Toll樣受體在胎膜早破新生兒宮內(nèi)感染中的臨床意義
歡迎訂閱《感染、炎癥、修復(fù)》雜志
2,2’,4,4’-四溴聯(lián)苯醚對(duì)視黃醛受體和雌激素受體的影響
血管緊張素Ⅱ及其受體在疼痛中的研究進(jìn)展
炎癥小體與腎臟炎癥研究進(jìn)展