張 波,徐光朋,任慶新,3,秦笑笑
(1.沈陽建筑大學(xué)土木工程學(xué)院,遼寧 沈陽 110168;2.遼寧清創(chuàng)高科建筑工業(yè)化咨詢有限公司,遼寧 沈陽 110179;3.佛山科學(xué)技術(shù)學(xué)院交通與土木建筑學(xué)院,廣東 佛山 528225)
中空鋼管混凝土疊合柱是一種由核心鋼管和外圍鋼筋混凝土組成的新型組合構(gòu)件,在高層建筑發(fā)展中具有十分重要的作用。李國強(qiáng)[1]和韓林海[2]對(duì)鋼-混凝土組合結(jié)構(gòu)的耐火性能進(jìn)行研究。項(xiàng)凱[3]、L.Xu[4]和周侃[5]對(duì)均勻受火作用下鋼管混凝土疊合柱的耐火性能進(jìn)行了試驗(yàn)研究,指出試件在荷載和高溫作用下的破壞模態(tài)呈現(xiàn)整體屈曲,且角部混凝土發(fā)生剝落現(xiàn)象,外圍鋼筋混凝土能夠有效避免鋼管發(fā)生局部屈曲,提高構(gòu)件的耐火性能。侯舒蘭[6]進(jìn)行了考慮火災(zāi)降溫作用下鋼管混凝土疊合柱耐火性能理論研究,指出鋼管混凝土疊合柱在降溫階段仍有可能發(fā)生破壞。H.Lu[7]和韓林海等[2]對(duì)均勻受火作用下中空夾層鋼管混凝土柱的耐火性能進(jìn)行了試驗(yàn)研究,指出試件均發(fā)生整體屈曲破壞,內(nèi)置圓鋼管時(shí)未發(fā)生局部屈曲現(xiàn)象。發(fā)生火災(zāi)時(shí),由于結(jié)構(gòu)柱所處位置不同,受火邊界條件也不相同,有的結(jié)構(gòu)柱處于非均勻受火狀態(tài)[8],非均勻火災(zāi)作用下,構(gòu)件會(huì)出現(xiàn)不均勻的撓曲變形和附加偏心距,降低了構(gòu)件的耐火性能。葉友林[9]和張玉琢等[10]對(duì)三面受火方鋼管約束鋼筋混凝土柱耐火極限進(jìn)行了研究,指出試件均發(fā)生整體屈曲破壞。王明濤[11]指出非均勻受火作用下鋼管混凝土疊合柱外圍混凝土開始降溫時(shí),核心鋼管混凝土仍處于升溫階段,溫度滯后明顯。L.Xu等[12]對(duì)三面受火鋼管混凝土疊合柱耐火極限進(jìn)行了研究,提出了耐火極限實(shí)用計(jì)算公式。張玉琢等[13]對(duì)三面受火中空夾層鋼管混凝土柱耐火極限進(jìn)行理論研究,指出荷載比、長細(xì)比和界面尺寸是影響構(gòu)件耐火極限的主要參數(shù),并提出了耐火極限實(shí)用計(jì)算公式。其他學(xué)者也對(duì)構(gòu)件非均勻受火進(jìn)行理論研究,分析了影響構(gòu)件耐火極限的主要參數(shù),提出了剩余承載力實(shí)用計(jì)算公式[13-19]。
綜上所述,筆者繼續(xù)開展研究,利用ABAQUS有限元分析平臺(tái),選取合理的熱工參數(shù)和材料本構(gòu)模型對(duì)軸壓下三面受火中空鋼管混凝土疊合長柱的耐火性能進(jìn)行分析,并提出了耐火極限簡化計(jì)算公式。
采用“熱-力順序耦合”的方法對(duì)軸壓下三面受火中空鋼管混凝土疊合長柱耐火性能進(jìn)行分析。在溫度場計(jì)算模型中,材料的熱工參數(shù)按照T.T.Lie[20]的建議取值;假定中空鋼管混凝土疊合長柱三面全高度受火,采用ISO-834標(biāo)準(zhǔn)升溫曲線[21],初始溫度設(shè)為20 ℃;鋼管和混凝土采用DC3D8單元,縱筋和箍筋采用DC1D2單元;鋼管與混凝土的接觸面采用Tie約束,鋼筋籠采用內(nèi)嵌于混凝土中;受火面和背火面的熱對(duì)流系數(shù)分別取25W/(m2·℃)和9W/(m2·℃),綜合輻射系數(shù)取0.5[6]。
在力學(xué)性能計(jì)算模型中,鋼管和混凝土采用C3D8R單元,縱筋和箍筋采用T3D2單元;鋼管與混凝土相互作用在法向上定義為“硬接觸”,在切向上采用摩擦系數(shù)為0.6的庫倫摩擦[6];參考點(diǎn)RP1和RP2分別與中空鋼管混凝土疊合長柱底表面和柱頂表面耦合;初始偏心距為1/1 000L。中空鋼管混凝土疊合長柱的網(wǎng)格劃分和受火方式如圖1所示。
圖1 網(wǎng)格劃分與受火方式Fig.1 Meshing and fire mode
為驗(yàn)證常溫下中空鋼管混凝土疊合長柱力學(xué)有限元分析模型的正確性,與文獻(xiàn)[22-23]的空心鋼管混凝土疊合柱軸壓力學(xué)性能試驗(yàn)結(jié)果進(jìn)行對(duì)比。圖2為極限承載力計(jì)算值與試驗(yàn)結(jié)果對(duì)比曲線,Nuc/Nue的平均值為0.941,均方差為0.062,可見有限元模型可較好地預(yù)測軸壓極限承載力。圖3為軸向荷載-應(yīng)變關(guān)系計(jì)算值與試驗(yàn)結(jié)果對(duì)比曲線,通過對(duì)比發(fā)現(xiàn)有限元模型可較好地預(yù)測空心鋼管混凝土疊合柱軸向荷載-應(yīng)變關(guān)系曲線的發(fā)展趨勢。
圖2 極限承載力計(jì)算值與試驗(yàn)結(jié)果對(duì)比Fig.2 Comparison of calculation value and test result of ultimate bearing capacity
為驗(yàn)證中空鋼管混凝土疊合長柱有限元分析模型的正確性,與H.Lu[7]均勻受火方套圓中空夾層鋼管混凝土柱和唐貴和[24]三面受火方鋼筋混凝土柱溫度場試驗(yàn)數(shù)據(jù)進(jìn)行了對(duì)比;與H.Lu[7]均勻受火方套圓中空夾層鋼管混凝土柱和周侃[5]均勻受火方套圓鋼管混凝土疊合柱耐火極限試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比。
圖4為溫度-時(shí)間關(guān)系計(jì)算值與試驗(yàn)結(jié)果對(duì)比曲線,試件SC1在d=65 mm時(shí)的溫差稍大,這可能是因試件中空部分密封不好導(dǎo)致,且對(duì)于方套圓截面的計(jì)算值偏于安全。圖5為軸向位移-時(shí)間關(guān)系計(jì)算與試驗(yàn)結(jié)果對(duì)比曲線,可見試件SC1耐火極限計(jì)算值偏安全,試件S0-2耐火極限吻合較好。故有限元模型可較好地預(yù)測三面受火作用下方套圓組合結(jié)構(gòu)柱的耐火性能,且計(jì)算值偏于安全。
圖4 溫度-時(shí)間關(guān)系計(jì)算值與試驗(yàn)結(jié)果對(duì)比Fig.4 Comparison of the calculated value of temperature-time relationship with the experimental results
圖5 軸向位移-時(shí)間關(guān)系計(jì)算與試驗(yàn)曲線對(duì)比Fig.5 Calculation of axial displacement-time relationship and comparison of test curves
典型構(gòu)件設(shè)計(jì)參數(shù)為B×D×t×L=300 mm×150 mm×7.5 mm×3 800 mm、火災(zāi)荷載比n=0.4、長細(xì)比λ=44、縱向鋼筋為8Φ18(fy=335 MPa)、鋼管牌號(hào)為Q345(fys=345 MPa)、混凝土型號(hào)為C50(fcu=50 MPa)、箍筋為Φ8@100(fy=300 MPa)。
圖6為中空鋼管混凝土疊合長柱測點(diǎn)分布及溫度-時(shí)間關(guān)系曲線。通過對(duì)測點(diǎn)1~5的溫度對(duì)比發(fā)現(xiàn),三面受火中空鋼管混凝土疊合長柱截面溫度從受火面到背火面有逐漸下降的趨勢,鋼管表面的溫度要低于外圍混凝土溫度,說明外圍鋼筋混凝土對(duì)鋼管起到了保護(hù)作用。
圖6 溫度-時(shí)間曲線Fig.6 Temperature-time curves
圖7為三面受火中空鋼管混凝土疊合長柱的軸向位移-時(shí)間關(guān)系曲線。三面受火中空鋼管混凝土疊合柱變形主要分為3個(gè)階段:①膨脹階段,火災(zāi)作用初期,構(gòu)件外部溫度逐漸升高,隨著溫度升高,外部材料發(fā)生劣化,產(chǎn)生軸向膨脹變形;②加速變形階段,火災(zāi)作用中后期,構(gòu)件內(nèi)部溫度不斷升高,材料劣化速率迅速增加,此時(shí)材料的壓縮變形高于構(gòu)件的軸向膨脹變形;③破壞階段,火災(zāi)作用末期,構(gòu)件材料劣化達(dá)到臨界,構(gòu)件所能承受的有效荷載小于軸向外荷載,此時(shí)構(gòu)件的軸向壓縮變形急速增快,軸向變形與受火時(shí)間關(guān)系曲線近似垂線。
圖7 軸向位移-時(shí)間曲線Fig.7 Axial displacement time curves
圖8為中空鋼管混凝土疊合長柱的破壞模態(tài)。由圖可見,軸壓下三面受火中空鋼管混凝土疊合長柱發(fā)生了壓彎破壞,從整體破壞模態(tài)上看,構(gòu)件具體表現(xiàn)為彎曲,柱中側(cè)向撓度最大,破壞發(fā)生在柱中最大側(cè)向撓度處,此區(qū)域內(nèi)混凝土極易壓潰、開裂。
圖8 典型構(gòu)件破壞模態(tài)Fig.8 Typical component failure modes
圖9為中空鋼管混凝土疊合長柱在常溫和升溫時(shí)柱中截面混凝土縱向塑性應(yīng)變分布。由圖可見,常溫加載結(jié)束時(shí)刻,因荷載比較小,未出現(xiàn)縱向塑性應(yīng)變;在升溫破壞時(shí)刻,因加載時(shí)考慮了初始偏心距以及溫度場的不均勻分布產(chǎn)生的附加偏心距,柱中縱向塑性應(yīng)變主要出現(xiàn)在高溫受壓區(qū)和低溫受拉區(qū),且呈偏心分布,此區(qū)域內(nèi)的混凝土極易發(fā)生壓潰、開裂。
圖9 柱中截面混凝土縱向塑性應(yīng)變分布圖Fig.9 Longitudinal plastic strain distribution of concrete in column section
圖10為中空鋼管混凝土疊合長柱在常溫和升溫時(shí)柱中截面混凝土縱向應(yīng)力分布。由圖可見,常溫加載結(jié)束時(shí)刻,在考慮1/1 000L初始偏心距下,混凝土縱向應(yīng)力呈條帶分布;升溫破壞時(shí)刻,因受火面材料劣化程度較大,混凝土縱向壓應(yīng)力主要集中在受壓區(qū)靠近鋼管溫度相對(duì)較低處,混凝土縱向拉應(yīng)力主要集中在靠近背火面溫度相對(duì)較低處。
圖10 柱中截面混凝土縱向應(yīng)力分布圖Fig.10 Longitudinal stress distribution of concrete in column section
圖11為軸壓下三面受火中空鋼管混凝土疊合長柱各組成部分軸力-時(shí)間關(guān)系曲線。在常溫加載結(jié)束時(shí)刻(t=0),混凝土、縱筋和鋼管分擔(dān)的內(nèi)力分別占外荷載的66.11%,10.71%和23.18%。在火災(zāi)作用初期,外圍混凝土和縱筋的溫度遠(yuǎn)高于截面內(nèi)部鋼管,高溫下混凝土和縱筋熱膨脹變形更大,其強(qiáng)度在火災(zāi)作用初期損失較小,分擔(dān)的內(nèi)力增大。在火災(zāi)作用中后期,混凝土和縱筋的溫度不斷升高,高溫導(dǎo)致其強(qiáng)度損失嚴(yán)重,而鋼管受混凝土熱惰性保護(hù),其溫度較低,混凝土和縱筋卸載下來的內(nèi)力由鋼管分擔(dān),鋼管分擔(dān)的內(nèi)力增大。在升溫破壞時(shí)刻(t=83.87 min),混凝土、縱筋和鋼管分擔(dān)的內(nèi)力分別占外荷載的50.98%,13.49%和35.53%。
圖11 各組成部分的軸力-時(shí)間關(guān)系Fig.11 Axial force-time relationship of each component
中空鋼管混凝土疊合柱可看成由鋼管和外圍鋼筋混凝土疊合而成的一種組合構(gòu)件。為了解此類組合構(gòu)件在三面受火作用下是否比中空鋼筋混凝土柱的力學(xué)性能更優(yōu)秀,根據(jù)典型算例的設(shè)計(jì)參數(shù),建立了無鋼管的中空鋼筋混凝土柱的耐火性能有限元計(jì)算模型。圖12為中空鋼筋混凝土柱與中空鋼管混凝土疊合柱在三面受火作用下的軸向位移-時(shí)間關(guān)系曲線對(duì)比。從圖中可以看到,中空鋼管混凝土疊合柱的耐火極限明顯高于中空鋼筋混凝土柱,這是因?yàn)槲挥诮孛婧诵牡匿摴苁芡鈬炷恋陌?鋼管在高溫下的劣化程度遠(yuǎn)遠(yuǎn)小于外圍混凝土,使混凝土卸載下來的荷載逐漸轉(zhuǎn)移到截面核心位置的鋼管上,因而,中空鋼管混凝土疊合柱具有更好的耐火性能。
圖12 兩種柱的軸向位移-時(shí)間曲線對(duì)比Fig.12 Comparison of axial displacement-time curves of two kinds of columns
空心率(χ)、截面邊長(B)、長細(xì)比(λ)、荷載比(n)等參數(shù)對(duì)軸壓下三面受火中空鋼管混凝土疊合長柱耐火極限的影響如圖13所示。
圖13 參數(shù)對(duì)耐火極限的影響Fig.13 Influence of parameters on fire resistance
從圖13中看出,空心率對(duì)耐火極限的影響較弱,空心率為20%時(shí),中空鋼管混凝土疊合長柱的耐火極限最低。故從實(shí)際應(yīng)用和安全的角度出發(fā),空心率設(shè)定為20%。
耐火極限與截面邊長成正比,隨著截面邊長的增加,基于混凝土的熱惰性,導(dǎo)致溫度向截面內(nèi)傳遞變慢,延緩了截面內(nèi)部升溫,當(dāng)截面邊長由300 mm增加至600 mm、900 mm和1 200 mm時(shí),耐火極限增加了131.83%、221.81%和312.02%。
耐火極限與長細(xì)比成反比。當(dāng)長細(xì)比由22增加至44和66時(shí),耐火極限分別降低了25.46%和62.77%。隨長細(xì)比增加,構(gòu)件破壞形式由材料劣化引起的軸壓破壞變?yōu)橛蓜偠妊杆傧陆狄鸬膲簭澠茐摹?/p>
耐火極限與荷載比成反比。隨著荷載比的增加,構(gòu)件內(nèi)混凝土和鋼材允許劣化程度越小,當(dāng)荷載比由0.4增加至0.5、0.6和0.7時(shí),耐火極限分別降低了39.03%、65.71%和85.54%。故荷載比越大,構(gòu)件的耐火極限越小。
在參數(shù)分析的基礎(chǔ)上,對(duì)此類構(gòu)件的耐火極限進(jìn)行基于非線性回歸方法的曲線擬合。試件設(shè)計(jì)基本參數(shù)同典型構(gòu)件設(shè)計(jì)參數(shù),參數(shù)范圍取n為0.4~0.7、λ為22~66、B為300~1 200 mm。對(duì)軸壓下三面受火中空鋼管混凝土疊合長柱的耐火極限簡化計(jì)算,得到:
tR=(-0.031B2+85.118B-14 423.954)×λ-0.786(1-n)3.936+6.422.
(1)
圖14為筆者提出的耐火極限簡化計(jì)算公式計(jì)算值與有限元模型結(jié)果對(duì)比,兩者比值的平均值為0.940 3,均方差為0.143 7,可見兩者吻合程度較好。
圖14 耐火極限計(jì)算值與有限元結(jié)果對(duì)比Fig.14 Comparison of calculated fire resistance limits and finite element results
(1)因材料高溫劣化和溫度不均勻分布,軸壓下三面受火中空鋼管混凝土疊合長柱隨著受火時(shí)間增加,軸向荷載逐漸向內(nèi)部鋼管轉(zhuǎn)移,截面內(nèi)力發(fā)生重分布,在升溫破壞時(shí)刻構(gòu)件柱均發(fā)生壓彎破壞,與長細(xì)比無關(guān)。
(2)在軸向荷載和三面受火共同作用下,中空鋼管混凝土疊合柱比中空鋼筋混凝土柱具有更好的耐火性能。
(3)提出的耐火極限簡化公式計(jì)算值與有限元計(jì)算結(jié)果吻合較好。