国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

晉城市大氣VOCs污染特征及來源解析

2023-09-25 01:36:28張鵬輝胡冬梅牛偉利龔興曉閆雨龍牛月圓董佳奇
中國環(huán)境科學(xué) 2023年9期
關(guān)鍵詞:潛勢芳香烴晉城市

張鵬輝,胡冬梅*,彭 林,牛偉利,龔興曉,閆雨龍,牛月圓,董佳奇

晉城市大氣VOCs污染特征及來源解析

張鵬輝1,胡冬梅1*,彭 林2,牛偉利3,龔興曉4,閆雨龍2,牛月圓1,董佳奇1

(1.華北電力大學(xué)環(huán)境科學(xué)與工程學(xué)院,資源環(huán)境系統(tǒng)優(yōu)化教育部重點實驗室,北京 102206;2.北京交通大學(xué)環(huán)境學(xué)院,北京 100044;3.晉城市生態(tài)環(huán)境局,山西 晉城 048000;4.山西省晉城生態(tài)環(huán)境監(jiān)測中心,山西 晉城 048000)

采集晉城市環(huán)境空氣揮發(fā)性有機(jī)物(VOCs)樣品,分析不同風(fēng)向下VOCs組分特征,運(yùn)用特征比值法和正定矩陣因子分析模型(PMF)解析VOCs來源,采用混合單顆粒拉格朗日積分軌跡(HYSPLIT)追蹤夏季典型污染過程區(qū)域VOCs傳輸貢獻(xiàn).結(jié)果表明,偏南風(fēng)和偏北風(fēng)主導(dǎo)風(fēng)向下晉城市大氣VOCs濃度分別為(19.4±7.1)和(33.3±17.3)μg/m3,偏北風(fēng)時濃度約比偏南風(fēng)時高近70%,北部工業(yè)園區(qū)對市區(qū)VOCs影響較大;各組分按濃度大小排序為烷烴>芳香烴>烯烴>炔烴,偏北風(fēng)時烷烴和芳香烴濃度顯著高于偏南風(fēng)時,炔烴濃度相仿.偏南風(fēng)和偏北風(fēng)時臭氧生成潛勢(OFP)分別為(50.5±17.1)和(84.30±44.0)μg/m3;不同風(fēng)向下各組分貢獻(xiàn)均為烯烴>烷烴>芳香烴>炔烴;北風(fēng)風(fēng)向下各VOCs組分及OFP小時變化幅度明顯高于南風(fēng)時,尤其早晚間和交通流高峰時段較為顯著,北部工業(yè)園區(qū)和機(jī)動車排放源對市區(qū)影響突出.偏北風(fēng)和偏南風(fēng)時大氣VOCs均受老化氣團(tuán)控制,不同風(fēng)向下OFP及實際O3小時濃度變化呈相反趨勢,河南北部接壤區(qū)域存在強(qiáng)潛在源區(qū),其對晉城市夏季VOCs貢獻(xiàn)率約為25.3%.本地燃燒源、機(jī)動車排放源和工業(yè)源是晉城市VOCs管控的重點源,尤其要重點加強(qiáng)北部工業(yè)企業(yè)和機(jī)動車排放源管控.

揮發(fā)性有機(jī)物(VOCs);污染特征;臭氧生成潛勢(OFP);來源解析

大氣臭氧(O3)已經(jīng)成為夏季影響我國城市環(huán)境空氣質(zhì)量的首要污染物[1-4],其主要前體物為揮發(fā)性有機(jī)物(VOCs)和氮氧化物(NO)[5].北京、天津、長治等多城市O3敏感性分析指示城區(qū)O3多為VOCs主控區(qū)[6-9],準(zhǔn)確識別VOCs來源對于大氣O3污染防控至關(guān)重要.

VOCs組分眾多、來源復(fù)雜,控制難度較大[10].研究表明,汽車尾氣、煤炭燃燒和液化石油氣/天然氣(LPG/NG)是北京市VOCs重要源,且其貢獻(xiàn)隨環(huán)保管控政策的實施呈明顯時間變化,隨著燃煤管控實施,燃煤源對VOCs貢獻(xiàn)從2014年26.3%~45.1%,下降到2016年22.3%,同時汽車尾氣貢獻(xiàn)呈上升趨勢,從44.1%上升至50.0%[11-13].此外,城市產(chǎn)業(yè)布局也對VOCs有重要影響.雄安市拉鏈加工、油墨印刷、聚乙烯吹膜行業(yè)排放的苯系物OFP貢獻(xiàn)率分別為80.87%、89.63%、85.97%[14].除本地排放外,VOCs還受到區(qū)域傳輸?shù)挠绊?上海市VOCs區(qū)域傳輸貢獻(xiàn)為22.1%~41.9%,且呈現(xiàn)上升趨勢[15]. VOCs及O3污染區(qū)域聯(lián)防聯(lián)控的需求愈加強(qiáng)烈和迫切.

晉城市位于山西省東南部,主要產(chǎn)業(yè)為煤炭、鋼鐵、煤化工、焦化、水泥等,是典型的重工業(yè)型城市. 2019~2022年晉城市O3濃度分別為201μg/m3, 176μg/m3,180μg/m3,181μg/m3,近年來夏季O3污染形勢嚴(yán)峻,且常與河北南部、河南北部、山東西南部城市構(gòu)成區(qū)域性O(shè)3污染.本研究以晉城市O3污染較重的夏季(2022年6月)為研究時段,采集大氣VOCs樣品,解析不同主導(dǎo)風(fēng)向下晉城市VOCs污染特征、主要來源及O3生成潛勢,為晉城市大氣VOCs及O3污染防控提供科學(xué)依據(jù).

1 材料與方法

1.1 樣品采集

晉城市是山西省東南部重要的重工業(yè)城市,與河南、山東等區(qū)域接壤,其地理位置及大氣VOCs采樣點位如圖1所示.大氣VOCs樣品采集點位為國家空氣質(zhì)量監(jiān)測站點(E112.863539,N35.493759),該采樣點位于晉城市區(qū)人群密集處,能夠較好反映晉城市區(qū)VOCs污染特征及人群健康影響.

采樣時間為2022年6月1日~31日,其中5d為O3清潔天,26d為O3污染天,采集設(shè)備為國家VOCs組分站在線監(jiān)測設(shè)備,采樣時間分辨率為1h,每天24個樣品.采樣期間,同步記錄當(dāng)日的溫度、風(fēng)速、風(fēng)向等氣象條件.

圖1 晉城市地理位置及大氣VOCs采樣點分布

1.2 數(shù)據(jù)預(yù)處理

將VOCs組分?jǐn)?shù)據(jù)按濃度從小到大排序,當(dāng)VOCs組分?jǐn)?shù)據(jù)濃度大于MAX或者小于MIN時,認(rèn)定其為離群值[16],MAX及MIN計算如式(2)和(3).除去離群值后共得到有效VOCs數(shù)據(jù)589組,將小時VOCs數(shù)據(jù)與氣象數(shù)據(jù)對應(yīng)共同用于污染特征分析.

式中:為第25百分位數(shù);為第75百分位數(shù);為第25百分位數(shù)與第75百分位數(shù)差值的絕對值; MAX為最大范圍;MIN為最小范圍.

1.3 研究方法

1.3.1 臭氧生成潛勢 VOCs作為O3前體物,其O3生成潛勢受VOCs濃度、反應(yīng)活性和氣象條件等因素共同影響.Carter[17]提出最大增量反應(yīng)活性(MIR)概念來評估理想條件下VOCs物種通過化學(xué)反應(yīng)產(chǎn)生O3的能力,計算公式為:

式中:OFP指第個VOCs物種的臭氧生成潛勢,μg/m3;MIR指第個VOCs物種的最大增量反應(yīng)系數(shù),以O(shè)3/VOCs計,g/g,不同組分的MIR值見文獻(xiàn)[17].

1.3.2 PMF模型 正定矩陣因子分析模型(PMF)是一種多變量因子分析模型,?;诖髿釼OCs組分觀測數(shù)據(jù)用于VOCs來源解析[18].PMF模型計算原理由式(5)給出,樣本數(shù)據(jù)的不確定度由式(6)計算.

式中:E為次觀測的污染物的濃度;為因子;AB分別表示源成分譜和源貢獻(xiàn);ε為殘差;為樣本的不確定度;為誤差比例;為VOCs種類的實測濃度;為VOCs種類的檢出限.在PMF模型的源分配中,目標(biāo)函數(shù)采用迭代最小化算法求解,且值必須盡可能小.目標(biāo)函數(shù)定義在式(7)中.

式中:σ表示樣本的不確定偏差.

1.3.3 HYSPLIT4模式 除本地排放外,VOCs污染也會受到區(qū)域污染物傳輸?shù)挠绊?本研究針對晉城市夏季典型O3污染過程,采用混合單顆粒拉格朗日積分軌跡(HYSPLIT)計算氣團(tuán)軌跡,追蹤VOCs區(qū)域污染來源[19-21].采用Meteoinfo軟件中的HYSPLIT模型,模擬了觀測內(nèi)500m高度到達(dá)采樣點的48h后軌,聚類分析了不同觀測周期下氣團(tuán)軌跡的來源方向[22].

CWT方法基于污染物濃度對軌跡進(jìn)行加權(quán),定量反映軌跡的濃度貢獻(xiàn).本研究采用CWT法對晉城市VOCs潛在源區(qū)進(jìn)行劃分,將研究區(qū)域劃分為0.2°× 0.2°網(wǎng)格單元陣列.CWT由以下式確定:

式中:C為單元中后向軌跡的平均權(quán)重濃度;C是軌跡對應(yīng)的VOCs濃度;t是軌跡在單元中停留的時間;權(quán)重函數(shù)(n)用于減少不確定性;n代表單元中端點的數(shù)量,ave為每個網(wǎng)格的平均軌跡端點數(shù).

2 結(jié)果與討論

2.1 晉城市夏季VOCs及組分特征

共分析56種VOCs組分,其中烷烴29種、芳香烴16種、烯烴10種、炔烴1種.將風(fēng)向角度為90°~270°的風(fēng)定義為偏南風(fēng),風(fēng)向角度為0°~90°和270°~360°的風(fēng)定義為偏北風(fēng).觀測期間,偏南風(fēng)出現(xiàn)的頻數(shù)為402,頻率為55.8%;偏北風(fēng)出現(xiàn)的頻數(shù)為318,頻率為44.2%.如圖2所示,晉城市夏季偏北風(fēng)向下總VOCs平均質(zhì)量濃度為(33.3±17.3)μg/m3,其中烷烴和芳香烴含量最高,分別為(21.1±12.4)和(7.4±4.5)μg/m3,占比為63.4%和22.1%;烯烴和炔烴含量偏低,分別為(2.9±1.4)和(1.9±1.6)μg/m3,占比為8.7%和5.8%.其中,濃度較高的VOCs化合物主要有異戊烷、乙烷、丙烷、正丁烷、苯、甲苯、乙炔、正戊烷、乙烯、異丁烷等,以異戊烷和乙烷濃度最高,分別為(4.0±3.6)和(3.9±1.4)μg/m3.偏南風(fēng)作用時晉城市總VOCs平均質(zhì)量濃度(19.4±7.1)μg/m3,約比偏北風(fēng)作用下低41.7%,其中烷烴和芳香烴含量依然最高(占比60.9%和18.0%,烯烴和炔烴含量偏低(占比11.7%和9.4%),濃度最高的VOCs化合物為乙烷和丙烷.南風(fēng)和北風(fēng)作用下晉城市VOCs組分占比表明,偏北風(fēng)向下工業(yè)源、燃燒源和溶劑使用源對晉城市區(qū)VOCs的影響更大.

晉城市夏季VOCs濃度組成與國內(nèi)其他城市比較見表1.晉城市VOCs濃度顯著低于鄭州、成都、陽泉等地,與北京、天津、太原接近,VOCs濃度水平較低.從組分看,天津、鄭州和太原等城市與晉城市烷烴占比相當(dāng).相關(guān)研究表明,烷烴主要來自機(jī)動車尾氣排放、油氣揮發(fā)以及燃燒[23].晉城市烯烴占比與北京、鄭州接近,其中乙烯濃度貢獻(xiàn)較高,乙烯等烯烴類物質(zhì)主要來自機(jī)動車排放、燃燒和溶劑使用[24].炔烴所包括的物質(zhì)主要為乙炔,乙炔是燃燒源的指示物種[25],晉城市炔烴的占比明顯高于其他城市,表明燃燒源對晉城市VOCs的貢獻(xiàn)較大.晉城市芳香烴占比相對較低,與天津、太原和陽泉相當(dāng),芳香烴主要來自溶劑使用源[26],其揮發(fā)性會隨著溫度上升增強(qiáng).

圖2 偏北風(fēng)和偏南風(fēng)下晉城大氣VOCs排名前10物種

表1 晉城市夏季VOCs濃度組成與國內(nèi)其他城市比較

圖3 晉城市夏季大氣VOCs各組分OFP及貢獻(xiàn)率

臭氧生成潛勢(OFP)可定量反映VOCs組分對O3生成的貢獻(xiàn),南風(fēng)和北風(fēng)風(fēng)向下OFP值分別為(50.5±17.1)和(84.30±44.0)μg/m3,各組分貢獻(xiàn)均為烯烴>烷烴>芳香烴>炔烴,且北風(fēng)風(fēng)向下烷烴、芳香烴和烯烴OFP值均高于南風(fēng),炔烴相差不大(見圖3).

偏北風(fēng)向下晉城市TVOC、烷烴、烯烴、芳香烴、OFP生成濃度及NO小時濃度高于偏南風(fēng)向,尤其早晚間和交通流高峰時段較為顯著(見圖4(a)、4(b)和4(h)),而南風(fēng)風(fēng)向下各VOCs組分及OFP變化較小,一定程度指示了北部工業(yè)園區(qū)和機(jī)動車排放源對市區(qū)影響較為突出.

值得注意的是,不同風(fēng)向下的O3濃度則呈相反趨勢,偏南風(fēng)作用下晉城市O3小時濃度均高于偏北風(fēng)作用下(圖4(c)),表明除本地生成的O3外,南部可能存在較多的區(qū)域污染物傳輸貢獻(xiàn).

圖4 偏北風(fēng)和南風(fēng)下晉城市大氣主要污染物小時濃度變化特征

2.2 VOCs來源解析

2.2.1 比值分析 苯和甲苯比值(B/T)常用來分析大氣中VOCs的主要來源,當(dāng)B/T值<0.2、0.2~1、1~1.5、1.5~2.2和>2.5時,分別指示大氣中VOCs受溶劑使用源、機(jī)動車排放源、燃燒源、燃煤和生物質(zhì)燃燒的影響較大[33-35].雖然苯、乙苯和間對二甲苯具有一定的同源性,但在大氣中的老化速度有明顯差異,二甲苯與自由基的反應(yīng)速度約為乙苯的3倍,因此可用乙苯與間/對-二甲苯的比值(E/X)或苯與間/對-二甲苯比值(B/X)來判斷氣團(tuán)的壽命[36].當(dāng)E/X>0.33或B/X>1.7時,初步判斷該區(qū)域氣團(tuán)老化程度較大[31,37].異戊烷與正戊烷在大氣中的存活時間相似,通過其比值(I/N)可初步分析VOCs的可能來源.我國隧道實驗和汽油揮發(fā)I/N值分別為2.9和3.8,而燃煤源I/N值介于0.56~0.8[38-39],當(dāng)I/N值在3.1左右時VOCs主要來源于汽車和工業(yè)共同排放,通常是由工業(yè)油氣的逸散揮發(fā)、機(jī)動車尾氣和蒸發(fā)損失等原因引起[40].

2022年夏季南風(fēng)風(fēng)向下晉城市B/T在0.4~3.3之間,平均值為(1.0±0.5);北風(fēng)風(fēng)向下為0.2~6.2,平均值為(1.4±0.9),初步判斷南風(fēng)風(fēng)向下VOCs排放受機(jī)動車排放和燃燒源的影響較大,北風(fēng)風(fēng)向下受燃燒源的影響較大,且燃燒源中燃煤源的影響較大.南風(fēng)和北風(fēng)風(fēng)向下E/X分別在0.3~1.2和0.2~0.8,均值分別為(0.5±0.1)和(0.4±0.1);B/X分別在0.3~13.0和0.2~15.6,均值分別為(3.0±2.3)和(2.8±2.2),采樣期間位于夏季且晴天居多,VOCs反應(yīng)較快,加之區(qū)域傳輸?shù)淖饔?因而初步判斷晉城市環(huán)境空氣中VOCs受老化氣團(tuán)控制.南風(fēng)風(fēng)向下I/N在1.6~6.5之間,北風(fēng)風(fēng)向下在1.3~5.5之間,平均值分別為(2.5±0.4)和(2.5±0.5),判斷晉城市VOCs受汽油揮發(fā)的影響較大.綜上,不同風(fēng)向下B/T、E/X、B/X和I/N值結(jié)果較為接近,初步研判為VOCs排放主要受汽油揮發(fā)、機(jī)動車排放及燃燒源影響.

2.2.2 PMF分析 采用PMF5.0模型對晉城市區(qū)環(huán)境空氣VOCs進(jìn)行定量來源解析,最終選取源指示性較強(qiáng)和較穩(wěn)定的34種VOCs參與模型運(yùn)算.因子1中載荷貢獻(xiàn)最大的物種是異戊二烯,認(rèn)作植物排放源[41].因子2中載荷較大的物種有乙烷、丙烷、異戊烷、正丁烷、甲苯、苯、乙苯、間對二甲苯等,認(rèn)作機(jī)動車排放源[42-43].因子3中,鄰、間、對二甲苯、1,2,4-三甲基苯、1,2,4-三甲基苯等物種載荷貢獻(xiàn)較高,認(rèn)作溶劑使用源[44-45].乙烷、丙烷除天然氣和液化石油氣揮發(fā)外,燃燒源中也有排放,丙烯等C2~C4烯烴也來自于燃煤,乙炔和乙烯是燃煤源示蹤劑,故因子4是主要來自于工業(yè)燃煤的燃燒源[43].因子5中載荷貢獻(xiàn)較大的物種除C2~C6等短鏈烴外,還有甲苯、乙苯和間/對-二甲苯等芳香烴,這些物種通常是鋼鐵、焦化、煤化工等行業(yè)在產(chǎn)品生產(chǎn)中的排放,故因子5認(rèn)作工業(yè)源[46].

經(jīng)計算(圖6),南風(fēng)風(fēng)向下晉城市夏季VOCs排放主要來源為燃燒源(28.7%)、機(jī)動車排放源(26.1%)和工業(yè)源(23.2%),北風(fēng)風(fēng)向下主要為工業(yè)源(31.4%)、機(jī)動車排放源(31.1%)和燃燒源(22.5%).因此,燃燒源、機(jī)動車排放源和工業(yè)源是晉城市VOCs管控的重點源,北風(fēng)時尤其要重點加強(qiáng)北部工業(yè)企業(yè)排放和北部機(jī)動車排放源管控.

圖6 不同風(fēng)向下晉城大氣VOCs來源貢獻(xiàn)

2.3 區(qū)域傳輸對晉城市VOCs影響分析

對2022年晉城市夏季典型O3污染過程進(jìn)行6h后向軌跡模擬分析,共589條氣團(tuán)軌跡.氣團(tuán)聚類獲得4條典型污染路徑(圖7(a)).路徑1為西北路徑,經(jīng)內(nèi)蒙古、陜西北部南下進(jìn)入晉城,包含276條氣團(tuán)軌跡,占所有軌跡的46.9%;路徑2為正南路徑,氣團(tuán)由河南沿正北向上,占26.1%;路徑3為東南路徑,從安徽北部進(jìn)入河南,占11.4%;路徑4為偏東路徑,起源于京津冀地區(qū)由偏南回流引起,比例為15.6%.路徑1~4平均VOCs濃度分別為30.0,24.4,29.0和19.6μg/m3,表明西北方向氣團(tuán)和東南路徑氣團(tuán)對城市VOCs影響最大,其次為正南路徑.

CWT定量解析結(jié)果表明,晉城市大氣VOCs強(qiáng)潛在源區(qū)集中在晉城本地北部區(qū)域和東南部與焦作接壤區(qū)域(圖7(b)),一方面印證了北部工業(yè)企業(yè)及機(jī)動車排放源是晉城市VOCs主要來源,另一方面也定量展示了河南北部區(qū)域存在強(qiáng)潛在源區(qū),其對晉城市夏季VOCs貢獻(xiàn)率約為25.3%.

3 結(jié)論

3.1 偏南風(fēng)和偏北風(fēng)主導(dǎo)時晉城市VOCs濃度分別為(19.4±7.1)和(33.3±17.3)μg/m3,后者較前者高近70%;不同風(fēng)向下各組分貢獻(xiàn)均為烷烴>芳香烴>烯烴>炔烴,偏北風(fēng)時烷烴和芳香烴濃度顯著高于偏南風(fēng)時,炔烴濃度相仿.

3.2 偏南風(fēng)和偏北風(fēng)時晉城市OFP值分別為(50.5±17.1)和(84.3±44.0)μg/m3;不同風(fēng)向下各組分貢獻(xiàn)均為烯烴>烷烴>芳香烴>炔烴;北風(fēng)風(fēng)向下各VOCs組分及OFP變化較大,尤其早晚間和交通流高峰時段較為顯著,南風(fēng)時變幅較小,北部工業(yè)園區(qū)和北部機(jī)動車排放源對市區(qū)影響較為突出.

3.3 偏北風(fēng)和偏南風(fēng)時晉城大氣VOCs均受老化氣團(tuán)控制;不同風(fēng)向下OFP及實際O3小時濃度變化呈相反趨勢,除晉城本地排放外,河南北部接壤區(qū)域存在強(qiáng)潛在源區(qū),其對晉城市夏季VOCs貢獻(xiàn)率約為25.3%.

3.4 燃燒源、機(jī)動車排放源和工業(yè)源是晉城市VOCs管控的重點源,尤其要重點加強(qiáng)北部工業(yè)企業(yè)排放和北部機(jī)動車排放源管控.

[1] Li K, Jacob D J, Liao H, et al. Anthropogenic drivers of 2013~2017 trends in summer surface ozone in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2):422-427.

[2] Lu X, Zhang L, Wang X, et al. Rapid Increases in warm-season surface ozone and resulting health impact in China since 2013 [J]. Environmental Science & Technology Letters, 2020,7(4):240-247.

[3] 楊 俊,布 多,劉 君,等.我國城市臭氧污染防治現(xiàn)狀研究綜述[J]. 環(huán)境與可持續(xù)發(fā)展, 2022,47(4):86-90.Yang J, Bu D, Liu J, et al.Research review on urban ozone pollution control in China [J]. Environment and sustainable development, 2020,7(4):240-247.

[4] 陳多宏,沈 勁,陳瑤瑤,等.2020年珠三角區(qū)域臭氧污染特征及主要成因分析[J/OL]. 中國環(huán)境科學(xué), 2022,DOI:10.19674/ j.cnki.issn1000-6923.20220616.007. Chen D H, Shen J, Chen Y Y, et al. Characteristics and main causes of ozone pollution in the pearl river delta in 2020 [J/OL]. China Environmental Science, 2022,DOI:10.19674/j.cnki.issn1000-6923. 20220616.007.

[5] 崔虎雄,吳迓名,高 松,等.上海城區(qū)典型污染過程VOCs特征及臭氧潛勢分析[J]. 環(huán)境科學(xué), 2011,32(12):3537-3542. Cui H X, Wu Y M, Gao S, et al. Characteristics of ambient VOCs and their role in O3formation: a typical air pollution episode in Shanghai urban area [J]. Environmental Science, 2011,32(12):3537-3542.

[6] Zhang X, Li H, Wang X Z, et al. Heavy ozone pollution episodes in urban Beijing during the early summertime from 2014 to 2017: Implications for control strategy [J]. Environmental Pollution, 2021, DOI:10.1016/j.envpol.2021.117162.

[7] 張 蕊,孫雪松,王 裕,等.北京市城區(qū)夏季大氣VOCs變化特征及臭氧生成潛勢[J]. 環(huán)境科學(xué), 2023,44(4):1954-1961. Zhang R, Sun X S, Wang Y, et al. Variation characteristics and ozone formation potential of ambient VOCs in urban Beijing in summer [J]. Environmental Science, 2023,44(4):1954-1961.

[8] 陳澤鑫,古金霞,霍光耀,等.天津市揮發(fā)性有機(jī)物污染特征與來源及其O3生成潛勢[J]. 環(huán)境污染與防治, 2022,44(2):201-205. Chen Z X, Gu J X, Huo G Y, et al.Pollution characteristics and sources of volatile organic compounds and their O3formation potential in Tianjin [J]. Environmental Pollution & Control, 2022,44(2):201- 205.

[9] 張翔宇.長治市環(huán)境空氣中揮發(fā)性有機(jī)物來源解析及環(huán)境影響研究[D]. 北京:華北電力大學(xué), 2022. Zhang X Y. Source analysis and environmental impact study of volatile organic compounds in Changzhi [D]. Beijing: North China Electric Power University, 2022.

[10] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003,103(12):4605-4638.

[11] Li J, Xie S D, Zeng L M, et alCharacterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014 [J]. Atmospheric Chemistry and Physics, 2015,15(14):7945-7959.

[12] Shi Y Q, Xi Z Y, Simayi M, et al. Scattered coal is the largest source of ambient volatile organic compounds during the heating season in Beijing [J]. Atmospheric Chemistry and Physics, 2020,20(15):9351- 9369.

[13] Yang W Q, Zhang Y L, Wang X M, et al. Volatile organic compounds at a rural site in Beijing: influence of temporary emission control and wintertime heating [J]. Atmospheric Chemistry and Physics, 2018, 18(17):12663-12682.

[14] 王學(xué)臣,王 帥,劉大喜,等.典型工業(yè)源揮發(fā)性有機(jī)物排放特征及臭氧生成潛勢分析[J]. 環(huán)境污染與防治, 2020,42(11):1387-1391. Wang X C, Wang S, Liu D X, et al. VOCs emission characteristics and ozone formation potential analysis of typical industrial sources [J]. Environmental Pollution & Control, 2020,42(11):1387-1391.

[15] Liu Y H, Wang H L, Jing S G, et al. Strong regional transport of volatile organic compounds (VOCs) during wintertime in Shanghai megacity of China [J]. Atmospheric Environment, 2021,244,117940.

[16] Frigge M, Hoaglin D C, Iglewicz B. Some Implementa- tions of the Boxplot [J]. The American Statistician, 1989,43:50-54.

[17] Carter W P L. Development of ozone reactivity scales for volatile organic compounds [J]. Air & Waste, 1994,44(7):881-899.

[18] Norris G, Duvall R, Brown S, et al. EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide [R]. Washington, DC, USA: EPA, 2014.

[19] 徐祥德,周 麗,周秀驥,等.城市環(huán)境大氣重污染過程周邊源影響域[J]. 中國科學(xué):地球科學(xué), 2004,34(10):958-966. Xu X D, Zhou L, Zhou X J, et al. The influence domain of the surrounding sources in the process of heavy atmospheric pollution in urban environment [J]. Scientia Sinica(Terrae), 2004,34(10):958-966.

[20] 王 茜.利用軌跡模式研究上海大氣污染的輸送來源[J]. 環(huán)境科學(xué)研究, 2013,26(4):357-363. Wang Q. Study of air pollution transportation source in shanghai using trajectory model [J]. Research of Environmental Sciences, 2013,26(4): 357-363.

[21] Wang Y. Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data [J]. Environmental Modelling & Software, 2009,24(8):938-939.

[22] Davis R E, Normile C P, Sitka L, et al. A comparison of trajectory and air mass approaches to examine ozone variability [J]. Atmospheric Environment, 2010,44(1):64-74.

[23] 陸嘉暉,吳 影,劉慧琳,等.南寧市冬季揮發(fā)性有機(jī)物特征及其來源分析[J]. 中國環(huán)境科學(xué), 2022,42(8):3616-3625. Lu J H, Wu Y, Liu H L, et, al.Characteristics and sources of volatile organic compounds (VOCs) in winter over Nanning of China [J]. China Environmental Science, 2022,42(8):3616-3625.

[24] 鄧思欣,劉永林,司徒淑娉,等.珠三角產(chǎn)業(yè)重鎮(zhèn)大氣VOCs污染特征及來源解析[J]. 中國環(huán)境科學(xué), 2022,41(7):2993-3003. Deng S X, Liu Y L, Situ S P, et, al.Characteristics and source apportionment of volatile organic compounds in an industrial town of Pearl River Delta. [J]. China Environmental Science, 2022,41(7): 2993-3003.

[25] 馬 靜,燕瑩瑩,孔少飛,等.武漢軍運(yùn)會前后臭氧及其前體物的特征和來源[J]. 中國環(huán)境科學(xué), 2022,42(7):3023-3032. Ma J, Yan Y Y, Kong S F, et, al.Characteristics and sources of ozone and its precursors around the Wuhan Military Games [J]. China Environmental Science, 2022,42(7):3023-3032

[26] 張浩然,劉 敏,王小嫚,等.南昌市2021年春季大氣VOCs污染特征和來源分析[J]. 中國環(huán)境科學(xué), 2022,42(3):1040-1047. Zhang H R, Liu M, Wang X M, et, al.Characteristics and sources of atmospheric VOCs during spring of 2021in Nanchang [J]. China Environmental Science, 2022,42(3):1040-1047.

[27] Zhang L H, Li H, Wu Z H, et al. Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment[J]. Journal of Environmental Sciences (China), 2020,95:190-200.

[28] 王文美,高璟赟,肖致美,等.天津市夏季不同臭氧濃度級別VOCs特征及來源[J]. 環(huán)境科學(xué), 2021,42(8):3585-3594. Wang W M, Gao J Y, Xiao Z M, et al. Characteristics and sources of VOCs at different ozone concentration levels in Tianjin [J]. Environmental Science, 2021,42(8):3585-3594.

[29] 齊一謹(jǐn),王玲玲,倪經(jīng)緯,等.鄭州市夏季大氣VOCs污染特征及來源解析[J]. 環(huán)境科學(xué), 2021,43(12):5429-5441. Qi Y J, Wang L L, Ni J W, et al.Characteristics and source apportionment of ambient summer volatile organic compounds in Zhengzhou, China [J]. Environmental Science, 2021,43(12):5429- 5441.

[30] 司雷霆,王 浩,李 洋,等.太原市夏季大氣VOCs污染特征及臭氧生成潛勢[J]. 中國環(huán)境科學(xué), 2019,39(9):3655-3662. Si L T, Wang H, Li Y, et al. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan [J]. China Environmental Science, 2019,39(9):3655-3662.

[31] 牛月圓,劉倬誠,李如梅,等.陽泉市區(qū)夏季揮發(fā)性有機(jī)物污染特征、來源解析及其環(huán)境影響 [J]. 環(huán)境科學(xué), 2020,41(7):3066-3075. Niu Y Y, Liu Z C, Li R M, et al. Characteristics, source apportionment, and environmental lmpact of volatile organic compounds in summer in Yangquan [J]. Environmental Science, 2020,41(7):3066-3075.

[32] 徐晨曦,陳軍輝,韓 麗,等.成都市2017年夏季大氣VOCs污染特征、臭氧生成潛勢及來源分析 [J]. 環(huán)境科學(xué)研究, 2019,32(4):619- 626. Xu C X, Chen J H, Han L, et al. Analyses of pollution characteristics, ozone formation potential and sources of VOCs atmosphere in Chengdu city in summer 2017[J]. Research of Environmental Science, 2019,32(4):619-626.

[33] 張翼翔,尹沙沙,袁明浩,等.鄭州市春季大氣揮發(fā)性有機(jī)物污染特征及源解析[J]. 環(huán)境科學(xué), 2019,40(10):4372-4381. Zhang Y X, Yin S S, Yuan M H, et al.Characteristics and source apportionment of ambient VOCs in spring in Zhengzhou [J]. Environmental Science, 2019,40(10):4372-4381.

[34] 張 棟,于世杰,王 楠,等.鄭州市冬季VOCs污染特征、來源及健康風(fēng)險評估[J]. 環(huán)境科學(xué)學(xué)報, 2020,40(8):2935-2943. Zhang D, Yu S J, Wang N, et al. Characteristics, sources and health risk assessment of ambient VOCs in winter of Zhengzhou [J]. Acta Scientiae Circumstantiae, 2020,40(8):2935-2943.

[35] Liu Y F, Kong L W, Liu X G, et al. Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China [J]. Atmospheric Pollution Research, 2021,12(3):33-46.

[36] Hui L R, Liu X G, Tan Q W, et al. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China [J]. Science of The Total Environment, 2019,650(2):2624-2639.

[37] Yurdakul S, Civan M, Kuntasal ?, et al. Temporal variations of VOC concentrations in Bursa atmosphere [J]. Atmospheric Pollution Research, 2018,9(2):189-206.

[38] 聶 燁,彭 瑾,王祖武,等.黃石市大氣揮發(fā)性有機(jī)物污染特征及源解析[J]. 環(huán)境科學(xué)與技術(shù), 2021,44(S1):183-190. Nie Y, Peng J, Wang Z W, et al. Pollution characteristics, ozone formation potential, and sources of atmospheric volatile organic compounds in huangshi [J]. Environmental Science & Technology, 2021,44(S1):183-190.

[39] Zheng H, Kong S F, Xing X L, et al. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in Northwest China for 1year [J]. Atmospheric Chemistry and Physics, 2018,18(7):4567- 4595.

[40] Bari M A, Kindzierski W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment [J]. Science of The Total Environment, 2018,631-632: 627-640.

[41] Hui L R, Liu X G, Tan Q W, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China [J]. 2018,192:55-71.

[42] Mo Z W, Shao M, Lu S H. Compilation of a source profile database for hydrocarbon and OVOC emissions in China [J]. Atmospheric Environment, 2016,143:209-217.

[43] Song Y, Shao M, liu Y, et al. Source apportionment of ambient volatile organic compounds in Beijing [J]. Environmental Science & Technology, 2007,41(12):4348-4353.

[44] Zhong Z M, Sha Q E, Zheng J Y, et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China [J]. Science of The Total Environment, 2017,583:19-28.

[45] Cai C J, Geng F H, Tie X X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China [J]. Atmospheric Environment, 2010,44(38):5005-5014.

[46] 王鐵宇,李奇鋒,呂永龍.我國VOCs的排放特征及控制對策研究[J]. 環(huán)境科學(xué), 2013,34(12):4756-4763. Wang T Y, Li Q F, LV Y L. Characteristics and countermeasures of volatile organic compounds (VOCs) emission in China [J]. Environmental Science, 2013,34(12):4756-4763.

Characteristics and sources of atmospheric VOCs pollution in Jincheng.

ZHANG Peng-hui1, HU Dong-mei1*, PENG Lin2, NIU Wei-li3, GONG Xing-xiao4, YAN Yu-long2, NIU Yue-yuan1, DONG Jia-qi1

(1.Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China;2.School of the Environment, Beijing Jiaotong University, Beijing 100044, China;3.Jincheng Municipal Bureau of Ecology and Environment, Jincheng 048000, China;4.Jincheng Ecological Environment Monitoring Center of Shanxi Province, Jincheng 048000, China)., 2023,43(9):4525~4533

Volatile organic compounds (VOCs) samples were collected at environmental sampling sites in Jincheng, and the characteristics of VOCs components under different wind direction were analyzed. The VOC sources were identified by diagnostic ratios and positive matrix factorization (PMF), the hybrid single-particle lagrangian integrated trajectory (HYSPLIT) was used to trace the contribute of typical contaminated areas in summer. The results showed that the average VOC concentration was (19.4 ±7.1) μg/m3under southerly wind, and (33.3±17.3) μg/m3under northerly wind.VOCs concentration in northerly wind was nearly 70% higher than that in southerly wind, and northern industrial park had a great impact on VOCs concentration in urban areas. The components concentration showed the characteristics ofalkane > aromatic > alkene >alkyne. The concentration of alkane and aromatic was significantly higher in the northerly wind than that in the southerly wind, and the concentration of alkyne was similar in different wind directions.The average concentration of ozone formation potential (OFP) was (50.5±17.1) μg/m3under southerly wind, and (84.30±44.0) μg/m3under northerly wind.Under different wind direction, the contribution of components showed the characteristics of alkene > alkanes > aromatics > alkynes. The hourly variation range of VOCs components and OFP under the north wind direction was significantly higher than that under the south wind direction,especially in the morning and evening and during the rush hour.The northern industrial park and the vehicular emissions had a prominent impact on the urban area.Atmospheric VOCs were controlled by aging air mass under northerly and southerly winds, and the changes of OFP and O3concentration showed the opposite trends under different wind directions.There was a strong potential source area in the northern border region of Henan, and its percentage contribution to Jincheng summer VOCs was about 25.3%.Local combustion, vehicular emissions and industrial process were the key sources of VOCs control in Jincheng, especially to strengthen the control of industrial and vehicular emissions in the northern region of Jincheng City.

volatile organic compounds (VOCs);pollution characteristics;ozone formation potential (OFP);source apportionment

X511

A

1000-6923(2023)09-4525-09

張鵬輝(1997-),男,山西晉城人,碩士研究生,主要從事大氣污染防治研究.發(fā)表論文1篇.2445757400@qq.com.

張鵬輝1,胡冬梅1*,彭 林,等.晉城市大氣VOCs污染特征及來源解析 [J]. 中國環(huán)境科學(xué), 2023,43(9):4525-4533.

Zhang P H, Hu D M, Peng L, et al. Characteristics and sources of atmospheric VOCs pollution in Jincheng [J]. China Environmental Science, 2023,43(9):4525-4533.

2023-02-17

大氣重污染成因與治理攻關(guān)項目(DQGG202109);國家重點研發(fā)計劃項目(2019YFC0214203,2019YFC0214202);國家自然科學(xué)基金資助項目(21976053)

* 責(zé)任作者, 副教授, huhu3057@163.com

猜你喜歡
潛勢芳香烴晉城市
晉城市財政局舉辦預(yù)算一體化系統(tǒng)技能競賽
山西財稅(2023年8期)2023-12-28 08:05:46
晉城市沐春雨食品有限責(zé)任公司
賀蘭山沿山地區(qū)強(qiáng)對流潛勢預(yù)報方法研究
臨渙選煤廠浮選效果評價與尾煤再選潛勢分析
氨對甲苯二次有機(jī)氣溶膠生成潛勢影響的實驗研究
能源工程(2021年2期)2021-07-21 08:39:54
系列芳香烴在土壤中洗脫規(guī)律的分子動力學(xué)模擬
晉城市:農(nóng)民春耕生產(chǎn)有序推進(jìn)
晉城市舉辦慶祝祖國成立七十周年展演
“適者生存”?
雜文月刊(2017年24期)2017-03-03 07:42:55
先天性心臟病相關(guān)性肺動脈高壓肺組織芳香烴受體的表達(dá)及其與肺血管重構(gòu)的相關(guān)性研究
晴隆县| 兴业县| 台北县| 调兵山市| 方正县| 道真| 利辛县| 新河县| 阜南县| 昌吉市| 登封市| 延川县| 玉环县| 武胜县| 渭源县| 汾西县| 九江县| 孟津县| 上杭县| 宜兴市| 开封县| 海阳市| 巴林右旗| 禄劝| 黄梅县| 新乡县| 宁阳县| 朝阳市| 广宗县| 聂荣县| 申扎县| 万安县| 旬阳县| 长武县| 资溪县| 图木舒克市| 申扎县| 奉化市| 麻江县| 哈密市| 临夏县|