国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

嗜黏蛋白艾克曼菌在防治糖尿病中的作用研究進(jìn)展

2023-10-15 02:58楊玥吳曉康
關(guān)鍵詞:作用機(jī)制中醫(yī)藥糖尿病

楊玥 吳曉康

摘要:腸道菌群與疾病的相關(guān)性成為近年來(lái)的研究熱點(diǎn),糖尿病的發(fā)病與慢性低度炎癥及腸道菌群失調(diào)密切相關(guān),干預(yù)腸道菌群失調(diào)成為目前預(yù)防及治療糖尿病的研究熱點(diǎn)。嗜黏蛋白艾克曼菌(Akkermansiamuciniphila,A.muciniphila)可通過(guò)改善腸道屏障功能、抑制機(jī)體慢性炎癥、上調(diào)血糖調(diào)節(jié)相關(guān)激素如胰高血糖素樣肽-1(GLP-1)水平等作用機(jī)制改善糖尿病相關(guān)癥狀,是預(yù)防及治療糖尿病的潛在靶點(diǎn)。A.muciniphila豐度降低還是糖尿病早期診斷的標(biāo)志。目前研究表明單獨(dú)運(yùn)用A.muciniphila后糖尿病患者機(jī)體炎癥狀態(tài)等相關(guān)癥狀明顯改善,且已有研究顯示人體對(duì)A.muciniphila有較好的安全性和耐受性。因此,A.muciniphila可作為一種潛在的新型益生菌治療糖尿病。臨床上用于治療糖尿病的措施如二甲雙胍、中醫(yī)藥及功能性飲食等的作用機(jī)制均發(fā)現(xiàn)與A.muciniphila豐度升高有關(guān),其中中醫(yī)藥治療糖尿病效果顯著,具有多靶點(diǎn)、多途徑、系統(tǒng)性等優(yōu)勢(shì)。研究發(fā)現(xiàn)A.muciniphila是中藥干預(yù)糖尿病的潛在靶點(diǎn),中藥干預(yù)后,糖尿病相關(guān)指標(biāo)改善與A.muciniphila豐度呈正相關(guān)。以上證據(jù)為研究中醫(yī)藥與腸道菌群相互作用從而治療糖尿病的作用機(jī)制提供了新的思路。本文綜述了嗜黏蛋白艾克曼菌在糖尿病防治中的作用及其與中醫(yī)藥防治糖尿病的相關(guān)性,以期為糖尿病預(yù)防及治療提供新舉措。

關(guān)鍵詞:嗜黏蛋白艾克曼菌;糖尿??;中醫(yī)藥;作用機(jī)制

中圖分類號(hào): R587.1? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào):1000-503X(2023)01-0108-09

DOI:10.3881/j.issn.1000.503X.14497

Research Progress on the Role of Akkermansia Muciniphila in Prevention and Treatment of Diabetes Mellitus

YANG Yue1,WU Xiaokang2

1Xinjin District Peoples Hospital,Chengdu 611430,China

2Clinical Laboratory,The Second Affiliated Hospital of Xian Jiaotong University,Xian 710004,China

Corresponding author:WU Xiaokang Tel:029-87679358,E-mail:wxk111506@sohu.com

ABSTRACT:The correlation between intestinal flora and diseases has become a hot research topic in recent years.Since the incidence of diabetes is closely related to chronic low-grade inflammation and intestinal flora disorders,the intervention of intestinal flora imbalance has become a research focus in the prevention and treatment of diabetes mellitus.Akkermansia muciniphila(A.muciniphila) stands out among the intestinal flora as it can alleviate the diabetes-related symptoms by regulating glucagon-like peptide 1 (GLP-1) level,improving intestinal barrier function,and inhibiting chronic inflammation,which is a potential target for the prevention and treatment of diabetes.The reduction in the abundance of A.muciniphila is a marker for the early diagnosis of diabetes.The available studies have demonstrated that the administration with A.muciniphila alone can significantly attenuate inflammation and other related symptoms of diabetic patients.Moreover,A.muciniphila has good safety and can be tolerated by human body.Therefore,A.muciniphila has the potential to serve as a new species of probiotics for the treatment of diabetes.The clinical measures for treating diabetes,such as metformin,Chinese herbal medicines,and functional diet,have been confirmed to be associated with the increased abundance of A.muciniphila.Among them,Chinese herbal medicines can treat diabetes via multiple targets and pathways in a systemic manner.Studies have reported that A.muciniphila is a potential target of Chinese herbal medicines intervening in diabetes.After the administration of Chinese herbal medicines,the improvement of diabetes-related indicators was positively correlated with the abundance of A.muciniphila.The above evidence provides a new idea for the research on the interaction between Chinese herbal medicines and intestinal flora in the treatment of diabetes.Therefore,this paper reviewed the role of A.muciniphila in diabetes and the correlation between the abundance of A.muciniphila and the administration of Chinese herbal medicines,aiming to provide new measures for the prevention and treatment of diabetes.

Key words:Akkermansia muciniphila;diabetes;traditional Chinese medicine;mechanism of action

Acta Acad Med Sin,2023,45(1):108-116

糖尿病是以胰島素抵抗和胰島素分泌不足為主要特征的代謝性疾病。據(jù)國(guó)際糖尿病聯(lián)盟最新報(bào)道,2019年全球糖尿病患病率預(yù)計(jì)為9.3%(4.63億人),其中2型糖尿病(diabetes mellitus type 2,T2DM)占90%[1]。糖尿病患者與日俱增,對(duì)社會(huì)造成極大危害,它是成人十大死亡原因之一,占全球死亡人數(shù)的11.3%[2]。糖尿病的上升趨勢(shì)可歸因于城市化快速發(fā)展,不均衡飲食、久坐等因素的影響。因此,加強(qiáng)糖尿病的預(yù)防及探尋有效的治療措施尤為重要。腸道菌群是與人類和諧共存的微生物,并在調(diào)節(jié)宿主的代謝、免疫等生理過(guò)程中發(fā)揮重要作用[3]。大量研究表明腸道菌群與T2DM的生理病理過(guò)程密切相關(guān),如腸道菌群失調(diào)參與葡萄糖代謝、破壞腸道屏障功能、誘發(fā)機(jī)體慢性低度炎癥、誘導(dǎo)短鏈脂肪酸及膽汁酸代謝紊亂等[4-6]。在42項(xiàng)關(guān)于人類T2DM和腸道菌群關(guān)系的研究中,較一致的報(bào)道了雙歧桿菌屬(Bifidobacterium)、擬桿菌屬(Bacteroides)、糞桿菌屬(Faecalibacterium)、艾克曼菌(Akkermansia.Muciniphila,A.muciniphila)和玫瑰菌(Roseburia)豐度與糖尿病呈負(fù)相關(guān)[7]。近年研究發(fā)現(xiàn)A.muciniphila可通過(guò)改善腸道屏障功能、抑制慢性炎癥和調(diào)節(jié)機(jī)體代謝,改善糖尿病癥狀,是一種改善T2DM癥狀的潛在益生菌。事實(shí)上,許多目前用于治療糖尿病的措施如膳食多酚、二甲雙胍和中醫(yī)藥治療糖尿病的作用機(jī)制均與A.muciniphila豐度增加密切相關(guān)[8-11]。此外,單獨(dú)補(bǔ)充A.muciniphila可顯著改善T2DM癥狀,甚至可抑制飲食誘導(dǎo)的肥胖等相關(guān)代謝癥狀[12-13]。中醫(yī)藥防治糖尿病具有多靶點(diǎn)、多途徑、系統(tǒng)性等得天獨(dú)厚的優(yōu)勢(shì)[14],大量動(dòng)物和人類研究表明,中醫(yī)藥可通過(guò)調(diào)控腸道菌群失調(diào)改善糖尿病相關(guān)癥狀。最近研究表明中藥活性成分及中藥復(fù)方均可增加糖尿病患者A.muciniphila的豐度,且A.muciniphila豐度增加與血糖水平、葡萄糖耐量和胰島素抵抗改善呈正相關(guān),表明A.muciniphila是中醫(yī)藥治療糖尿病的潛在靶點(diǎn)[15-19]。A.muciniphila不僅是預(yù)防及治療糖尿病的潛在靶點(diǎn),在T2DM病發(fā)前可以檢測(cè)到A.muciniphila豐度降低,有助于T2DM早期診斷和干預(yù)[20-23]。A.muciniphila還有潛力作為預(yù)防及治療糖尿病的新型益生菌,現(xiàn)已經(jīng)實(shí)現(xiàn)了A.muciniphila作為下一代新型益生菌的重要步驟,發(fā)現(xiàn)通過(guò)巴氏殺菌不僅可提高其效果,還可以提高其穩(wěn)定性和有效期,臨床研究表明人體對(duì)A.muciniphila有較好的安全性和耐受性且A.muciniphila可改善人體多種代謝參數(shù),A.muciniphila與宿主相互作用的機(jī)制也正在被闡明[20,24-27]。本文綜述了A.muciniphila在糖尿病中的作用及與中藥干預(yù)作用的相關(guān)性(圖1)。

基因組測(cè)序表明,其許多基因編碼黏蛋白降解酶[31]。A.muciniphila可產(chǎn)生60多種酶,包括糖苷酶、硫酸酯酶和唾液酸酶,它們降解寡糖鏈以適應(yīng)富含黏液和內(nèi)源性糖蛋白的生活環(huán)境[32]。Van Herreweghen等[33]研究了黏蛋白、A.muciniphila和腸道菌群之間的相互作用關(guān)系,結(jié)果顯示黏蛋白是影響腸道菌群組成和代謝的重要調(diào)節(jié)劑,在受控的體外腸道菌群生態(tài)系統(tǒng)模型中添加黏蛋白可成功誘導(dǎo)腸道微生物群的組成和代謝變化,包括A.muciniphila、Ruminococcus、Clostridium clusterⅩⅣa菌群豐度增加。A.muciniphila不是嚴(yán)格的厭氧菌,而是對(duì)氧敏感的厭氧菌,這是它與其他厭氧菌競(jìng)爭(zhēng)的優(yōu)勢(shì)[34]。因此A.muciniphila的定植并不嚴(yán)格依賴于飲食,具有獨(dú)特的生存優(yōu)勢(shì)。A.muciniphila具有降解代謝黏蛋白產(chǎn)生乙酸和丙酸的特異性,可為其他腸道菌群生長(zhǎng)提供營(yíng)養(yǎng)[35],促進(jìn)腸道菌群組成及結(jié)構(gòu)的形成。同時(shí)A.muciniphila能促進(jìn)黏蛋白的分泌。黏蛋白是A.muciniphila生長(zhǎng)代謝的主要基質(zhì),由腸道上皮杯狀細(xì)胞分泌,Kim等[36]研究表明A.muciniphila代謝產(chǎn)生的乙酸和丙酸可能是使分泌黏蛋白的杯狀細(xì)胞成熟的關(guān)鍵因素。因此A.muciniphila在腸道菌群穩(wěn)態(tài)和“宿主-腸道菌群”相互作用中所扮演的角色值得探索。

A.muciniphila與糖尿病的關(guān)系

T2DM的特征是在遺傳背景、環(huán)境因素(如飲食習(xí)慣)和腸道菌群三者相互作用下誘導(dǎo)的胰島素抵抗和血糖升高。越來(lái)越多的證據(jù)表明,腸道微生物群通過(guò)調(diào)節(jié)能量平衡、葡萄糖代謝和與肥胖相關(guān)的慢性炎癥狀態(tài),在體內(nèi)代謝平衡中起著決定性作用[37-38]。A.muciniphila是腸道菌群的核心菌群之一[39]。研究表明,A.muciniphila與人體健康有著緊密的聯(lián)系,其豐度降低與T2DM、肥胖等代謝性疾病密切相關(guān)[22,40-41]。Hnninen等[42]研究發(fā)現(xiàn)糖尿病的高發(fā)病率與A.muciniphila缺乏有關(guān),將A.muciniphila轉(zhuǎn)移至小鼠腸道可降低小鼠糖尿病的發(fā)病率。眾多動(dòng)物和人類的研究表明,糖尿病患者腸道菌群中A.muciniphila菌群豐度降低[23,43]。一項(xiàng)研究表明,健康人腸道菌群中疣微菌門(Verrucomicrobia)豐富度較高,Verrucomicrobia是健康人的特征菌群,而A.muciniphila是這個(gè)門中唯一被鑒定的成員[39]。此外,Ahmad等[44]對(duì)T2DM患者腸道菌群特征進(jìn)行分析發(fā)現(xiàn),Verrucomicrobia在T2DM患者中較少甚至完全缺失,意味著A.muciniphila在T2DM中豐富度降低甚至完全缺失。Shih等[22]招募了79例患有T2DM和難治性糖尿病的患者,用線性判別分析效應(yīng)大小和熱圖對(duì)腸道菌群操作分類單元進(jìn)行了分析,結(jié)果在T2DM患者中發(fā)現(xiàn)了幾種潛在的微生物標(biāo)志物,其中包括A.muciniphila,還發(fā)現(xiàn)A.muciniphila的相對(duì)比例與糖化血紅蛋白(HbA1c)呈顯著負(fù)相關(guān)。

此外,研究表明目前預(yù)防和治療糖尿病的措施與A.muciniphila豐度增加相關(guān)。例如,補(bǔ)充穿心蓮內(nèi)酯可通過(guò)增加小鼠A.muciniphila的豐度改善糖尿病小鼠的葡萄糖不耐受和胰島素抵抗,甚至可預(yù)防db/db小鼠發(fā)生T2DM[11]。Régnier等[45]研究發(fā)現(xiàn)與對(duì)照組相比,補(bǔ)充大黃可以增加A.muciniphila豐度,預(yù)防高脂肪和高蔗糖飲食誘導(dǎo)小鼠肥胖和糖尿病的發(fā)生。單獨(dú)補(bǔ)充A.muciniphila也可對(duì)機(jī)體產(chǎn)生有益作用。Plovier等[20]用A.muciniphila處理小鼠發(fā)現(xiàn)其可以降低高脂飲食(high-fat diet,HFD)喂養(yǎng)小鼠甘油三酯的濃度,糾正HFD誘發(fā)的高膽固醇血癥,改善血脂異常、葡萄糖不耐受和胰島素抵抗,巴氏殺菌后的A.muciniphila效力增加,上述作用更強(qiáng)。口服A.muciniphila的糖尿病大鼠顯示肝糖原產(chǎn)生降低,脂多糖(lipopolysaccharide,LPS)水平降低,高密度脂蛋白膽固醇(high density liptein cholesterol,HDL-C)水平升高,腸道菌群的物種α多樣性顯著增加。大鼠體內(nèi)群落豐富度和腸道菌群多樣性的降低可以通過(guò)口服活的或巴氏殺菌的A.muciniphila得到適度恢復(fù),這些結(jié)果表明A.muciniphila可以改善肝功能,降低糖/脂毒性,減輕氧化應(yīng)激,抑制炎癥,并使宿主的腸道菌群正?;?,從而改善T2DM[41]。Yassour等[21]開展的一項(xiàng)隊(duì)列研究結(jié)果顯示,在T2DM病發(fā)作前可以檢測(cè)到腸道菌群的變化,即A.muciniphila的豐度降低先于糖尿病發(fā)生。由此可見,A.muciniphila在糖尿病發(fā)生發(fā)展中發(fā)揮重要的作用,同時(shí)也是許多飲食、藥物治療糖尿病的中間媒介,而且A.muciniphila的單獨(dú)補(bǔ)充也可改善糖尿病癥狀。A.muciniphila可能有助于T2DM早期診斷和干預(yù),是未來(lái)治療T2DM的一個(gè)潛在靶點(diǎn)。對(duì)促進(jìn)A.muciniphila生長(zhǎng)的藥物及益生元的研究,可能為T2DM的預(yù)防和治療提供新策略。但是A.muciniphila改善糖尿病癥狀的作用機(jī)制仍未被完全闡明,探究腸道菌群與宿主間相互作用的機(jī)制,也是未來(lái)研究的重點(diǎn)。

A.muciniphila改善糖尿病癥狀的作用機(jī)制

腸道菌群失調(diào)與糖尿病發(fā)病密切相關(guān)。以往研究表明,腸道菌群及其代謝產(chǎn)物參與宿主的代謝、機(jī)體的免疫調(diào)節(jié)、維持胃腸道穩(wěn)態(tài)以及影響腦功能與宿主行為[46]。腸道菌群失調(diào)在糖尿病發(fā)生過(guò)程中的作用機(jī)制主要是破壞腸道屏障功能,導(dǎo)致機(jī)體慢性低度炎癥、短鏈脂肪酸代謝紊亂及膽汁酸代謝失調(diào),從而誘發(fā)機(jī)體胰島素抵抗。A.muciniphila在糖尿病防治中發(fā)揮的有益作用與改善上述代謝紊亂過(guò)程密切相關(guān),近年來(lái)發(fā)現(xiàn)的A.muciniphila改善糖尿病癥狀的相關(guān)作用機(jī)制如下。

A.muciniphila與腸道屏障功能 腸道屏障主要由機(jī)械屏障、化學(xué)屏障、免疫及生物屏障構(gòu)成,能有效阻止外來(lái)病原體、毒素和細(xì)菌的入侵。機(jī)械屏障結(jié)構(gòu)基礎(chǔ)為上皮細(xì)胞、細(xì)胞間緊密連接與菌膜,化學(xué)屏障則主要由腸黏膜上皮分泌的黏液構(gòu)成,黏液層的厚度可調(diào)節(jié)腸道屏障的通透性。腸道屏障功能受損,腸道通透性增加是誘發(fā)T2DM患者代謝性炎癥和胰島素抵抗的關(guān)鍵因素。A.muciniphila定植于腸道黏液外層,可降解黏蛋白為腸上皮細(xì)胞及其他腸道菌群供能,還可促進(jìn)黏蛋白分泌增加黏液層的厚度,維持腸道屏障完整性,降低腸道黏膜屏障的通透性[47]。Amuc_1100是A.muciniphila外膜蛋白最豐富的蛋白質(zhì)之一,claudin 3、Ocld in是兩種腸道緊密連接蛋白,A.muciniphila及Amuc_1100被證明可上調(diào)編碼緊密連接蛋白的基因Cldn3(編碼claudin 3)、Ocln(編碼Ocld in)的表達(dá),改善腸道屏障功能,此外,研究還表明Amuc_1100通過(guò)Toll樣受體(Toll-like receptor,TLR)2信號(hào)轉(zhuǎn)導(dǎo)參與A.muciniphila與宿主的相互作用,A.muciniphila的外膜蛋白Amuc_1100通過(guò)激活TLR2上調(diào)基因Cldn3、Ocln的表達(dá),可見A.muciniphila可以調(diào)節(jié)包括occludin和claudin 3在內(nèi)的緊密連接蛋白的表達(dá)。與對(duì)照組相比,用Amuc_1100處理HFD喂養(yǎng)小鼠,編碼大麻素受體1 (Cannabinoid subtype 1,CB1)的Cnr1基因表達(dá)降低,說(shuō)明小鼠CB1降低,而CB1的激活與腸道通透性增加有關(guān),進(jìn)一步說(shuō)明A.muciniphila可調(diào)節(jié)腸道屏障的通透性[20]。一項(xiàng)研究評(píng)估了A.muciniphila來(lái)源的細(xì)胞外小泡(A.muciniphila-derived extracellular vesicle,AmEV)在調(diào)節(jié)腸道通透性中的作用,發(fā)現(xiàn)與T2DM患者相比,健康對(duì)照組的糞便樣本中有更多的AmEV。此外,給予AmEV增強(qiáng)了糖尿病小鼠腸道屏障的緊密連接功能,減少了體重增加,改善了葡萄糖耐量。還研究了AmEV對(duì)人結(jié)腸上皮細(xì)胞Caco-2細(xì)胞的直接作用,發(fā)現(xiàn)AmEV通過(guò)激活A(yù)MP依賴蛋白激酶(AMP-activated protein kinase,AMPK)來(lái)調(diào)節(jié)Caco-2細(xì)胞緊密連接蛋白o(hù)ccludin表達(dá),降低Caco-2細(xì)胞的屏障的通透性。AmEV以AMPK依賴的方式改善了HFD誘導(dǎo)的糖尿病小鼠的腸屏障完整性[48]。Reunanen等[34]的研究表明,A.muciniphila可顯著提高腸上皮細(xì)胞Caco-2的單層細(xì)胞完整性。另一項(xiàng)研究給予糖尿病小鼠A.muciniphila后觀察到葡萄糖不耐受改善和杯狀細(xì)胞數(shù)量的增加,A.muciniphila的豐度和杯狀細(xì)胞的數(shù)量之間呈正相關(guān)[49]。Plovier等[20]的研究也表明用A.muciniphila處理糖尿病小鼠,改善了葡萄糖不耐受,降低了胰島素抵抗指數(shù),且小鼠回腸中杯狀細(xì)胞密度增加,黏液分泌增多。杯狀細(xì)胞數(shù)量的增加可能是A.muciniphila給藥后葡萄糖水平改善的基礎(chǔ)[49]。腸上皮細(xì)胞是A.muciniphila調(diào)節(jié)腸道通透性和代謝功能的重要部位。以上研究表明A.muciniphila改善腸道屏障的作用機(jī)制為:(1)調(diào)節(jié)腸道緊密連接蛋白的表達(dá),增強(qiáng)腸道緊密連接的功能:A.muciniphila產(chǎn)生AmEV是有效的AMPK激活劑,激活A(yù)MPK途徑調(diào)節(jié)Caco-2細(xì)胞緊密連接蛋白o(hù)ccludin表達(dá),增強(qiáng)腸道屏障緊密連接,降低腸道屏障通透性。(2)增加腸道黏液層的厚度:A.muciniphila可促進(jìn)黏液分泌。(3)調(diào)節(jié)腸上皮細(xì)胞:A.muciniphila可顯著提高腸上皮細(xì)胞Caco-2的單層細(xì)胞完整性,促進(jìn)杯狀細(xì)胞成熟。(4)調(diào)節(jié)與腸道屏障相關(guān)基因表達(dá):A.muciniphila使編碼緊密連接蛋白基因Cldn3(編碼claudin 3)和Ocln(編碼Ocld in)表達(dá)增加,編碼CB1的基因Cnr1表達(dá)降低。

A.muciniphila與炎癥 LPS又稱為內(nèi)毒素,是革蘭陰性菌細(xì)胞壁成分,與脂多糖結(jié)合蛋白(lipopolysaccharide binding protein,LBP)形成復(fù)合物,識(shí)別免疫細(xì)胞表面的CD14/TLR4 受體后,激活核因子-κB(NF-κB)炎癥信號(hào)通路,引發(fā)促炎因子如白細(xì)胞介素(interleukin,IL)-1、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、IL-6等的分泌,從而導(dǎo)致機(jī)體代謝性內(nèi)毒素血癥[50]。糖尿病患者腸道菌群特征是革蘭陽(yáng)性菌/革蘭陰性菌比例失調(diào),革蘭陰性菌比例相對(duì)升高,因此LPS來(lái)源增多。糖尿病患者腸道通透性增加,釋放更多LPS進(jìn)入血液循環(huán),代謝性內(nèi)毒素血癥在體內(nèi)長(zhǎng)期累積形成慢性低度炎癥,誘發(fā)胰島素抵抗[38,51]。代謝性內(nèi)毒素血癥的改善可能導(dǎo)致代謝表型的改善,如葡萄糖耐量和體重。因此,干預(yù)體內(nèi)慢性炎癥是治療糖尿病的重要環(huán)節(jié)。

A.muciniphila對(duì)糖尿病炎癥癥狀改善具有顯著作用。Zhang等[41]研究表明糖尿病大鼠口服A.muciniphila與二甲雙胍具有相同作用,降低了LPS和TNF-α的炎癥標(biāo)志物水平,且A.muciniphila可選擇性地促進(jìn)某些有益菌的生長(zhǎng)并減輕全身炎癥。有研究表明,小鼠補(bǔ)充A.muciniphila后慢性低度炎癥減輕,肝臟和肌肉中LBP和瘦素(leptin)的血漿水平降低,LPS/LBP下游信號(hào)失活,例如C-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)減少,NF-κB抑制劑蛋白和NF-κB抑制劑因子A(IKBA)表達(dá)增加,血漿中抗炎因子α-生育酚、β-谷甾醇增加,胰島素抵抗和葡萄糖耐量改善[13]。LPS觸發(fā)的炎癥級(jí)聯(lián)反應(yīng)途徑中包括NF-κB和JNK激活[52]。其他幾項(xiàng)研究也表明A.muciniphila通過(guò)抑制LPS 與NF-κB途徑中TLR4和TLR2的結(jié)合,發(fā)揮抗炎作用[53-54]。一種重要的炎癥標(biāo)志物TNF-α的水平升高,在抑制胰島素信號(hào)級(jí)聯(lián)中胰島素受體底物-1(insulin receptor substrate-1,IRS-1)和蛋白激酶B(Akt)底物的磷酸化中起作用,最終誘導(dǎo)胰島素抵抗,而有研究發(fā)現(xiàn)A.muciniphila可以通過(guò)降低TNF-α水平改善機(jī)體胰島素抵抗[55-56]。以上研究為A.muciniphila抑制炎癥作用提供了潛在的機(jī)制:即A.muciniphila降低LBP水平的同時(shí),還抑制了LPS/LBP下游信號(hào)如JNK和NF-κB的表達(dá),表明A.muciniphila可誘導(dǎo)LPS炎癥信號(hào)通路失活,改善代謝性內(nèi)毒素血癥和隨后的局部炎癥級(jí)聯(lián)反應(yīng)。A.muciniphila還可降低炎癥因子TNF-α水平,干預(yù)胰島素信號(hào)級(jí)聯(lián)通路,改善胰島素抵抗。

A.muciniphila對(duì)GLP-1的調(diào)節(jié) 胰高血糖素樣肽(glucagon-like peptide,GLP)-1,是回腸內(nèi)分泌細(xì)胞分泌的一種腦腸肽,目前主要作為T2DM藥物作用的靶點(diǎn)。GLP-1是通過(guò)腸島軸發(fā)揮降低血糖,抑制胰島β細(xì)胞凋亡,刺激β細(xì)胞復(fù)制、新生和分化的作用[57]。A.muciniphila可調(diào)節(jié)GLP-1和GLP-2的內(nèi)源性水平,而GLP-1和GLP-2是參與調(diào)節(jié)葡萄糖代謝和腸道屏障功能重要激素[58]。最新一項(xiàng)研究表明,口服A.muciniphila顯著降低了HFD小鼠體重,改善了葡萄糖耐量,增加了胰島素和β-氧化基因標(biāo)志物的血清水平,且與血清中GLP-1濃度增高密切相關(guān),A.muciniphila的16S rRNA基因計(jì)數(shù)與血清GLP-1濃度呈正相關(guān),與葡萄糖不耐受水平呈負(fù)相關(guān)[59]。其作用機(jī)制為:A.muciniphila分泌一種84 kD的蛋白質(zhì),命名為P9(該蛋白質(zhì)也存在于人類A.muciniphila中),P9與細(xì)胞間黏附分子(intercelluar adhesion molecule,ICAM) -2相互作用,從而產(chǎn)生級(jí)聯(lián)信號(hào)誘導(dǎo)GLP-1分泌,P9對(duì)GLP-1的分泌具有特異性作用。此外還發(fā)現(xiàn)P9不僅可以誘導(dǎo)GLP-1分泌,還可以誘導(dǎo)IL-6分泌[59]。據(jù)報(bào)道,運(yùn)動(dòng)可誘導(dǎo)IL-6分泌增加,刺激腸L細(xì)胞和胰腺α細(xì)胞分泌GLP-1,從而促進(jìn)胰島素分泌,降低血糖[60]。且P9和IL-6共同促進(jìn)GLP-1分泌具有累加效應(yīng)。P9對(duì)葡萄糖穩(wěn)態(tài)的影響在IL-6敲除小鼠中被完全消除,表明IL-6對(duì)于P9誘導(dǎo)GLP-1分泌及其對(duì)葡萄糖穩(wěn)態(tài)的影響是必不可少的。A.muciniphila通過(guò)P9從腸道誘導(dǎo)IL-6的分泌,對(duì)機(jī)體代謝穩(wěn)態(tài)具有有益的作用。以往研究表明,A.muciniphila可在人外周血誘導(dǎo)單核細(xì)胞高表達(dá)IL-6,改變腸道總GLP-1水平,從而降低胰島素抵抗的風(fēng)險(xiǎn)[41,54]。這些結(jié)果表明A.muciniphila可以促進(jìn)GLP-1的分泌,改善機(jī)體葡萄糖耐量及胰島素抵抗,對(duì)機(jī)體葡萄糖穩(wěn)態(tài)發(fā)揮有益作用。這可能是A.muciniphila抗糖尿病的潛在機(jī)制之一,P9和ICAM-2之間的相互作用可以作為代謝性疾病治療的潛在靶點(diǎn)。

A.muciniphila在中醫(yī)藥治療糖尿病中的作用

中醫(yī)藥在中國(guó)已有數(shù)千年的歷史,是中華民族的歷史瑰寶。中醫(yī)藥治療疾病具有得天獨(dú)厚的優(yōu)勢(shì),其特點(diǎn)為多靶點(diǎn)、多途徑、系統(tǒng)性和整體調(diào)控[14]。近年來(lái)的研究表明,中醫(yī)藥通過(guò)調(diào)節(jié)腸道微生物來(lái)改善糖尿病,中醫(yī)藥對(duì)糖尿病的作用機(jī)制是以“細(xì)菌-黏膜免疫-炎癥-糖尿病”為中心[61]。腸道菌群與中藥之間存在雙向作用的關(guān)系,中醫(yī)藥起藥理作用的活性成分依賴于腸道菌群代謝吸收,同時(shí)中藥活性成分又調(diào)節(jié)腸道菌群的組成及結(jié)構(gòu),大量動(dòng)物和臨床研究表明,許多中藥如槲皮素[17]、黃芩[18]、小檗堿[19]等均可增加有益菌A.muciniphila的豐度,而且A.muciniphila在中藥治療糖尿病機(jī)制中發(fā)揮了有益作用。Régnier等[45]研究發(fā)現(xiàn),喂養(yǎng)高脂肪和高蔗糖飲食的小鼠A.muciniphila的豐度降低,但在補(bǔ)充大黃后A.muciniphila的豐度大幅增加,大黃可能通過(guò)刺激A.muciniphila和Reg3γ之間的相互作用來(lái)防止病原菌的過(guò)度生長(zhǎng),從而預(yù)防高脂高糖誘導(dǎo)的疾病。另一項(xiàng)研究表明,補(bǔ)充大黃提取物誘導(dǎo)的A.muciniphila豐度增加,與代謝的改善有關(guān)[62]。厚樸酚是厚樸三物湯中的主要生物活性成分,厚樸酚處理糖尿病小鼠可改善小鼠脂質(zhì)代謝紊亂、系統(tǒng)炎癥和胰島素抵抗,同時(shí)腸道菌群中A.muciniphila豐度顯著增加,相關(guān)性分析結(jié)果顯示A.muciniphila與體重、甘油三酯、LBP、IL-6呈負(fù)相關(guān),這些結(jié)果提示厚樸酚可以通過(guò)增加腸道中A.muciniphila的豐度來(lái)改善糖尿病癥狀[63]。黃連解毒湯是中醫(yī)治療糖尿病的經(jīng)典方劑,也可使糖尿病小鼠A.muciniphila豐度增加[64]。在金芪降糖片、半夏瀉心湯等中藥治療糖尿病的其他多項(xiàng)實(shí)驗(yàn)研究中,A.muciniphila的豐度均有所增加[65-67]。A.muciniphila可抑制機(jī)體炎癥反應(yīng),保持腸道屏障完整性,調(diào)節(jié)機(jī)體代謝的功能,并具有治療糖尿病的潛力,與中醫(yī)藥改善糖尿病癥狀密切相關(guān),是中醫(yī)藥治療糖尿病的潛在靶點(diǎn)。

小結(jié)與展望

A.muciniphila是一種可治療糖尿病的潛在益生菌,也是中醫(yī)藥治療糖尿病的潛在靶點(diǎn)。糖尿病的發(fā)病機(jī)制與腸道屏障功能破壞、腸道菌群失調(diào)及其代謝產(chǎn)物密切相關(guān)。糾正腸道菌群失調(diào)成為治療糖尿病的研究熱點(diǎn)。A.muciniphila是一種特異性的黏液降解菌,是腸道菌群的核心菌群之一。近年來(lái)的研究表明,A.muciniphila在糖尿病患者中豐度明顯降低甚至缺失,目前治療T2DM的藥物如二甲雙胍和中藥均可增加A.muciniphila的豐度,A.muciniphila豐度增加與糖尿病癥狀改善密切相關(guān)。此外,口服A.muciniphila也可改善糖尿病癥狀,A.muciniphila是一種治療糖尿病新型的潛在益生菌。目前A.muciniphila治療糖尿病的潛在機(jī)制有:(1)A.muciniphila可通過(guò)促進(jìn)腸上皮細(xì)胞(如杯狀細(xì)胞)生長(zhǎng)、增加腸道黏液層的厚度、調(diào)節(jié)緊密連接蛋白及相關(guān)基因的表達(dá)改善腸道屏障功能;(2)A.muciniphila通過(guò)降低LPS與相關(guān)炎癥因子的水平以及抑制LPS/LBP下游信號(hào)JNK和NF-KB炎癥通路,改善機(jī)體炎癥;(3)A.muciniphila分泌P9蛋白與ICAM-2結(jié)合促進(jìn)GLP-1分泌,降低血糖,改善機(jī)體葡萄糖耐量及胰島素抵抗。這些作用機(jī)制間相互作用的復(fù)雜性,以及各個(gè)分子通路上下游蛋白均需更多的實(shí)驗(yàn)研究予以驗(yàn)證。此外,A.muciniphila在免疫調(diào)節(jié)中的作用也是顯著的,A.muciniphila通過(guò)調(diào)節(jié)免疫系統(tǒng)改善糖尿病癥狀的有關(guān)分子作用機(jī)制值得探索,以便探索潛在的治療機(jī)制。

中醫(yī)藥干預(yù)腸道菌群治療糖尿病的作用機(jī)制是目前眾多研究學(xué)者探索的問題,A.muciniphila是中醫(yī)藥改善糖尿病癥狀的干預(yù)靶點(diǎn),中醫(yī)藥與A.muciniphila的相互作用機(jī)制研究可為中藥治療糖尿病的作用機(jī)制提供新的線索。A.muciniphila豐度降低先于疾病發(fā)生,其豐度升高與糖尿病相關(guān)指標(biāo)改善呈正相關(guān),說(shuō)明A.muciniphila不僅是預(yù)防和治療糖尿病的潛在干預(yù)靶點(diǎn),還可作為糖尿病早期診斷以及預(yù)后判斷的潛在標(biāo)志??傊?,干預(yù)和調(diào)節(jié)A.muciniphila可作為糖尿病預(yù)防和治療的新策略,也為未來(lái)的研究提供了新的研究方向。根據(jù)以上研究,A.muciniphila有潛力作為新型益生菌治療糖尿病,其安全性問題、體外培養(yǎng)及制成生物制品技術(shù)問題是未來(lái)研究熱點(diǎn)。中醫(yī)藥與A.muciniphila聯(lián)合干預(yù)糖尿病患者是否具有累加效應(yīng)仍待研究,他們之間相互作用機(jī)制也值得探索。目前關(guān)于A.muciniphila更多的實(shí)驗(yàn)集中于動(dòng)物實(shí)驗(yàn),缺乏相關(guān)人類試驗(yàn)的廣泛研究,在未來(lái)需要更多的臨床試驗(yàn)加以驗(yàn)證。

參 考 文 獻(xiàn)

[1]Saeedi P,Petersohn I,Salpea P,et al.Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:Results from the International Diabetes Federation Diabetes Atlas,9 edition[J].Diabetes Res Clin Pract,2019,157:107843.DOI:10.1016/j.diabres.2019.107843.

[2]Saeedi P,Salpea P,Karuranga S,et al.Mortality attributable to diabetes in 20-79 years old adults,2019 estimates:results from the International Diabetes Federation Diabetes Atlas,9 edition[J].Diabetes Res Clin Pract,2020,162:108086.DOI:10.1016/j.diabres.2020.108086.

[3]Kayama H,Okumura R,Takeda K.Interaction between the microbiota,epithelia,and immune cells in the intestine[J].Annu Rev Immunol,2020,38:23-48.DOI:10.1146/annurev-immunol-070119-115104.

[4]Patterson E,Ryan PM,Cryan JF,et al.Gut microbiota,obesity and diabetes[J].Postgrad Med J,2016,92(1087):286-300.DOI:10.1136/postgradmedj-2015-133285.

[5]Zhao L,Zhang F,Ding X,et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J].Science,2018,359(6380):1151-1156.DOI:10.1126/science.aao5774.

[6]Sircana A,F(xiàn)ramarin L,Leone N,et al.Altered gut microbiota in type 2 diabetes:just a coincidence[J].Curr Diab Rep,2018,18(10):98.DOI:10.1007/s11892-018-1057-6.

[7]Gurung M,Li Z,You H,et al.Role of gut microbiota in type 2 diabetes pathophysiology[J].E Bio Medicine,2020,51:102590.DOI:10.1016/j.ebiom.2019.11.051.

[8]Medina-Vera I,Sanchez-Tapia M,Noriega-López L,et al.A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes[J].Diabetes Metab,2019,45(2):122-131.DOI:10.1016/j.diabet.2018.09.004.

[9]Anhê FF,Roy D,Pilon G,et al.A polyphenol-rich cranberry extract protects from diet-induced obesity,insulin resistance and intestinal inflammation in association with increased Akkermansia spp.population in the gut microbiota of mice[J].Gut,2015,64(6):872-883.DOI:10.1136/gutjnl-2014-307142.

[10]Vallianou NG,Stratigou T,Tsagarakis S.Metformin and gut microbiota:their interactions and their impact on diabetes[J].Hormones (Athens),2019,18(2):141-144.DOI:10.1007/s42000-019-00093-w.

[11]Su H,Mo J,Ni J,et al.Andrographolide exerts antihyperglycemic effect through strengthening intestinal barrier function and increasing microbial composition of Akkermansia muciniphila[J].Oxid Med Cell Longev,2020,2020:6538930.DOI:10.1155/2020/6538930.

[12]Derrien M,Belzer C,de Vos WM.Akkermansia muciniphila and its role in regulating host functions[J].Microb Pathog,2017,106:171-181.DOI:10.1016/j.micpath.2016.02.005.

[13]Zhao S,Liu W,Wang J,et al.Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice[J].J Mol Endocrinol,2017,58(1):1-14.DOI:10.1530/JME-16-0054.

[14]Zhang HM,Liang FX,Chen R.Ancient records and modern research on the mechanisms of Chinese herbal medicines in the treatment of diabetes mellitus[J].Evid Based Complement Alternat Med,2015,2015:747982.DOI:10.1155/2015/747982.

[15]Li CN,Wang X,Lei L,et al.Berberine combined with stachyose induces better glycometabolism than berberine alone through modulating gut microbiota and fecal metabolomics in diabetic mice[J].Phytother Res,2020,34(5):1166-1174.DOI:10.1002/ptr.6588.

[16]Yue SJ,Wang WX,Yu JG,et al.Gut microbiota modulation with traditional Chinese medicine:A system biology-driven approach[J].Pharmacol Res,2019,148:104453.DOI:10.1016/j.phrs.2019.104453.

[17]Etxeberria U,Arias N,Boqué N,et al.Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats[J].J Nutr Biochem,2015,26(6):651-660.DOI:10.1016/j.jnutbio.2015.01.002.

[18]Ju M,Liu Y,Li M,et al.Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet[J].Eur J Pharmacol,2019,857:172457.DOI:10.1016/j.ejphar.2019.172457.

[19]Zhang W,Xu JH,Yu T,et al.Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice[J].Biomed Pharmacother,2019,118:109131.DOI:10.1016/j.biopha.2019.109131.

[20]Plovier H,Everard A,Druart C,et al.A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J].Nat Med,2017,23(1):107-113.DOI:10.1038/nm.4236.

[21]Yassour M,Lim MY,Yun HS,et al.Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes[J].Genome Med,2016,8(1):17.DOI:10.1186/s13073-016-0271-6.

[22]Shih CT,Yeh YT,Lin CC,et al.Akkermansia muciniphilais negatively correlated with hemoglobin a1c in refractory diabetes[J].Microorganisms,2020,8(9):1360.DOI:10.3390/microorganisms8091360.

[23]Dao MC,Everard A,Aron-Wisnewsky J,et al.Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity:relationship with gut microbiome richness and ecology[J].Gut,2016,65(3):426-436.DOI:10.1136/gutjnl-2014-308778.

[24]Dubourg G,Lagier JC,Armougom F,et al.High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment[J].Int J Antimicrob Agents,2013,41(2):149-155.DOI:10.1016/j.ijantimicag.2012.10.012.

[25]Zhang T,Li Q,Cheng L,et al.Akkermansia muciniphila is a promising probiotic[J].Microb Biotechnol,2019,12(6):1109-1125.DOI:10.1111/1751-7915.13410.

[26]Cani PD,de Vos WM.Next-generation beneficial microbes:the case of Akkermansia muciniphila[J].Front Microbiol,2017,8:1765.DOI:10.3389/fmicb.2017.01765.

[27]Depommier C,Everard A,Druart C,et al.Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:a proof-of-concept exploratory study[J].Nat Med,2019,25(7):1096-1103.DOI:10.1038/s41591-019-0495-2.

[28]Derrien M,Collado MC,Ben-Amor K,et al.The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract[J].Appl Environ Microbiol,2008,74(5):1646-1648.DOI:10.1128/AEM.01226-07.

[29]Berry D,Stecher B,Schintlmeister A,et al.Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing[J].Proc Natl Acad Sci USA,2013,110(12):4720-4725.DOI:10.1073/pnas.1219247110.

[30]de Vos WM.Microbe profile:Akkermansia muciniphila:a conserved intestinal symbiont that acts as the gatekeeper of our mucosa[J].Microbiology (Reading),2017,163(5):646-648.DOI:10.1099/mic.0.000444.

[31]van Passel MWJ,Kant R,Zoetendal EG,et al.The genome of Akkermansia muciniphila,a dedicated intestinal mucin degrader,and its use in exploring intestinal metagenomes[J].PLoS One,2011,6(3):e16876.DOI:10.1371/journal.pone.0016876.

[32]Zhou JC,Zhang XW.Akkermansia muciniphila:a promising target for the therapy of metabolic syndrome and related diseases[J].Chin J Nat Med,2019,17(11):835-841.DOI:10.1016/S1875-5364(19)30101-3.

[33]Van Herreweghen F,De Paepe K,Marzorati M,et al.Mucin as a functional niche is a more important driver of gut microbiota composition and functionality than supplementation of Akkermansia m uciniphila[J].Appl Environ Microbiol,2020,87(4):e02647-20.DOI:10.1128/AEM.02647-20.

[34]Reunanen J,Kainulainen V,Huuskonen L,et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J].Appl Environ Microbiol,2015,81(11):3655-3662.DOI:10.1128/AEM.04050-14.

[35]Van Herreweghen F,De Paepe K,Roume H,et al.Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent[J].FEMS Microbiol Ecol,2018,94(12).DOI:10.1093/femsec/fiy186.

[36]Kim S,Shin YC,Kim TY,et al.Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development[J].Gut Microbes,2021,13(1):1-20.DOI:10.1080/19490976.2021.1892441.

[37]Cani PD,Jordan BF.Gut microbiota-mediated inflammation in obesity:a link with gastrointestinal cancer[J].Nat Rev Gastroenterol Hepatol,2018,15(11):671-682.DOI:10.1038/s41575-018-0025-6.

[38]Rorato R,Borges BC,Uchoa ET,et al.LPS-induced low-grade inflammation increases hypothalamic JNK expression and causes central insulin resistance irrespective of body weight changes[J].Int J Mol Sci,2017,18(7):1431.DOI:10.3390/ijms18071431.

[39]Fujio-Vejar S,Vasquez Y,Morales P,et al.The gut microbiota of Healthy chilean subjects reveals a high abundance of the phylum verrucomicrobia[J].Front Microbiol,2017,8:1221.DOI:10.3389/fmicb.2017.01221.

[40]Qin J,Li Y,Cai Z,et al.A metagenome-wide association study of gut microbiota in type 2 diabetes[J].Nature,2012,490(7418):55-60.DOI:10.1038/nature11450.

[41]Zhang L,Qin Q,Liu M,et al.Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity,oxidative stress and inflammation,and normalize intestine microbiota in streptozotocin-induced diabetic rats[J].Pathog Dis,2018,76(4):fty028.DOI:10.1093/femspd/fty028.

[42]Hnninen A,Toivonen R,Pysti S,et al.Akkermansia muciniphilainduces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J].Gut,2018,67(8):1445-1453.DOI:10.1136/gutjnl-2017-314508.

[43]Wu F,Guo X,Zhang M,et al.An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice[J].Anaerobe,2020,61:102138.DOI:10.1016/j.anaerobe.2019.102138.

[44]Ahmad A,Yang W,Chen G,et al.Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals[J].PLoS One,2019,14(12):e0226372.DOI:10.1371/journal.pone.0226372.

[45]Régnier M,Rastelli M,Morissette A,et al.Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased in mice[J].Nutrients,2020,12(10):2932.DOI:10.3390/nu12102932.

[46]Lu YM,Xie JJ,Peng CG,et al.Enhancing clinical efficacy through the gut microbiota:a new field of traditional Chinese Medicine[J].Engineering,2019,5:40-49.DOI:10.1016/j.eng.2018.11.013.

[47]Roshanravan N,Mahdavi R,Alizadeh E,et al.The effects of sodium butyrate and inulin supplementation on angiotensin signaling pathway via promotion of abundance in type 2 diabetes;a randomized,double-blind,placebo-controlled trial[J].J Cardiovasc Thorac Res,2017,9(4):183-190.DOI:10.15171/jcvtr.2017.32.

[48]Chelakkot C,Choi Y,Kim DK,et al.Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J].Exp Mol Med,2018,50(2):e450.DOI:10.1038/emm.2017.282.

[49]Shin NR,Lee JC,Lee HY,et al.An increase in the Akkermansia spp.population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J].Gut,2014,63(5):727-735.DOI:10.1136/gutjnl-2012-303839.

[50]Ryu JK,Kim SJ,Rah SH,et al.Reconstruction of LPS transfer cascade reveals structural determinants within LBP,CD14,and TLR4-MD2 for efficient LPS recognition and transfer[J].Immunity,2017,46(1):38-50.DOI:10.1016/j.immuni.2016.11.007.

[51]Wisniewski PJ,Dowden RA,Campbell SC.Role of dietary lipids in modulating inflammation through the gut microbiota[J].Nutrients,2019,11(1):117.DOI:10.3390/nu11010117.

[52]Tsaousidou E,Paeger L,Belgardt BF,et al.Distinct roles for JNK and IKK activation in agouti-related peptide neurons in the development of obesity and insulin resistance[J].Cell Rep,2014,9(4):1495-1506.DOI:10.1016/j.celrep.2014.10.045.

[53]Kim KA,Lee IA,Gu W,et al.β-Sitosterol attenuates high-fat diet-induced intestinal inflammation in mice by inhibiting the binding of lipopolysaccharide to toll-like receptor 4 in the NF-κB pathway[J].Mol Nutr Food Res,2014,58(5):963-972.DOI:10.1002/mnfr.201300433.

[54]Ottman N,Reunanen J,Meijerink M,et al.Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function[J].PLoS One,2017,12(3):e0173004.DOI:10.1371/journal.pone.0173004.

[55]Ibfelt T,F(xiàn)ischer CP,Plomgaard P,et al.The acute effects of low-dose TNF-α on glucose metabolism and β-cell function in humans[J].Mediators Inflamm,2014,2014:295478.DOI:10.1155/2014/295478.

[56]Smitka K,Mareová D.Adipose tissue as an endocrine organ:an update on pro-inflammatory and anti-inflammatory microenvironment[J].Prague Med Rep,2015,116(2):87-111.DOI:10.14712/23362936.2015.49.

[57]Holst JJ,Gribble F,Horowitz M,et al.Roles of the gut in glucose homeostasis[J].Diabetes Care,2016,39(6):884-892.DOI:10.2337/dc16-0351.

[58]Cani PD,Plovier H,van Hul M,et al.Endocannabinoids--at the crossroads between the gut microbiota and host metabolism[J].Nat Rev Endocrinol,2016,12(3):133-143.DOI:10.1038/nrendo.2015.211.

[59]Yoon HS,Cho CH,Yun MS,et al.Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice[J].Nat Microbiol,2021,6(5):563-573.DOI:10.1038/s41564-021-00880-5.

[60]Kahles F,Meyer C,Mllmann J,et al.GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner,leading to hyperinsulinemia and blood glucose lowering[J].Diabetes,2014,63(10):3221-3229.DOI:10.2337/db14-0100.

[61]Gao Z,Li Q,Wu X,et al.New insights into the mechanisms of Chinese herbal products on diabetes:a focus on the “bacteria-mucosal immunity-inflammation-diabetes” axis[J].J Immunol Res,2017,2017:1813086.DOI:10.1155/2017/1813086.

[62]Neyrinck AM,Etxeberria U,Taminiau B,et al.Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake,an effect related to the modulation of the gut microbiota[J].Mol Nutr Food Res,2017,61(1):10.1002/mnfr. 201500899.DOI:10.1002/mnfr.201500899.

[63]Ding Y,Song Z,Li H,et al.Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota[J].Front Immunol,2019,10:2800.DOI:10.3389/fimmu.2019.02800.

[64]Chen M,Liao Z,Lu B,et al.Huang-lian-jie-du-decoction ameliorates hyperglycemia and insulin resistant in association with gut microbiota modulation[J].Front Microbiol,2018,9:2380.DOI:10.3389/fmicb.2018.02380.

[65]Mei X,Zhang X,Wang Z,et al.Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) mice[J].J Agric Food Chem,2016,64(40):7502-7511.DOI:10.1021/acs.jafc.6b03474.

[66]Cao Y,Yao G,Sheng Y,et al.Jinqi jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J].J Diabetes Res,2019,2019:1872134.DOI:10.1155/2019/1872134.

[67]Du LJ,Pang B,Tan YM,et al.Banxia Xiexin Decoction ameliorates t-BHP-induced apoptosis in pancreatic beta cells by activating the PI3K/AKT/FOXO1 signaling pathway[J].J Diabetes Res,2020,2020:3695689.DOI:10.1155/2020/3695689.

(收稿日期:2021-09-03)

猜你喜歡
作用機(jī)制中醫(yī)藥糖尿病
糖尿病知識(shí)問答
糖尿病知識(shí)問答
糖尿病知識(shí)問答
糖尿病知識(shí)問答
中醫(yī)藥在惡性腫瘤防治中的應(yīng)用
中醫(yī)藥在治療惡性腫瘤骨轉(zhuǎn)移中的應(yīng)用
從《中醫(yī)藥法》看直銷
通過(guò)技術(shù)創(chuàng)新促進(jìn)我鎮(zhèn)農(nóng)業(yè)結(jié)構(gòu)調(diào)整
冠心丹參方及其有效成分治療冠心病的研究進(jìn)展
中醫(yī)藥立法:不是“管”而是“促”
肇州县| 兰溪市| 正安县| 永宁县| 浪卡子县| 雅江县| 云和县| 民勤县| 新野县| 南郑县| 通榆县| 庆云县| 衡阳市| 固始县| 通江县| 金川县| 巴中市| 辉县市| 彭泽县| 西丰县| 吴堡县| 万州区| 博兴县| 绥化市| 白朗县| 安义县| 科技| 文昌市| 扎兰屯市| 临泽县| 东港市| 平远县| 二连浩特市| 崇信县| 广丰县| 贵州省| 屏东市| 高淳县| 镶黄旗| 曲阳县| 门源|