關會會,姜 毅,胡 東,蘇子超
(1. 北京理工大學宇航學院,北京 100081;2. 北京宇航系統(tǒng)工程研究所,北京 100076)
我國的國土遼闊,鐵路運輸發(fā)展不斷壯大,鐵路車輛不僅可以承受較大的負載,可在大范圍內(nèi)機動,還是復雜信息化通信的集成,這一優(yōu)勢正是對武器發(fā)射的機動性以及打擊范圍的有效補充。裝載了特種裝備的列車進行工作時,所產(chǎn)生的沖擊載荷峰值在200噸左右[1],而普通循環(huán)載荷只有幾十噸,有砟軌道結(jié)構(gòu)病害的發(fā)生率增大[2]。因此研究沖擊載荷作用下的有砟軌道動力學響應具有重要意義。
Dietz等[3]將列車模型進行多剛體處理,軌道模型進行柔性體處理,仿真分析了列車與軌道之間的動力學問題。Hall Lars[4]利用有限元軟件ABAQUS建立了鐵路路基在列車循環(huán)運行荷載下的計算模型,計算結(jié)果與實驗結(jié)果趨勢相符。栗先增[5]提出了一種基于真實道砟顆粒模型,采用有限元—離散元耦合方法建立了軌枕—道床的有砟軌道精細化模型,對不同行車速度和列車軸重下的有砟軌道動力學特性進行了仿真分析,結(jié)果表明建立的數(shù)值模型能夠較好地模擬真實情況。Takemiya等[6,7]利用有限元和邊界元耦合方法,建立了鐵路路基二維仿真模型,研究了帶狀均布荷載鐵路路基響應。高亮等[8]選用典型道砟顆粒,并結(jié)合圖像識別手段,建立了軌枕—道床—基床表層精細化耦合模型,研究了列車運行循環(huán)載荷作用下道床和基床表層耦合變形機理,結(jié)果表明道床沉降占比較大,且道砟和基床表層碎石存在相互入侵的現(xiàn)象。程雙嬌等[9]應用離散元與有限元接觸算法,建立了細化有砟軌道模型,分析了行車速度和軸重等因素對有砟軌道的影響。
綜上,已有文獻對沖擊載荷下有砟軌道動力學的研究較少,因此本文基于沖擊載荷作用下的有砟軌道離散元-有限元耦合動力學模型,研究有砟軌道的典型結(jié)構(gòu)參數(shù)對有砟軌道沉降的影響,為鐵路路基的結(jié)構(gòu)設計優(yōu)化提供參考。
本文建立的有砟軌道模型為單線鐵路直線地段,有砟軌道模型橫斷面如圖1所示,且建立的有砟軌道模型長50m,可以承載三節(jié)車廂。
鋼軌與軌枕采用各向同性線彈性材料模型,鋼軌規(guī)格為60kg/m,軌枕型號為混凝土Ⅲ型,間距為0.6m,埋入碎石道床的深度為0.185m。將有砟軌道巖土體視為無損材料,碎石道床、基床表層、基床底層、路基本體及地基采用彈塑性本構(gòu)模型。各層結(jié)構(gòu)的尺寸參數(shù)和材料屬性[10,11]如表1所示。其中鋼軌和軌枕之間通過扣件系統(tǒng)連接,在模型中采用彈簧阻尼單元模擬,且其彈簧剛度為80MN·m-1,阻尼系數(shù)為50kN·s·m-1。
表1 有砟軌道模型尺寸參數(shù)和材料屬性
道砟是典型的離散介質(zhì)材料,具有非均勻性、非連續(xù)性和各向異性等非線性特性,力學特性復雜。在建模時,需對道砟進行離散元處理。道砟之間無粘結(jié)且變形較小,結(jié)合道床的實際結(jié)構(gòu)和道砟屬性,將道砟顆粒之間的接觸模型簡化為軟球模型,采用彈簧—阻尼—滑動接觸模型進行道砟顆粒之間接觸力的計算,其法向力和切向力的計算簡化示意如圖2。
圖2 道砟顆粒之間接觸力計算簡化示意圖
道砟顆粒之間接觸力Fc可表示為
Fc=Fn+Ft
(1)
法向力Fn的計算公式為
Fn=(-KnUn-Cnvrel·n)n
(2)
式中,Kn是法向彈性系數(shù);Cn是法向阻尼系數(shù);Un是法向疊加量;vrel是道砟顆粒之間的相對速度;n是道砟顆粒球心之間的單位矢量。
采用離散元方法計算道砟顆粒運動狀態(tài)的流程如圖3所示。
圖3 離散元方計算流程圖
建立有砟軌道離散元—有限元耦合模型如圖4所示。坐標系規(guī)定:y軸正方向為前進方向(縱向),z軸正方向(垂向)豎直向上,x軸(橫向)由右手定則確定,全文采用相同的坐標系。
圖4 有砟軌道離散元—有限元耦合模型
如圖5所示,離散顆粒和有限單元發(fā)生接觸,假設離散顆粒作用于有限單元表面的力為Fpatch,接觸點為O。
圖5 有限單元接觸力等效示意圖
接觸力Fpatch及在其作用下接觸點O的虛位移可表示為
(3)
(4)
有限單元上的等效節(jié)點力及相應的虛位移可表示為
(5)
(6)
δO和δeq滿足以下關系式
δO=Nδeq
(7)
式中,N為有限單元在觸點O處的形函數(shù)矩陣。
根據(jù)能量守恒定律,接觸力Fpatch做功為
δW=(Fpatch)TδO
(8)
有限單元節(jié)點上的虛功可表示為
δW=(Feq)Tδeq
(9)
則等效節(jié)點力Feq和接觸力Fpatch之間的關系為
Feq=NTFpatch
(10)
由于路基各層自身產(chǎn)生的預應力會對路基的垂向應力產(chǎn)生影響,因此后續(xù)研究中的路基垂向應力都是在消除了路基自應力下的結(jié)果。
沖擊載荷作用下,路基會出現(xiàn)沉降現(xiàn)象。圖6為典型時刻的路基沉降結(jié)果。根據(jù)路基的沉降云圖可以得到初步結(jié)論:各層結(jié)構(gòu)下沉量的最大值出現(xiàn)在載荷作用位置的下方區(qū)域,并沿著三個方向呈現(xiàn)一定規(guī)律的變化,影響范圍較大,以載荷作用位置下方區(qū)域為中心向四周輻射,這是沖擊載荷的特點所決定的。任意位置的垂向應力均隨著作用載荷的變化而變化,但在空間上的總體趨勢和分布基本保持一致。
圖6 典型時刻的路基沉降云圖
為進一步研究沖擊載荷下有砟軌道的沉降特性變化規(guī)律。圖7為選取的整個路基模型的橫縱截面及各層結(jié)構(gòu)的檢測點,其中,橫截面標識線與載荷作用位置重合,縱截面標識線即為模型的橫向?qū)ΨQ軸線,檢測點分別位于橫截面和縱截面交線上各層結(jié)構(gòu)的頂部位置。
圖7 截面和檢測點示意圖
有砟軌道的道砟粒徑一般為20mm~70mm(圓球形),本研究選擇的道砟粒徑分別為70mm、56mm和42mm,道床厚度為0.3m。
圖8為三種道砟粒徑下基床表層檢測點下沉量隨時間變化曲線。三種道砟粒徑下基床表層檢測點的最大下沉量依次為4.99mm、4.19mm和3.61mm,殘余變形量依次為1.22mm、1.01mm和0.85mm。圖9為三種道砟粒徑下t=0.16s時橫、縱截面交線位置基床表層及其下層結(jié)構(gòu)下沉量的垂向分布曲線。不同道砟粒徑下各層結(jié)構(gòu)的下沉量的差異隨著深度的增加而減小,主要存在于距離基床表層頂部2.5m的范圍內(nèi),即基床表層和基床底層兩層結(jié)構(gòu)。0~0.16s階段,三種工況下基床表層引起的下沉量依次為1.21mm、0.61mm和0.31mm,基床底層引起的下沉量依次為1.38mm、1.21mm和0.95mm。
圖8 基床表層檢測點下沉量隨時間變化曲線 圖9 下沉量的垂向分布曲線
本文選擇道床厚度分別為0.3m、0.4m和0.5m,道砟粒徑為70mm。
圖10為三種工況下基床表層檢測點下沉量隨時間變化曲線。道床厚度越小,基床表層檢測點下沉量越大,載荷完全卸載后形成的殘余變形量也越大。三種工況下基床表層檢測點的最大下沉量依次為4.99mm、4.38mm和3.89mm,殘余變形量依次為1.22mm、1.05mm和0.92mm。圖11為三種工況下t=0.16s時橫截面和縱截面交線位置碎石道床及其下層結(jié)構(gòu)下沉量的垂向分布曲線。不同道床厚度下各層結(jié)構(gòu)的下沉量的差異也主要存在于距離基床表層頂部2.5m的范圍內(nèi)。0~0.16s階段,三種工況下基床表層引起的下沉量依次為1.21mm、0.76mm和0.42mm,基床底層引起的下沉量依次為1.38mm、1.25mm和1.11mm。
結(jié)合圖8~圖11分析得,道砟粒徑越小或道床厚度越大,越能有效地分散來自軌枕的載荷至基床表層頂部。道砟粒徑較大或道床厚度較小將引起其下層結(jié)構(gòu)受力不均,隨著載荷向深度方向傳遞,非均勻性逐漸降低,計算結(jié)果表明路基本體及其下層結(jié)構(gòu)幾乎不受影響。
總之,道砟粒徑和道床厚度的大小直接影響與之接觸的基床表層的承載情況,當?shù)理牧捷^大或道床厚度較小時,載荷作用位置下方的基床表層出現(xiàn)局部應力集中、下沉量大的現(xiàn)象,嚴重時存在局部凹陷。
本文選擇的地基彈性模量為110Mpa、80Mpa、50Mpa和20Mpa。
圖12為四種工況下軌枕檢測點(碎石道床檢測點)下沉量隨時間變化曲線。地基剛度越小,軌枕檢測點的下沉量越大,最終形成的殘余變形量也越大。四種工況下軌枕檢測點的最大下沉量依次為9.78mm、10.02mm、10.61mm和12.14mm,殘余變形量依次為2.18mm、2.26mm、2.46mm和2.82mm。當?shù)鼗鶆偠葟?10Mpa降至80Mpa時,最大下沉量和殘余變形量分別增加了0.24mm和0.08mm;當?shù)鼗鶆偠葟?0Mpa降至20Mpa時,最大下沉量和殘余變形量分別增加了1.53mm和0.36mm。由此可知,當?shù)鼗鶆偠仍叫r,其變化會引起較大的沉降變化,而當?shù)鼗鶆偠冗_到一定值時,其變化引起的沉降變化不顯著。
圖12 不同地基剛度下軌枕檢測點下沉量計算結(jié)果
圖13為四種工況下各層結(jié)構(gòu)檢測點垂向應力隨時間變化曲線。不同地基剛度下各層結(jié)構(gòu)垂向應力隨時間變化規(guī)律相同,地基剛度越小,各層結(jié)構(gòu)變形越大,相應檢測點垂向應力越大。
圖13 各檢測點垂向應力隨時間變化曲線
四種工況下各層結(jié)構(gòu)檢測點的最大垂向應力如表2所示。上層結(jié)構(gòu)垂向應力隨著地基剛度的變化存在較大差異,如地基剛度從110Mpa降至20Mpa,碎石道床的垂向應力增加了54.76%,而此時地基的垂向應力僅增加了18.18%。沖擊載荷作用下,各層結(jié)構(gòu)應力越大則越易發(fā)生塑性形變,最終會對有砟軌道造成損傷。因此,當其它條件一定時,為了防止有砟軌道被破壞,保證軌上裝置正常工作,對地基剛度需要有一定的限制。根據(jù)表2的計算結(jié)果,結(jié)合各層結(jié)構(gòu)的承載力或容許應力值,可初步判定地基剛度是否滿足要求。
表2 不同地基剛度下各層結(jié)構(gòu)檢測點最大垂向應力(Mpa)
基于沖擊載荷下有砟軌道動力學響應研究,采用離散元-有限元的方法,建立了有砟軌道受到?jīng)_擊載荷作用下的動力學模型,仿真探究了有砟軌道不同時刻的沉降變化以及道砟粒徑、道床厚度和地基剛度的不同對有砟軌道沉降影響的研究,得到以下結(jié)論:
1)道砟粒徑越小或道床厚度越大,越能有效地將來自軌枕的載荷分散至基床表層頂部,道砟粒徑從70mm縮小至56mm和42mm時,基床表層頂部最大下沉量降低了12.75%和21.91%;
2)不同道砟粒徑和不同道床厚度下各層結(jié)構(gòu)的下沉量的差異都主要存在于距離基床表層頂部2.5m的范圍內(nèi);
3)當?shù)理牧捷^大或道床厚度較小時,載荷作用位置下方的基床表層出現(xiàn)局部應力集中、下沉量大的現(xiàn)象,嚴重時存在局部凹陷;
4)隨著地基剛度的減小,軌枕檢測點的下沉量和垂向應力增大,最終形成的殘余變形量也增大。地基剛度越小時,其變化引起的沉降和垂向應力變化越明顯,如地基剛度從110Mpa降至80Mpa時,殘余變形量增加3.67%。從50Mpa降至20Mpa時,殘余變形量增加14.63%。
采用離散元-有限元耦合的方法對有砟軌道進行動力學響應分析,得到的結(jié)果對有砟軌道的設計具有一定的參考意義。