胡濱 王大斌 郭茂
摘要:目的 探究川穹嗪(TMP)通過(guò)調(diào)控沉默信息調(diào)節(jié)因子2相關(guān)酶1(SIRT1)/腺苷酸活化蛋白激酶(AMPK)/過(guò)氧化物酶體增殖物激活受體γ共激活因子1α(PGC1α)信號(hào)通路對(duì)偏頭痛大鼠發(fā)揮鎮(zhèn)痛和神經(jīng)元損傷的保護(hù)作用。方法 通過(guò)硝酸甘油誘導(dǎo)建立偏頭痛大鼠模型,造模成功后隨機(jī)分為模型(M)組、TMP低劑量(TMP-L)組(50 mg/kg)、TMP中劑量(TMP-M)組(100 mg/kg)、TMP高劑量(TMP-H)組(200 mg/kg)、TMP(200 mg/kg)+SIRT1抑制劑(EX527,5 mg/kg)組,每組10只;另取10只作為正常對(duì)照(NC)組。連續(xù)灌胃2周。給藥結(jié)束24 h后,記錄各組大鼠在連續(xù)30 min內(nèi)出現(xiàn)撓頭、爬籠的次數(shù),進(jìn)行行為學(xué)評(píng)分;測(cè)定機(jī)械性刺激及熱刺激痛閾;酶聯(lián)免疫吸附試驗(yàn)法檢測(cè)血清中一氧化氮(NO)、白細(xì)胞介素(IL)-6、IL-1β含量和腦組織中5-羥色胺(5-HT)、去甲腎上腺素(NE)、多巴胺(DA)含量;TUNEL染色觀察腦組織神經(jīng)元凋亡情況;Western blot法檢測(cè)腦組織中SIRT1、AMPK、p-AMPK、PGC1α蛋白表達(dá)。結(jié)果 與NC組比較,M組大鼠行為學(xué)評(píng)分,血清中NO、IL-6、IL-1β水平,神經(jīng)元凋亡率升高(P<0.05);機(jī)械性刺激痛閾值降低,熱刺激潛伏期縮短(P<0.05);腦組織中5-HT、NE、DA水平,p-AMPK/AMPK比值,SIRT1、PGC1α蛋白表達(dá)降低(P<0.05)。與M組比較,TMP各劑量組大鼠行為學(xué)評(píng)分,血清中NO、IL-6、IL-1β水平,神經(jīng)元凋亡率降低(P<0.05);機(jī)械性刺激痛閾值升高,熱刺激潛伏期延長(zhǎng)(P<0.05);腦組織中5-HT、NE、DA水平,p-AMPK/AMPK比值,SIRT1、PGC1α蛋白表達(dá)升高(P<0.05);與TMP-H組比較,TMP+EX527組可顯著逆轉(zhuǎn)TMP對(duì)偏頭痛大鼠的作用。結(jié)論 TMP可能通過(guò)調(diào)節(jié)SIRT1/AMPK/PGC1α信號(hào)通路的表達(dá),改善神經(jīng)元損傷,發(fā)揮對(duì)偏頭痛大鼠的鎮(zhèn)痛作用。
關(guān)鍵詞:偏頭痛;鎮(zhèn)痛;神經(jīng)元;AMP活化蛋白激酶類;過(guò)氧化物酶體增殖物激活受體γ共激活因子1α;一氧化氮;白細(xì)胞介素6;白細(xì)胞介素1β;川穹嗪;沉默信息調(diào)節(jié)因子2相關(guān)酶1
中圖分類號(hào):R285.5文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20220873
Effects of tetramethylpyrazine on analgesia and neuronal damage in migraine rats by regulating SIRT1/AMPK/PGC1α signaling pathway
HU Bin, WANG Dabin, GUO Mao
Department of Pain, Luzhou People's Hospital, Luzhou 646000, China
Corresponding Author E-mail: 1044915644@qq.com
Abstract: Objective To explore the effects of tetramethylpyrazine (TMP) on analgesia and neuronal injury protection in migraine rats by regulating silent mating type information regulation 2 homolog 1 (SIRT1)/AMP activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) signaling pathway. Methods The migraine rat model was established by nitroglycerin induction. After successful modeling, rats were randomly divided into the model (M) group, the TMP low dose (TMP-L) group (50 mg/kg), the TMP medium dose (TMP-M) group (100 mg/kg), the TMP high dose (TMP-M) group (200 mg/kg) and the TMP (200 mg/kg) + SIRT1 inhibitor (EX527, 5 mg/kg) group, 10 rats in each group. Another 10 rats were regarded as the normal control (NC) group. Rats were continuously gavaged for 2 weeks. Twenty-four hours after the end of the administration, the times of scratching head scratching and cage climbing of rats within 30 minutes were recorded in each group, and the behavioral score was carried out. The pain threshold for mechanical stimulation and thermal stimulation were determined. ELISA method was applied to measure serum levels of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) in brain tissue. TUNEL staining was applied to observe neuronal apoptosis in brain tissue. Western blot assay was applied to measure the protein expression levels of SIRT1, AMPK, p-AMPK and PGC1α protein in brain tissue. Results Compared with the NC group, the behavioral score, serum levels of NO, IL-6 and IL-1β, and neuron apoptosis rate were significantly increased in the M group (P<0.05). The pain threshold of mechanical stimulation was significantly reduced, and the latency of thermal stimulation was significantly shortened (P<0.05). The levels of 5-HT, NE and DA in brain tissue, the ratio of p-AMPK/AMPK, and the protein expressions of SIRT1 and PGC1α were significantly decreased (P<0.05). Compared with the M group, the behavioral score, the serum levels of NO, IL-6 and IL-1β, and neuron apoptosis rate were significantly decreased in the TMP groups (P<0.05). The pain threshold of mechanical stimulation was significantly increased, and the latency of thermal stimulation was significantly prolonged (P<0.05). The levels of 5-HT, NE and DA in brain tissue, the ratio of p-AMPK/AMPK, and the protein expressions of SIRT1 and PGC1α were significantly increased (P<0.05). Compared with the TMP-H group, TMP+EX527 group showed that it significantly reversed the effect of TMP on migraine rats. Conclusion TMP may improve neuronal damage by regulating the expression of SIRT1/AMPK/PGC1α signaling pathway and exert analgesic effect on migraine rats.
Key words: migraine; analgesia; neurons; AMP-activated protein kinases; peroxisome proliferator-activated receptor gamma coactivator 1α; nitric oxide; interleukin-6; interleukin-1beta; tetramethylpyrazine; silent mating type information regulation 2 homolog 1
偏頭痛是臨床常見(jiàn)的一種慢性神經(jīng)系統(tǒng)疾病,主要表現(xiàn)為一側(cè)或雙側(cè)搏動(dòng)性劇烈頭痛,伴隨惡心、嘔吐、畏光、畏聲等[1-2]。目前臨床上多采用曲普坦類藥物進(jìn)行治療,但存在一定不良反應(yīng),且不能從根本上治愈[3]。川穹嗪(TMP)是中藥川穹的主要生物活性成分,常被用于治療神經(jīng)退行性疾?。?]。已有研究證實(shí)TMP能夠通過(guò)抑制c-fos/ERK信號(hào)通路表達(dá),有效改善硝酸甘油誘導(dǎo)的大鼠偏頭痛[5]。硝酸甘油是一氧化氮(NO)的供體,能夠通過(guò)激活三叉神經(jīng)末梢釋放降鈣素基因相關(guān)肽誘導(dǎo)神經(jīng)源性炎癥反應(yīng),引起偏頭痛[6]。沉默信息調(diào)節(jié)因子2相關(guān)酶1(SIRT1)/腺苷酸活化蛋白激酶(AMPK)/過(guò)氧化物酶體增殖物激活受體γ輔助激活因子1α(PGC1α)信號(hào)通路在細(xì)胞凋亡、氧化應(yīng)激和炎癥反應(yīng)中發(fā)揮重要作用[7]。本研究通過(guò)硝酸甘油誘導(dǎo)建立偏頭痛大鼠模型,探究TMP能否通過(guò)調(diào)控SIRT1/AMPK/PGC1α信號(hào)通路對(duì)偏頭痛大鼠起到鎮(zhèn)痛和神經(jīng)元損傷保護(hù)作用。
1 材料與方法
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物 SPF級(jí)6周齡SD雄性大鼠60只,體質(zhì)量200~220 g,購(gòu)自上海杰思捷實(shí)驗(yàn)動(dòng)物有限公司,動(dòng)物生產(chǎn)許可證號(hào):SCXK(滬)2018-0004,質(zhì)量合格證號(hào)201000546402。實(shí)驗(yàn)前適應(yīng)性飼養(yǎng)1周,室溫20~25 ℃,相對(duì)濕度45%~55%,明暗12 h/12 h,自由飲水、攝食,遵守實(shí)驗(yàn)動(dòng)物管理?xiàng)l例和3R原則。
1.1.2 試劑與儀器 硝酸甘油(CS-O-11467)購(gòu)自深圳海思安生物技術(shù)有限公司;TMP(RQ1824)購(gòu)自上海譜科生物技術(shù)有限公司;SIRT1抑制劑EX527(純度99.69%,M00182)購(gòu)自北京百奧萊博科技有限公司;NO(A012-1-2)、白細(xì)胞介素-6(IL-6,H007-1-1)、IL-1β(H002)、5-羥色胺(5-HT,H104-1-1)、去甲腎上腺素(NE,H096)、多巴胺(DA,H170)酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)試劑盒均購(gòu)自南京建成生物工程研究所;RIPA蛋白裂解液(R0010)、BCA蛋白濃度測(cè)定試劑盒(PC0020)、ECL顯色液(PE0010)均購(gòu)自北京索萊寶科技有限公司;兔抗鼠SIRT1抗體(2493S)、兔抗鼠AMPK抗體(4150S)、兔抗鼠p-AMPK抗體(5759S)、兔抗鼠PGC1α抗體(2178S)及羊抗兔二抗(7074S)均購(gòu)自美國(guó)CST公司。Von Frey Hairs纖毛機(jī)械刺激針購(gòu)自上海博士?jī)x器有限公司;光照測(cè)痛儀購(gòu)自北京智鼠多寶生物科技有限責(zé)任公司;OlympusBX53半電動(dòng)熒光顯微鏡購(gòu)自日本奧林巴斯公司;GelDoc Go凝膠成像系統(tǒng)購(gòu)自伯樂(lè)生命醫(yī)學(xué)產(chǎn)品(上海)有限公司。
1.2 研究方法
1.2.1 模型建立與分組給藥 參照文獻(xiàn)[8],采用腹腔注射10 mg/kg硝酸甘油制備大鼠偏頭痛模型,造模4 h后觀察大鼠行為,當(dāng)大鼠連續(xù)30 min出現(xiàn)耳紅、撓頭、爬籠等行為時(shí),提示造模成功。將造模成功的大鼠依據(jù)隨機(jī)數(shù)字表法分為模型(M)組、TMP低劑量(TMP-L)組、TMP中劑量(TMP-M)組、TMP高劑量(TMP-H)組及TMP+EX527組,每組10只。其中TMP-L組、TMP-M組、TMP-H組根據(jù)成人與大鼠體表面積比進(jìn)行劑量換算后,分別灌胃50、100、200 mg/kg TMP溶液[9],TMP+EX527組灌胃TMP溶液200 mg/kg以及尾靜脈注射5 mg/kg的EX527[10]。另取10只大鼠作為正常對(duì)照(NC)組。M組與NC組給予等體積生理鹽水灌胃。每日1次,連續(xù)灌胃2周。
1.2.2 大鼠行為學(xué)觀察 給藥結(jié)束24 h后,記錄各組大鼠在連續(xù)30 min內(nèi)出現(xiàn)撓頭、爬籠的次數(shù),每個(gè)癥狀出現(xiàn)1次記為1分[11]。以給藥結(jié)束24 h記為初始時(shí)間(即0 min),記錄0~30 min、60~90 min、120~150 min 3個(gè)時(shí)間段行為學(xué)評(píng)分。
1.2.3 大鼠機(jī)械性刺激及熱刺激痛閾測(cè)定 機(jī)械性刺激痛閾測(cè)定:采用纖毛機(jī)械刺激針,從最小刺激強(qiáng)度開始刺激大鼠須墊部,不能引起大鼠縮頭反應(yīng)調(diào)大一級(jí),以出現(xiàn)縮頭反應(yīng)時(shí)的纖毛針強(qiáng)度為機(jī)械性刺激痛閾值,重復(fù)測(cè)試3次,取平均值作為最終結(jié)果。
熱刺激痛閾測(cè)定:于光照測(cè)痛儀上固定大鼠,待其平靜后將校準(zhǔn)光對(duì)準(zhǔn)大鼠須墊部,打開開關(guān)使燈頭發(fā)出刺激強(qiáng)光(強(qiáng)光反射器不可移動(dòng)),感應(yīng)器感應(yīng)到大鼠出現(xiàn)縮頭反應(yīng)時(shí)熄滅刺激強(qiáng)光,顯示器上顯示的時(shí)間記為熱刺激潛伏期,重復(fù)測(cè)試3次后取其平均值。
1.2.4 ELISA法檢測(cè)血清中NO、IL-6、IL-1β含量 痛閾測(cè)定結(jié)束后,腹腔注射戊巴比妥鈉麻醉大鼠,運(yùn)用采血管進(jìn)行腹主動(dòng)脈取血,靜置2 h,4 ℃、3 500 r/min離心10 min,收集上清液,按照ELISA檢測(cè)試劑盒說(shuō)明書進(jìn)行操作,檢測(cè)各組大鼠血清中NO、IL-6、IL-1β水平。
1.2.5 TUNEL染色觀察腦組織神經(jīng)元凋亡情況 取血完成后,斷頭處死大鼠,冰上迅速分離出腦干。取一部分腦干置于4%多聚甲醛中固定,另一部分保存于-80 ℃冰箱中。固定好的組織進(jìn)行常規(guī)石蠟包埋、切片,再將切片脫蠟至水,蛋白酶K修復(fù)抗原,洗滌后加入TUNEL反應(yīng)液,封片鏡檢并拍照,選擇5個(gè)隨機(jī)視野計(jì)算陽(yáng)性細(xì)胞率(即細(xì)胞凋亡率)。凋亡率=陽(yáng)性凋亡細(xì)胞數(shù)/總細(xì)胞數(shù)×100%。
1.2.6 ELISA法檢測(cè)腦組織中5-HT、NE、DA含量 取-80 ℃冰箱中的腦干組織制備組織勻漿液,采用ELISA檢測(cè)試劑盒檢測(cè)各組大鼠腦組織中5-HT、NE、DA含量。
1.2.7 Western blot法檢測(cè)腦組織中SIRT1、AMPK、p-AMPK、PGC1α蛋白表達(dá) 取-80 ℃冰箱中保存的腦干組織,解凍后充分勻漿,加入RIPA蛋白裂解液提取總蛋白,離心后取上清液,采用BCA法測(cè)定蛋白濃度。取50 μg蛋白上樣進(jìn)行SDS-PAGE,轉(zhuǎn)膜,5%脫脂奶粉室溫封閉2 h后洗膜,加入SIRT1、AMPK、p-AMPK、PGC1α一抗(稀釋倍數(shù)1︰1 000),4 ℃孵育過(guò)夜后洗膜;加入二抗(稀釋倍數(shù)1︰2 000),室溫孵育2 h,采用ECL顯色,凝膠成像系統(tǒng)觀察蛋白條帶并分析灰度值。以β-actin為內(nèi)參,計(jì)算各組目的蛋白的相對(duì)表達(dá)量。
1.3 統(tǒng)計(jì)學(xué)方法 采用GraphPad Prism 8.0軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間多重比較采用SNK-q檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各組大鼠行為學(xué)改變 NC組大鼠未見(jiàn)行為學(xué)異常表現(xiàn);與NC組比較,M組大鼠在0~30 min、60~90 min、120~150 min 3個(gè)時(shí)間段撓頭次數(shù)與爬籠次數(shù)均增加,行為學(xué)評(píng)分升高(P<0.05);與M組比較,TMP各劑量組大鼠在0~30 min、60~90 min、120~150 min 3個(gè)時(shí)間段內(nèi)行為學(xué)評(píng)分降低(P<0.05),且在0~30 min、60~90 min時(shí)間段內(nèi)TMP各劑量組間具有劑量效應(yīng);與TMP-H組比較,TMP+EX527組在3個(gè)時(shí)間段內(nèi)行為學(xué)評(píng)分升高(P<0.05),見(jiàn)表1。
2.2 各組大鼠機(jī)械性刺激痛閾及熱刺激痛閾比較 與NC組比較,M組大鼠機(jī)械性刺激痛閾值降低,熱刺激潛伏期縮短(P<0.05);與M組比較,TMP各劑量組大鼠機(jī)械性刺激痛閾升高,熱刺激潛伏期延長(zhǎng)(P<0.05),且TMP各劑量組間熱刺激潛伏期具有劑量效應(yīng);TMP+EX527組與TMP-H組比較,機(jī)械性刺激痛閾值降低,熱刺激潛伏期縮短(P<0.05),見(jiàn)表2。
2.3 各組大鼠血清中NO含量及炎性因子水平比較 與NC組比較,M組大鼠血清中NO、IL-6、IL-1β水平升高(P<0.05);與M組比較,TMP各劑量組大鼠血清中NO、IL-6、IL-1β水平降低(P<0.05),且TMP各劑量組間具有劑量效應(yīng);TMP+EX527組與TMP-H組比較,血清中NO、IL-6、IL-1β水平升高(P<0.05),見(jiàn)表3。
2.4 各組大鼠腦組織神經(jīng)元凋亡情況 各組間神經(jīng)元凋亡率差異有統(tǒng)計(jì)學(xué)意義(n=10,F(xiàn)=249.777,P<0.01)。與NC組(7.32%±0.75%)比較,M組(36.57%±2.91%)大鼠腦組織神經(jīng)元凋亡率顯著升高(P<0.05);與M組比較,TMP-L組(31.49%±2.87%)、TMP-M組(24.12%±2.33%)、TMP-H組(16.31%±1.45%)大鼠腦組織神經(jīng)元凋亡率顯著降低(P<0.05),且TMP各劑量組間具有劑量效應(yīng);TMP+EX527組(25.62%±1.33%)與TMP-H組比較神經(jīng)元凋亡率顯著升高(P<0.05),見(jiàn)圖1。
2.5 各組大鼠腦組織中生化指標(biāo)比較 與NC組比較,M組大鼠腦組織中5-HT、NE、DA水平均降低(P<0.05);與M組比較,TMP各劑量組大鼠腦組織中5-HT、NE、DA水平均升高(P<0.05),且TMP-L組、TMP-M組、TMP-H組間具有劑量效應(yīng);與TMP-H組比較,TMP+EX527組大鼠腦組織中5-HT、NE、DA水平均降低(P<0.05),見(jiàn)表4。
2.6 各組大鼠腦組織中SIRT1、AMPK、p-AMPK、PGC1α蛋白表達(dá)的影響 與NC組比較,M組大鼠腦組織中AMPK磷酸化水平降低,即p-AMPK/AMPK比值降低,SIRT1、PGC1α蛋白表達(dá)降低(P<0.05);與M組比較,TMP-L組、TMP-M組、TMP-H組大鼠腦組織中p-AMPK/AMPK比值和SIRT1、PGC1α蛋白表達(dá)均升高(P<0.05),且TMP各劑量組間具有劑量效應(yīng);與TMP-H組比較,TMP+EX527組p-AMPK/AMPK比值和SIRT1、PGC1α蛋白表達(dá)降低(P<0.05),見(jiàn)圖2、表5。
3 討論
3.1 TMP改善偏頭痛大鼠的炎癥反應(yīng)和痛覺(jué)敏感性 中醫(yī)認(rèn)為偏頭痛的主要病因是情志內(nèi)傷、久病致瘀、痰瘀阻絡(luò)等[12]。偏頭痛根治困難、極易復(fù)發(fā),患者常伴有焦慮、抑郁等癥狀,嚴(yán)重時(shí)還可出現(xiàn)精神障礙[13]。目前硝酸甘油誘導(dǎo)偏頭痛是建立動(dòng)物模型的常用方法。本研究結(jié)果顯示,硝酸甘油誘導(dǎo)的偏頭痛大鼠表現(xiàn)為撓頭次數(shù)以及爬籠次數(shù)均顯著增加,大鼠機(jī)械性刺激痛與熱刺激痛閾值下降,血清中NO含量及IL-6、IL-1β水平均顯著升高,提示大鼠體內(nèi)炎癥反應(yīng)過(guò)度,大鼠痛覺(jué)敏感度升高,出現(xiàn)偏頭痛癥狀,模型建立成功。TMP可通過(guò)抑制氧自由基釋放,下調(diào)NO產(chǎn)生,抑制炎性因子的表達(dá),保護(hù)缺血再灌注腦損傷[14]。本研究結(jié)果顯示,TMP各劑量組能夠不同程度地減輕大鼠行為學(xué)變化,降低血清中NO水平,抑制IL-6、IL-1β表達(dá),改善大鼠痛覺(jué)敏感性。
3.2 TMP減輕偏頭痛大鼠神經(jīng)元損傷 研究發(fā)現(xiàn),5-HT、NE、DA等神經(jīng)遞質(zhì)在偏頭痛發(fā)作期水平下降,引起血管擴(kuò)張,加劇大鼠偏頭痛和神經(jīng)損傷[15-17]。包括5-HT、NE和DA在內(nèi)的單胺類物質(zhì)在中樞和外周神經(jīng)系統(tǒng)廣泛表達(dá),影響血管舒縮功能和痛覺(jué)傳遞。腹腔注射硝酸甘油作為外部刺激可刺激顳葉興奮性信號(hào)傳導(dǎo),影響5-HT、NE和DA的釋放,進(jìn)而導(dǎo)致偏頭痛的發(fā)生[18-19]。本研究結(jié)果顯示,偏頭痛大鼠腦組織中5-HT、NE、DA水平降低,神經(jīng)元凋亡增加,與Hou等[16]的研究一致,縮血管因子NE和DA的下降反向證實(shí)了模型大鼠的血管擴(kuò)張,提示偏頭痛大鼠神經(jīng)受損。不同劑量TMP處理后大鼠腦組織中5-HT、NE、DA水平升高,神經(jīng)元凋亡降低,表明TMP可改善偏頭痛大鼠神經(jīng)元損傷。
3.3 TMP激活偏頭痛大鼠體內(nèi)SIRT1/AMPK/PGC-1α通路 SIRT1參與調(diào)節(jié)多種細(xì)胞的生理過(guò)程,在氧化應(yīng)激、炎癥反應(yīng)以及能量代謝中發(fā)揮關(guān)鍵作用[20]。AMPK與SIRT1功能相似,是調(diào)節(jié)氧化應(yīng)激與能量代謝的關(guān)鍵因子[21]。SIRTI與AMPK作為PGC-1α的上游因子,通過(guò)抑制PGC-1α乙?;?,上調(diào)PGC-1α表達(dá),抑制氧化應(yīng)激與炎癥反應(yīng)、減少細(xì)胞凋亡,發(fā)揮神經(jīng)保護(hù)作用[22]。本研究發(fā)現(xiàn),不同劑量TMP處理后大鼠腦組織中AMPK磷酸化和SIRT1、PGC1α蛋白表達(dá)上調(diào),提示TMP能夠激活SIRT1/AMPK/PGC-1α通路,抑制炎癥反應(yīng),減輕神經(jīng)元凋亡,改善神經(jīng)元損傷。但SIRT1抑制劑EX527干預(yù)后,TMP對(duì)大鼠的鎮(zhèn)痛和神經(jīng)元損傷保護(hù)作用被部分逆轉(zhuǎn),因此調(diào)控SIRT1/AMPK/PGC-1α通路可能是TMP對(duì)偏頭痛大鼠的治療機(jī)制之一。
綜上所述,TMP可能通過(guò)調(diào)控SIRT1/AMPK/PGC-1α通路有效改善偏頭痛大鼠的行為異常和痛覺(jué)敏感,減輕神經(jīng)元凋亡,抑制炎癥反應(yīng)和NO表達(dá),上調(diào)5-HT、NE、DA水平,從而發(fā)揮鎮(zhèn)痛作用和神經(jīng)元損傷保護(hù)作用。但由于偏頭痛發(fā)病機(jī)制復(fù)雜,TMP的治療作用還需要后續(xù)進(jìn)一步深入探索。
參考文獻(xiàn)
[1] SPECK R M,COLLINS E M,LOMBARD L,et al. A qualitative study to assess the content validity of the 24-hour migraine quality of life questionnaire in patients with migraine[J]. Headache,2020,60(9):1982-1994. doi:10.1111/head.13915.
[2] BARRA M,DAHL F A,VETVIK K G,et al. A Markov chain method for counting and modelling migraine attacks[J]. Sci Rep,2020,10(1):3631. doi:10.1038/s41598-020-60505-5.
[3] HIRATA K,UEDA K,KOMORI M,et al. Unmet needs in Japanese patients who report insufficient efficacy with trip-tans for acute treatment of migraine:Retrospective analysis of real-world data[J]. Pain Ther,2021,10(1):415-432. doi:10.1007/s40122-020-00223-y.
[4] MENG Z,CHEN H,MENG S. The roles of tetramethylpyrazine during neurodegenerative disease[J]. Neurotox Res,2021,39(5):1665-1677. doi:10.1007/s12640-021-00398-y.
[5] LI H,BAI F,CONG C,et al. Effects of ligustrazine on the expression of neurotransmitters in the trigeminal ganglion of a rat migraine model[J]. Ann Transl Med,2021,9(16):1318-1328. doi:10.21037/atm-21-3423.
[6] 王歡,王淑敏,陳長(zhǎng)寶,等. 黃綠卷毛菇對(duì)硝酸甘油誘導(dǎo)偏頭痛大鼠的鎮(zhèn)痛、抗炎作用[J]. 菌物學(xué)報(bào),2020,39(5):917-922. WANG H,WANG S M,CHEN C B,et al. Anti-inflammatory and analgetic effects of the aqueous extract of Floccularia luteovirens on NTG-induced migraine in rats[J]. Mycosystema,2020,39(5):917-922. doi:10.13346/j.mycosystema.190384.
[7] ZHENG Y,LIU T,WANG Z,et al. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice[J]. Int J Biol Macromol,2018,112:929-936. doi:10.1016/j.ijbiomac.2018.02.072.
[8] 劉潔,李利民,寧楠,等. 半夏瀉心湯介導(dǎo)的cAMP/PKA信號(hào)通路對(duì)偏頭痛模型大鼠c-fos/c-jun基因的調(diào)控作用[J]. 中藥藥理與臨床,2019,35(3):37-40. LIU J,LI L M,NING N,et al. The regulation of c-fos/c-jun by (Banxiaxiexintang) BXT mediated CAMP/PKA signaling pathway in migraine rat model[J]. Pharmacology and Clinics of Chinese Materia Medica,2019,35(3):37-40. doi:10.13412/j.cnki.zyyl.2019.03.008.
[9] 李莉,張瓊果,潘巧虹,等. 基于胞外信號(hào)調(diào)節(jié)激酶/胞漿型磷脂酶A2信號(hào)通路分析川穹嗪對(duì)膜性腎病大鼠腎保護(hù)作用[J]. 中國(guó)臨床藥理學(xué)雜志,2020,36(12):1665-1668. LI L,ZHANG Q G,PAN Q H,et al. Study on renal protection effect of tetramethylpyrazine on membranous nephropathy rats based on extracellular signal-regulated kinase/cytosolic phospholipase A2 signaling pathway[J]. Chin J Clin Pharmacol,2020,36(12):1665-1668. doi:10.13699/j.cnki.1001-6821.2020.12.017.
[10] 肖志博,謝海,金輝,等. 丙泊酚基于SIRT1/Foxo1信號(hào)緩解腦缺血再灌注造成血腦屏障損傷[J]. 微循環(huán)學(xué)雜志,2022,32(1):12-18. XIAO Z B,XIE H,JIN H,et al. Protection of propofol on blood-brain barrier injury induced by ischemia/reperfusion based on SIRT1/Foxo1 signal[J]. Chinese Journal of Microcirculation,2022,32(1):12-18. doi:10.3969/j.issn.1005-1740.2022.01.003.
[11] 王萌萌,于曉華,耿煒,等. 疏肝調(diào)神針?lè)▽?duì)偏頭痛大鼠行為學(xué)及血中相關(guān)神經(jīng)肽、炎性物質(zhì)表達(dá)的影響[J]. 針刺研究,2018,43(6):375-379. WANG M M,YU X H,GENG W,et al. Effect of manual acupuncture preconditioning on behavior and contents of serum CGRP,SP,IL-1β and TNF-α levels in migraine rats[J]. Acupuncture Research,2018,43(6):375-379. doi:10.13702/j.1000-0607.170415.
[12] 姚慶萍,邵淑娟. 偏頭痛中醫(yī)藥治療研究近況[J]. 內(nèi)蒙古中醫(yī)藥,2017,36(11):97-99. YAO Q P,SHAO S J. Recent research on TCM treatment of migraine[J]. Inner Mongolia Journal of Traditional Chinese Medicine,2017,36(11):97-99. doi:10.16040/j.cnki.cn15-1101.2017.11.096.
[13] EDVINSSON L,HAANES K A,WARFVINGE K,et al. CGRP as the target of new migraine therapies - successful translation from bench to clinic[J]. Nat Rev Neurol,2018,14(6):338-350. doi:10.1038/s41582-018-0003-1.
[14] ZHANG C,SHEN M,TENG F,et al. Ultrasound-enhanced protective effect of tetramethylpyrazine via the ROS/HIF-1A signaling pathway in an in vitro cerebral Ischemia/reperfusion injury model[J]. Ultrasound Med Biol,2018,44(8):1786-1798. doi:10.1016/j.ultrasmedbio.2018.04.005.
[15] 邢娟,范崇桂,沈雷,等. 基于PKC/P2X3通路探討正天丸對(duì)偏頭痛大鼠的保護(hù)作用[J]. 上海中醫(yī)藥雜志,2020,54(5):87-92. XING J,F(xiàn)AN C G,SHEN L,et al. Protective effect of Zhengtian pill on migraine rats based on PKC/P2X3 pathway[J]. Shanghai Journal of Traditional Chinese Medicine,2020,54(5):87-92. doi:10.16305/j.1007-1334.2020.05.008.
[16] HOU M,TANG Q,XUE Q,et al. Pharmacodynamic action and mechanism of Du Liang soft capsule,a traditional Chinese medicine capsule,on treating nitroglycerin-induced migraine[J]. J Ethnopharmacol,2017,195:231-237. doi:10.1016/j.jep.2016.11.025.
[17] 劉宇光,王歡,王淑敏,等. 藥用真菌中麥角甾醇對(duì)偏頭痛大鼠的作用機(jī)制[J]. 食品工業(yè)科技,2021,42(15):327-331. LIU Y G,WANG H,WANG S M,et al. Effects of ergosterol from medicinal fungi on migraine rats[J]. Science and Technology of Food Industry,2021,42(15):327-331. doi:10.13386/j.issn1002-0306.2020090049.
[18] WEN W,CHEN H,F(xiàn)U K,et al. Fructus Viticis methanolic extract attenuates trigeminal hyperalgesia in migraine by regulating injury signal transmission[J]. Exp Ther Med,2020,19(1):85-94. doi:10.3892/etm.2019.8201.
[19] SUN X,ZHU F,ZHOU J,et al. Anti-migraine and anti-depression activities of Tianshu capsule by mediating Monoamine oxidase[J]. Biomed Pharmacother,2018,100:275-281. doi:10.1016/j.biopha.2018.01.171.
[20] ZHANG Y M,QU X Y,TAO L N,et al. XingNaoJing injection ameliorates cerebral ischaemia/reperfusion injury via SIRT1-mediated inflammatory response inhibition[J]. Pharm Biol,2020,58(1):16-24. doi:10.1080/13880209.2019.1698619.
[21] YUN Y C,JEONG S G,KIM S H,et al. Reduced sirtuin 1/adenosine monophosphate-activated protein kinase in amyotrophic lateral sclerosis patient-derived mesenchymal stem cells can be restored by resveratrol[J]. J Tissue Eng Regen Med,2019,13(1):110-115. doi:10.1002/term.2776.
[22] 劉垚君,張玉琴,方雅玲,等. 黃精多糖調(diào)控SIRT1/AMPK/PGC-1α信號(hào)通路改善H2O2誘導(dǎo)的HT22細(xì)胞氧化損傷[J]. 中國(guó)現(xiàn)代應(yīng)用藥學(xué),2021,38(16):1952-1957. LIU Y J,ZHANG Y Q,F(xiàn)ANG Y L,et al. Regulation of SIRT1/AMPK/PGC-1α signaling pathway by polygonatum polysaccharide improves H2O2-induced oxidative damage in HT22 cells[J]. Chin J Mod Appl Pharm,2021,38(16):1952-1957. doi:10.13748/j.cnki.issn1007-7693.2021.16.005.
(2022-06-07收稿 2022-09-01修回)
(本文編輯 李鵬)