陳麟國 張紅娟 丁磊 裴劉軍 王際平
摘 要:隨著生活水平的提高,人們對服裝的舒適度愈發(fā)重視,堿減量技術(shù)在改善滌綸織物的手感方面有著廣泛應(yīng)用,然而滌綸堿減量技術(shù)也有著許多缺點。針對滌綸堿減量技術(shù)存在的問題,結(jié)合堿減量技術(shù)的原理以及目前清潔生產(chǎn)的發(fā)展背景,著重介紹了利用促進劑提高滌綸堿減量效果的方法,并分析了促進劑的作用機制,基于使用促進劑的優(yōu)缺點,指出未來促進劑的發(fā)展方向,提出堿減量與滌綸染色一浴進行是精煉滌綸染整加工流程、提高生產(chǎn)效率的有效方法,以期對紡織行業(yè)的可持續(xù)發(fā)展提供指導(dǎo)。
關(guān)鍵詞:滌綸;堿減量;促進劑;生態(tài)染整;促進機制
中圖分類號:TS190.2 文獻標(biāo)志碼:A 文章編號:1009-265X(2023)06-0061-11
在環(huán)境保護意識不斷增強的社會背景下,減少?;肥褂檬羌徔椥袠I(yè)追求可持續(xù)發(fā)展的重要目標(biāo)之一[1-2]。為克服滌綸織物舒適性差的缺點,目前最為常用的處理方法是利用高濃度液堿對滌綸織物進行堿減量處理,但該方法存在耗堿量大、污染嚴(yán)重、污水處理成本高等問題[3-5]。同時,由于液堿屬于?;?,在實際生產(chǎn)過程中對作業(yè)工人來說存在很大安全隱患,故而開發(fā)堿減量過程減少堿用量的方法非常必要。通過堿減量促進劑實現(xiàn)堿用量的降低,且保留傳統(tǒng)堿減量處理織物優(yōu)良性能,是實現(xiàn)可持續(xù)發(fā)展的重要方向之一。
滌綸堿減量促進劑種類繁多,目前報道的有季銨鹽陽離子表面活性劑、明膠蛋白促進劑、離子液體等[6-7]。通過使用這些促進劑,可不同程度上降低堿用量,降低過量使用堿液導(dǎo)致廢水處理問題和環(huán)境污染。在減少堿用量的同時,可以對織物性能進行優(yōu)化,更好地控制纖維的質(zhì)量,提高產(chǎn)品的穩(wěn)定性和一致性。近年來,對于堿減量促進劑的開發(fā)以及使用,已取得明顯進展。
1 滌綸堿減量技術(shù)的發(fā)展背景及原理
滌綸織物是一種性能優(yōu)良、應(yīng)用廣泛的紡織品,但其存在吸濕性差、易起靜電等問題,制約了其作為高端紡織品材料的市場前景。堿減量處理之后,可改善滌綸纖維自身的缺陷,賦予其良好的懸垂性、保水性等優(yōu)點[8-10]。從纖維的表觀形態(tài)來看,滌綸纖維的截面形狀通常為圓形,縱向形態(tài)為表面光滑、細度均勻的圓柱體,光滑的纖維表面易發(fā)生光的全反射,產(chǎn)生“極光”問題。但是在堿減量處理后織物的纖維表面發(fā)生刻蝕,同時由于微小溝槽和凹坑的存在,會增加光線漫反射,削弱滌綸纖維產(chǎn)生的全反射,消除了織物“極光”問題,滌綸織物的染色性和懸垂性也得以改善,具有仿真絲特性[11-13],纖維處理前后掃描電鏡如圖1所示。一般傳統(tǒng)堿減量處理是通過用液堿對滌綸纖維進行表面改性,液堿的作用機理為:在堿性水解中,來自堿的氫氧根離子攻擊聚酯大分子主鏈上缺電子的羰基碳,致使酯鍵斷裂,并產(chǎn)生羥基和羧酸酯端基[14-15]。滌綸堿減量處理會使得織物表面產(chǎn)生刻蝕,形成凹坑,增大了纖維的比表面積。
傳統(tǒng)的堿減量工藝通常使用高溫和較濃的燒堿溶液處理滌綸織物,工業(yè)中常用液堿濃度高,且工藝中往往需要高溫處理,堿減量廢水中含有大量的游離堿具有pH值高、化學(xué)需氧量(COD)高等特點。而且處理后的織物在使用前需要進行酸洗和水洗,無法直接用于染色,與普通印染廢水混合后再處理,會增大印染廢水的處理難度和成本[16-18]。王小艷等[19-20]對堿減量工藝進行了優(yōu)化,利用高耐堿分散染料先對滌綸織物進行染色,然后再進行堿減量;結(jié)果表明后堿減量的染色滌綸織物相比預(yù)堿減量處理織物具有更好的K/S值,可以在達到相同表觀顏色的條件下使用更少的染料,其原因主要是由于堿減量過程中纖維形貌變化導(dǎo)致;圖2為滌綸在氫氧化鈉溶液中的分解反應(yīng)機理。后堿減量工藝使得織物既保留了堿減量的優(yōu)點又能節(jié)省用水和染料,但是缺點是要求染料是耐堿性的、成本高,且目前市面上耐堿分散染料的色系較少,所以后堿減量工藝的泛用性不是很廣。
除了對堿減量工藝進行調(diào)整以外,Shukla等[21-22]從溶解燒堿的溶劑入手,通過將NaOH溶解在醇和水中,分別對滌綸纖維進行堿減量處理,與在NaOH醇溶液處理的織物相比,NaOH水溶液具有更高的減量率。醇中溶劑化的氫氧化鈉分子比氫氧化鈉水合物分子的尺寸和極性小,因此氫氧化鈉醇溶液對滌綸的排斥性較小。乙醇溶劑分子比甲醇分子的空間位阻大,與纖維的作用機會減少,從而減量率要小于NaOH甲醇溶液處理織物的減量率。從實際應(yīng)用方面來看,通過添加促進劑來減少堿減量工藝中的液堿用量是一種極為有效的方法,在節(jié)能減排和環(huán)境保護方面具有重要的意義。因此,對堿減量促進劑進行研究,可以為提高滌綸織物性能及拓展相關(guān)應(yīng)用奠定基礎(chǔ)。
2 滌綸堿減量促進劑的發(fā)展現(xiàn)狀
滌綸織物的堿減量加工是紡織工業(yè)中廣泛采用的工藝,通過減小纖維的直徑和重量,達到獲得光滑的表面和增加織物服用性能的目的[23]。在堿減量加工中,減量率隨堿濃度的增加而增加,但傳統(tǒng)堿減量中NaOH的利用率較低。通過添加促進劑,可以提高堿的利用率。促進劑種類大致可分為季銨鹽類、磷酸脂類、滲透劑、胺類、醇類、苯酚類等化合物,其中季銨鹽類應(yīng)用較普遍。相比其他技術(shù),促進劑的使用,更加經(jīng)濟、方便,可以有效減少傳統(tǒng)堿減量中液堿的用量。
2.1 季銨鹽陽離子表面活性劑
堿減量加工應(yīng)用最多的一類促進劑就是季銨鹽陽離子表面活性劑,其通式如圖3所示。
圖3中,R為甲基;R1為C12~C18烷基;R2為甲基、羥乙基、芐基或其他含碳長鏈;X為Cl-、Br-、NO-3等。常用的季銨鹽陽離子表面活性劑如表1所示。在促進效果方面:1227(十二烷基二甲基芐基氯化銨)>SN(十八烷基二甲基羥乙基硝酸銨)>CTAB(十六烷基三甲基溴化銨)>1231(十二烷基三甲基溴化銨),且疏水碳鏈長短以及取代基是分子結(jié)構(gòu)層面上影響促進劑的催化作用的主要因素。季銨鹽陽離子表面活性劑的作用主要是:通過帶正電的季銨離子攜帶氫氧根離子進攻羰基碳原子,以促進滌綸大分子中發(fā)生酯鍵的水解。
王宗舞等[24]研究了促進劑1227的添加對滌綸堿減量改性效果的影響,發(fā)現(xiàn)季銨鹽表面活性劑中碳原子數(shù)為12~16,含芐基的季銨氯化物的促進效果最好。但是單一促進劑的使用存在著強力損傷過大,減量不勻,處理織物發(fā)黃的問題。Gawish等[25]研究了一系列由四甲基乙二胺與季銨化劑十六烷基溴,芐基氯合成的陽離子表面活性劑,合成過程如圖4所示,并發(fā)現(xiàn)在相同的工藝條件下(100~130 ℃),十六烷基甲基溴化銨可加速水解,且根據(jù)促進用量的不同,可以達到15%~25%的減量率。
2.2 明膠蛋白促進劑
明膠是膠原的水解產(chǎn)物,具有極其優(yōu)良的物理性質(zhì),如親和性、高度分散性、親水性、韌性等。明膠具有一定的表面活性,浸潤性以及膠體保護性,在堿減量的過程中可以起到溶脹纖維,降低表面張力的
作用。范云麗等[26]研究陽離子明膠蛋白助劑復(fù)配對促進滌綸堿減量率和減量速率的影響,并討論二者復(fù)配對滌綸織物服用性能及分散染料上染色性能的影響,發(fā)現(xiàn)陽離子明膠蛋白助劑應(yīng)用于滌綸織物的堿減量工藝中,可以促進滌綸織物堿減量,與不添
加陽離子明膠蛋白助劑的對照組相比可以提升5%的減量率,同等條件下可以減少37.5%的堿用量。該促進劑在織物表面有一定量吸附,其上的極性基團有可能與滌綸上的酯基結(jié)合,減弱吸附在滌綸上的氫氧根離子與織物發(fā)生催化水解作用,處理織物表面刻痕均勻,可以有效解決織物強力損傷過大的問題,不同促進劑處理的滌淪織物表面形貌如圖5所示。何志軍等[27]通過將明膠蛋白高分子溶液涂覆滌綸織物,把滌綸織物的高強度、高彈性與明膠蛋白等天然高分子的人體親和性、舒適性進行有機結(jié)合,制成功能性滌綸織物,從而提高了滌綸的吸濕性、透氣性。但是促進劑的回收利用存在問題,成本較高,雖然一定程度上減少堿的使用,但是對環(huán)境的污染問題沒有得到顯著改善。
2.3 新型滌綸堿減量促進劑的合成
為了進一步降低液堿用量,馬志鵬等[28]以甲基丙烯酰氧乙基三甲基氯化銨(DMC)和二甲基二烯丙基氯化銨(DMDAAC)為單體,水相溶液聚合制備新型堿減量促進劑P(DMC-DMDAAC),合成過程如圖6所示,并將合成產(chǎn)物用于滌綸堿減量處理探究優(yōu)化工藝條件及堿用量,發(fā)現(xiàn)聚陽離子促進劑具有
明顯的減量效果,減量率從9%提高至21%,與季銨鹽表面活性劑相比,促進效果要高4~5倍,而且可以在10 g/L液堿中使用,降低堿減量操作中的液堿用量33%,但是強力損傷較大。這種新型促進劑本質(zhì)上是一種陽離子聚合物,促進劑中含有強陽離子水溶性季銨鹽基團,在滌綸堿減量過程易吸附氫氧根離子,從而達到促進水解的效果。
2.4 離子液體
離子液體,也稱為熔融鹽,由于具有許多獨特的性質(zhì),離子液體作為未來的溶劑正受到越來越多的關(guān)注,有著取代現(xiàn)有的有機溶劑的前景。一般說來,離子液體被描述為熔點低于100 ℃的完全電離介質(zhì)[29]。
由有機陽離子和有機或無機陰離子組成[30]。這類流體的主要優(yōu)點之一是在理論上可以產(chǎn)生許多可能的陰陽離子組合[31]。根據(jù)Holbrey等[32]的研究,潛在合成的離子液體的數(shù)量將達到萬億的數(shù)量級(多達1018種可能性)。圖7和圖8是離子液體中出現(xiàn)的典型的一些陽離子和陰離子結(jié)構(gòu)。
離子液體屬于復(fù)合型離子表面活性劑,有著許多優(yōu)點:a)微小的揮發(fā)性:微小的揮發(fā)性是離子液體最著名的性質(zhì)之一,與有機分子溶劑相反,這提供了通過蒸餾去除產(chǎn)品的可能性,而不會進一步受到溶劑的污染,并且還導(dǎo)致大氣污染或吸入人體中毒的低風(fēng)險[33]。b)良好的熱穩(wěn)定性:離子液體通常是不可燃的,在高于傳統(tǒng)有機分子溶劑的溫度下保持熱穩(wěn)定性。這意味著,當(dāng)在離子液體中進行化學(xué)反應(yīng)時,可以避免爆炸危險。c)廣泛的溶解性:離子液體的溶劑性往往比傳統(tǒng)的有機分子溶劑更強,可以選擇或設(shè)計它們來溶解各種有機和無機氣體、液體和固體;離子液體也可以溶解天然聚合物和合成聚合物,離子液體溶解物質(zhì)的能力取決于許多因素,特別是它的極性和離子的配位性質(zhì)。d)廣闊的反應(yīng)特性:離子液體既可以用作反應(yīng)介質(zhì),也可以用作催化劑,這為實現(xiàn)有機合成和催化中的各種新反應(yīng)提供了廣闊的前景。離子液體應(yīng)用在紡織印染行業(yè),可實現(xiàn)生產(chǎn)的低碳環(huán)保與節(jié)能減排。董召勤等[34]研究了在具有不同碳原子數(shù)的1-烷基-3-甲基咪唑溴離子液體存在下的堿水解(即CnMImBr(n=8, 12, 14, 16)),并將它們與十六烷基三甲基溴化銨(CTAB)進行了比較。該研究發(fā)現(xiàn),碳鏈較長的CnMImBr可以作為新型促進劑,這是因為聚酯對碳鏈較長的離子表面活性劑或陽離子表面活性劑的吸附能力較高。劉褔勝等[35]以離子液體1-正丁基-3-甲基咪唑氯鹽為溶劑,酸性功能化離子液體1-甲基-3-(3-磺丙基)-咪唑硫酸氫鹽作為催化劑,研究了PET的水解,發(fā)現(xiàn)在170 ℃條件下,4.5 h后滌綸就會完全降解。Musale等[36]將離子液體[BMIM]Cl分別添加到NaOH水溶液和NaOH甲醇溶液處理PET織物,對比發(fā)現(xiàn)[BMIM]Cl在NaOH甲醇溶液中的減量率更高。曹機良等[37]研究了離子液體和烷基咪唑雙子離子液體作為滌綸織物堿減重催化劑,并將其分別與CTAB和1227進行了比較,發(fā)現(xiàn)離子液體和烷基咪唑雙子離子液體均可用于堿減量且減量效果更好,由于反應(yīng)的不可逆性,必須控制堿水解的速度,否則強力損傷過于嚴(yán)重,最佳減量率在24%左右。
盡管離子液體有著如此多的優(yōu)勢,但其某些特性仍存在許多問題,阻礙了其在工業(yè)規(guī)模上的發(fā)展。離子液體的主要局限性是:a)高成本:高成本這無疑是最具限制性的因素之一。當(dāng)前與普通有機溶劑相比,離子液體的價格很高,即使是工業(yè)化生產(chǎn)也是如此。離子液體的高成本不僅取決于原材料的價格,尤其取決于其制造工藝的復(fù)雜性以及所需的質(zhì)量。b)高粘度:高粘度大多數(shù)離子液體的粘度與油相當(dāng),比典型的有機溶劑大幾個數(shù)量級。這種高粘度在許多工業(yè)應(yīng)用中是一個主要缺點,主要依賴于傳質(zhì)和混合。c)毒性和生物降解性問題:離子液體通常被認為是綠色溶劑,由于其揮發(fā)性可以忽略不計,不可燃性和可回收利用,產(chǎn)品收率高。此外,對離子液體在自然環(huán)境中的毒性、生物降解性和流動性研究較少。
2.5 其他添加劑
在堿減量處理浴中加入其他添加劑,降低堿用量,促進滌綸在處理浴中水解,以達到節(jié)約能源,保護環(huán)境的目的。曹機良等[38]在滌綸堿減量處理浴中添加苯甲醇,發(fā)現(xiàn)可降低堿用量,同時相對較低的溫度條件下進行堿減量處理,但是促進劑合成較為復(fù)雜,成本較高。呂名秀等[39]通過探究苯甲醇和氯化鈉對滌/粘交織物堿減量的影響,發(fā)現(xiàn)在苯甲醇加入的條件下,加入氯化鈉可以有效提高減量率,降低堿用量,氯化鈉的加入可以促進滌綸水解,在一定程度內(nèi)氯化鈉質(zhì)量濃度越大越有利于水解反應(yīng)的進行。但是缺點是需要加入較多的苯甲醇,苯甲醇易燃易爆且有毒,對于廢水的排放問題難以解決。
此外,酯胺交換反應(yīng)也應(yīng)用于滌綸的表面功能化,氨解可以在不影響聚合物本體性能的情況下改善聚合物表面,提高親水性和生物相容性。胺類化合物攻擊聚酯主鏈,破壞聚合物鏈,一端產(chǎn)生酰胺基,另一端產(chǎn)生羥基[40]。滌綸的氨解反應(yīng)機理[41]以及氨基分子與滌綸反應(yīng)如圖9、圖10所示。氨解在滌綸織物上的有效作用,該織物具有更好的潤濕性、舒適性、手感和染色性能。聚酯的氨解可以通過胺的官能度和分子大小在速率、陽離子密度和滲透深度上進行控制,特別是控制胺分子在聚合物中的擴散[41-43]。乙二胺(EDA)和三氨基三乙胺(TAEA)等小分子胺可以很容易地進入聚合物的酯鍵,因此氨解反應(yīng)將發(fā)生得更快。不同種類的胺的氨解途徑的不同在于胺的分子復(fù)雜性和結(jié)構(gòu)以及在溶液中可能發(fā)生的副反應(yīng)。此外,空間位阻也可能對反應(yīng)的動力學(xué)有很大的影響。例如,用EDA、三乙烯四胺(TETA)和四乙烯五胺(TEPA)對聚對苯二甲酸乙二醇酯的表面進行化學(xué)修飾,不同的處理時間產(chǎn)生不同的特征。當(dāng)TETA在表面附近反應(yīng)并產(chǎn)生表面裂紋而不分層時,EDA的酰胺化程度最高。此外,TEPA是最溫和的反應(yīng)物,在樣品表面產(chǎn)生了酰胺基團,沒有明顯的變質(zhì)。這三種胺的反應(yīng)活性不同,生成了不同鏈長的聚酯。EDA在滌綸織物上的氨解通過研究發(fā)現(xiàn),隨著反應(yīng)時間的延長,PET表面的氨基密度增加,但是對纖維的損傷過大,周建風(fēng)等[44-45]使用乙二胺進行胺解,可以在聚酯纖維表面形成胺和羧酸官能團,顯著提高了滌綸織物的親水性,力學(xué)性能保持良好,改善了EDA對織物的損傷過大的問題,反應(yīng)機理如圖11所示。
使用生物酶進行處理[46-48],是一種相對較新的,有趣且環(huán)保的替代方案,為獲得更好的整理效果提供了可能性。但存在如下不足:a)對滌綸織物的處理效率過低。b)涉及使用復(fù)雜的生物催化劑,限制了其應(yīng)用。c)需要添加緩沖物質(zhì),并沿解聚向反應(yīng)混合物重新加酶。d)生物酶對處理條件要求較高,易失活,且處理時間長,不易產(chǎn)業(yè)化。
上述方法中實際應(yīng)用有限,且經(jīng)常伴隨著PET手感硬化或生產(chǎn)成本增加的問題。因此,對能夠更容易、更有效地應(yīng)用于滌綸纖維的后整理技術(shù)有很大的需求。卵磷脂是一種磷脂,由于卵磷脂對紡織纖維具有親和力的化學(xué)結(jié)構(gòu),具有能夠形成脂質(zhì)體的特性[49]。脂質(zhì)體形式的卵磷脂技術(shù)被用來改善紡織品的染整性能和減少廢水污染[33, 50-51]。脂質(zhì)體被定義為具有由包裹一定體積的脂泡雙層組成的結(jié)構(gòu)。這些結(jié)構(gòu)通常由磷脂酰膽堿(PC)組成,其親水部分由磷酸鹽和膽堿基團組成,疏水部分由兩個長度不等的碳氫鏈組成[52-53]。El-zawahry等[54]以大豆卵磷脂和硬脂酸為原料,分別以制備了3種陽離子脂質(zhì)體,作為促進劑對滌綸織物進行堿減量,并從化學(xué)相互作用方面證實了,處理后的滌綸織物親水性和可染性等表面性能發(fā)生改善。由于制備工藝復(fù)雜,難以產(chǎn)業(yè)化推廣。故目前使用結(jié)合促進劑對滌綸進行堿減量處理是如今工業(yè)化大生產(chǎn)的主流,且可一定程度上減少污水排放。
3 促進劑的作用機制
近年來,人們對滌綸的堿性條件下水解機理已經(jīng)進行了充分研究,但是對于以季銨鹽陽離子表面活性劑為主的促進劑作用機制卻鮮有報道。促進劑作用機制如下,主要過程分為3個階段:
a)離子交換:加入織物之前,處理浴中液相的季銨鹽陽離子表面活性劑在堿性條件下,鹵素離子X-會與OH-發(fā)生交換,呈現(xiàn)動態(tài)平衡的過程。
b)相轉(zhuǎn)變過程:加入織物后,加熱處理過程中,滌綸大分子中羰基極性導(dǎo)致羰基氧原子上的電子云密度升高而帶部分負電,帶正電的季銨離子能夠快速吸附到纖維表面。由于季銨堿中季銨離子通過離子鍵可以快速將氫氧根離子帶入到酯鍵反應(yīng)區(qū)域附近,增加了羥基負離子進攻纖維的能力,如圖12(a)所示。
c)酯基水解:與纖維結(jié)合的氫氧根離子,受到季銨離子的電荷約束,在一定范圍內(nèi)不斷地振動,削弱了水化作用,氫鍵減少,使著氫氧根離子有著較高的化學(xué)活潑性,此時空間中若存在酯基,氫氧根離子轉(zhuǎn)移到羰基碳原子上,發(fā)生親核反應(yīng),生成具有較大張力的正四面體結(jié)構(gòu)中間。在水的作用下,發(fā)生酯基斷裂,從而完成水解反應(yīng)。反應(yīng)過程如圖12(b)所示。
4 結(jié) 語
堿減量是改善滌綸織物服用性能的關(guān)鍵工藝,而堿減量促進劑是堿減量工藝中的關(guān)鍵助劑,它可以提高堿減量效率,減小織物在強堿中的損傷。然而隨著滌綸織物的應(yīng)用場景更加多樣化,對于堿減量促進劑的要求會越來越高,傳統(tǒng)的堿減量促進劑已經(jīng)不能滿足需求。
因此,堿減量促進劑的開發(fā)可從下列角度出發(fā):
a) 在有效減小液堿用量的同時,且保留液堿處理的最佳條件下合成新型促進劑,增加織物的功能性,如明膠蛋白試劑在提高服用性能的情況下還可起到一定的纖維修復(fù)作用。
b) 通過增加促進劑之間的復(fù)配研究,探究其作用機制,得到節(jié)省成本以及效果最佳的處理配方。
c) 堿減量技術(shù)的發(fā)展也可以運用到滌綸織物的堿減量染色一浴體系之中,在省去還原清洗步驟的同時還可以減少能源消耗,更加環(huán)保高效。
d) 運用促進劑降低堿減量處理中的堿濃度,給一些耐堿分散染料的pH適用范圍提供更多的可能,為堿性染色技術(shù)提供更多發(fā)展空間。
基于節(jié)能減排的目的,本文對堿減量促進劑的發(fā)展方向提出以上展望,為推動滌綸織物堿減量技術(shù)的產(chǎn)業(yè)化和紡織印染行業(yè)的可持續(xù)發(fā)展提供借鑒。
參考文獻:
[1]TOMAR S, SHAHADAT M, ALI S W, et al. Treatment of textile-wastewater using green technologies[J]. Green Chemistry for Sustainable Water Purification, 2023(6): 129-156.
[2]LAZIC' B, POPOVIC' B. Sustainable development of the textile industry[J]. Tekstilna Industrija, 2008, 56(7/8/9): 29-32.
[3]RATHINAMOORTHY R, RAJA BALASARASWATHI S. Characterization of microfibers released from chemically modified polyester fabrics-a step towards mitigation[J]. Science of The Total Environment, 2023,866: 161317.
[4]ZHANG S Y, XU C Y, XIE R M, et al. Environmental assessment of fabric wet processing from gate-to-gate pers-pective: Comparative study of weaving and materials[J]. Science of The Total Environment, 2023, 857: 159495.
[5]ZHANG L S, LEUNG M Y, BORISKINA S, et al. Advancing life cycle sustainability of textiles through technological innovations[J]. Nature Sustainability, 2023, 6(3): 243-253.
[6]HOU S D, WANG Y K, LI J, et al. Effects of the number of cationic sites on the surface/interfacial activity and application properties of quaternary ammonium surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130523.
[7]WEI L P, WANG L, CUI Z W, et al. Multifunctional applications of ionic liquids in polymer materials: A brief review[J]. Molecules, 2023, 28(9): 3836.
[8]LI M Y, DENG T T, LIU S X, et al. Superhydrophilic surface modification of fabric via coating with nano-TiO2 by UV and alkaline treatment[J]. Applied Surface Science, 2014, 297: 147-152.
[9]ZHANG J. Moisture absorption finishing of polyester fabric[J]. Applied Mechanics and Materials, 2013, 275/276/277: 2182-2185.
[10]HOSUR M, MAROJU H, JEELANI S. Comparison of effects of alkali treatment on flax fibre reinforced polyester and polyester-biopolymer blend resins[J]. Polymers and Polymer Composites, 2015, 23(4): 229-242.
[11]AIZENSHTEIN E M. Global and domestic chemical fibre industry in 2013[J]. Fibre Chemistry, 2015, 46(5): 273-277.
[12]BRUECKNER T, EBERL A, HEUMANN S, et al. Enzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabrics[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(19): 6435-6443.
[13]徐秋燕,吳欽,孫冬陽,等.面料極光消除效果評價體系分析[J].武漢紡織大學(xué)學(xué)報,2015,28(6):26-29.
XU Qiuyan, WU Qin, SUN Dongyang, et al. Construction of evaluation system of aurora eliminating effect in fabrics[J]. Journal of Wuhan Textile University, 2015, 28(6): 26-29.
[14]IVANA Cˇ, TANJA P, ANITA T. Enzimi za hidrolizu poliestera[J]. Tekstil: Cˇasopis Za Tekstilnu i Odjevnu Tehnologiju, 2019, 68(7/8/9): 142-151.
[15]BA. Effects of chemical and surface modifi-cation on mechanical and chemical properties of polyester fabrics[J]. Düzce Universitesi Bilim Ve Teknoloji Dergisi, 2018, 6(4): 1344-1353.
[16]孔彤彤,李鑫,李政,等.滌綸堿減量廢水中對苯二甲酸的生物降解[J].印染,2020,46(3):15-20.
KONG Tongtong, LI Xin, LI Zheng, et al. Biodegradation of terephthalic acid in polyester alkali wastewater[J]. China Dyeing & Finishing, 2020, 46(3): 15-20.
[17]楊波,衛(wèi)瑞紅,徐輝,等.好氧、厭氧/好氧交替和厭氧條件對堿減量廢水處理效果研究[J].水處理技術(shù),2022,48(1):126-129
YANG Bo, WEI Ruihong, XU Hui, et al. Study on the effect of aerobic, anaerobic/aerobic alternation and anaerobic conditions on alkali-minimization wastewater bio-treatment[J]. Technology of Water Treatment, 2022, 48(1): 126-129.
[18]陳成廣,駱阿明,宋江平,等.印染行業(yè)堿減量廢水治理現(xiàn)狀與對策研究[J].化工管理,2020(10),102-104.
CHEN Chengguang, LUO Aming, SONG Jiangping, et al. Study on the current situation and countermeasures of alkali reduction wastewater treatment in printing and dyeing industry[J]. Chemical Engineering Management, 2020(10): 102-104.
[19]王小艷,杜金梅,張善生,等.染色滌綸織物后堿減量工藝[J].印染,2019,45(11):7-10.
WANG Xiaoyan, DU Jinmei, ZHANG Shansheng, et al. Post alkali reduction of dyed polyester fabrics[J]. China Dyeing & Finishing, 2019, 45(11): 7-10.
[20]王小艷,杜金梅,彭鈴淇,等.滌綸針織物堿減量和染色一浴一步法工藝[J].紡織學(xué)報,2020,41(1):80-87.
WANG Xiaoyan, DU Jinmei, PENG Lingqi, et al. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric[J]. Journal of Textile Research, 2020, 41(1): 80-87.
[21]SHUKLA S R, HARAD A M. Aminolysis of polyethylene terephthalate waste[J]. Polymer Degradation and Stability, 2006, 91(8): 1850-1854.
[22]SHUKLA S R, MATHUR M R. Action of alkali on polybutylene terephthalate and polyethylene terephthalate polyesters[J]. Journal of Applied Polymer Science, 2000, 75(9): 1097-1102.
[23]ZERONIAN S H, COLLINS M J. Surface modification of polyester by alkaline treatments[J]. Textile Progress, 1989, 20(2): 1-26.
[24]王宗舞,劉偉,陳玉行,等.堿減量對滌綸親水性改性影響的研究[J].廣東化工,2018,45(13):133-134.
WANG Zongwu, LIU Wei, CHEN Yuxing, et al. Research on effect of alkaline reduction on hydrophilicity modification of polyester[J]. Guangdong Chemical Industry, 2018, 45(13): 133-134.
[25]GAWISH S M, MOSLEH S, RAMADAN A M. Synthesis of a new cationic surfactant for the alkaline hydrolysis of solvent-pretreated polyester fabrics[J]. Journal of Applied Polymer Science, 2002, 85(8): 1652-1660.
[26]范云麗,王雪燕.陽離子明膠蛋白助劑與1227復(fù)配對滌綸堿減量效果的影響[J].紡織高校基礎(chǔ)科學(xué)學(xué)報,2015,28(4):478-483.
FAN Yunli, WANG Xueyan.Influence of cationic gelatin protein agent with 1227 on the alkali deweighting of polyester fabrics[J]. Basic Sciences Journal of Textile Universities, 2015,28(4): 478-483.
[27]何志軍,孫浪濤,姚睿.堿減量滌綸織物的明膠處理分析[J].合成纖維,2013,42(9):43-44.
HE Zhijun, SUN Langtao, YAO Rui. The analysis of gelatine treatment of alkali deweighted polyester fabric[J]. Synthetic Fiber in China, 2013,42(9): 43-44.
[28]馬志鵬,邢家勝,劉崇偉,等.新型滌綸堿減量促進劑的合成及應(yīng)用[J].絲綢,2013,50(12):17-20.
MA Zhipeng, XING Jiasheng, LIU Chongwei, et al. Synthesis and application of new-type alkaline deweighting accelerant of polyester fabrics[J]. Journal of Silk, 2013, 50(12): 17-20.
[29]TAVANAIE M A. Ionic liquids as new solvents for textile fiber formation and modification[J]. Chemical Engineering & Technology, 2013, 36(11): 1823-1837.
[30]KOSMULSKI M, GUSTAFSSON J, ROSENHOLM J B. Thermal stability of low temperature ionic liquids revisited[J]. Thermochimica Acta, 2004, 412(1/2): 47-53.
[31]KUZMINA O, SASHINA E, NOVOSELOV N P, et al. Blends of cellulose and silk fibroin in 1-buthyl-3-methylimidazolium chloride based solutions[J]. Fibres & Textiles in Eastern Europe, 2009, 6(77): 36-39.
[32]HOLBREY J D, VISSER A E, SPEAR S K, et al. Mercury (II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid[J]. Green Chemistry, 2003, 5(2): 129-135.
[33]KESKIN S, KAYRAK-TALAY D, AKMAN U, et al. A review of ionic liquids towards supercritical fluid applications[J]. The Journal of Supercritical Fluids, 2007, 43(1): 150-180.
[34]DONG Z Q, CHEN G Q. Alkaline hydrolysis of polyester in the presence of ionic liquids[J]. Advanced Materials Research, 2012, 441: 661-665.
[35]LIU F S, CUI X, YU S T, et al. Hydrolysis reaction of poly (ethylene terephthalate) using ionic liquids as solvent and catalyst[J]. Journal of Applied Polymer Science, 2009, 114(6): 3561-3565.
[36]MUSALE R M, SHUKLA S R. Weight reduction of polyester fabric using sodium hydroxide solutions with additives cetyltrimethylammonium bromide and [BMIM]Cl[J]. The Journal of The Textile Institute, 2017, 108(4): 467-471.
[37]曹機良,孟春麗,曹毅,等.咪唑類離子液體對滌綸的堿減量加工[J].絲綢,2017,54(12):21-25.
CAO Jiliang, MENG Chunli, CAO Yi, et al. Alkali deweighting processing of polyester fiber with imidazole ionic liquid[J]. Journal of Silk, 2017,54(1):21-25.
[38]曹機良,孟春麗,安剛,等.滌綸織物低溫低堿仿真絲工藝分析[J].絲綢,2016,53(1):11-15.
CAO Jiliang, MENG Chunli, AN Gang, Analysis on low-temperature and low-alkali technology of silk-like polyester fabric[J]. Journal of Silk, 2016,53(1): 11-15.
[39]呂名秀,梁爽,趙宇靜,等.苯甲醇和氯化鈉用于滌/粘交織物堿減量工藝研究[J].上海紡織科技,2018,46(8):25-27.
LU Mingxiu, LIANG Shuang, ZHAO Yujing, et al. Application of sodium hydroxide and sodium chloride on
alkali deweighing process of polyester/viscose intertexture fabrics[J]. Shanghai Textile Science & Technology, 2018, 46(8): 25-27.
[40]ZHONG X, LU Z F, VALTCHEV P, et al. Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility[J]. Colloids and Surfaces B: Biointerfaces, 2012, 93: 75-84.
[41]BUNNETT J F, DAVIS G T. The mechanism of aminolysis of Esters1,2[J]. Journal of the American Chemical Society, 1960, 82(3): 665-674.
[42]CROLL T I, O'CONNOR A J, STEVENS G W, et al. Controllable surface modification of poly (lactic-co-glycolic acid)(PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects[J]. Biomac-romolecules, 2004, 5(2): 463-473.
[43]WEI Z H, GU Z Y. A study of one-bath alkali-amine hydrolysis and silk-fibroin finishing of polyester microfiber crepe fabric[J]. Journal of Applied Polymer Science, 2001, 81(6): 1467-1473.
[44]GRANCARIC A M, TARBUK A. EDA modified PET fabric treated with activated natural zeolite nanoparticles[J]. Materials Technology, 2009, 24(1): 58-63.
[45]BIDE M, ZHONG T, UKPONMWAN J, et al. Bifunctional surface modification of polyester[J]. Aatcc Review, 2003, 3: 24-28.
[46]DONELLI I, TADDEI P, SMET P F, et al. Enzymatic surface modification and functionalization of PET: A water contact angle, FTIR, and fluorescence spectroscopy study[J]. Biotechnology and Bioengineering, 2009, 103(5): 845-856.
[47]QUARTINELLO F, VAJNHANDL S, VOLMAJER VALH J, et al. Synergistic chemo-enzymatic hydrolysis of poly (ethylene terephthalate) from textile waste[J]. Microbial Biotechnology, 2017, 10(6): 1376-1383.
[48]JAMES JR K T, POULOSE A J, YOON M Y. Enzymatic modification of the surface of a polyester fiber or article: US20020007518[P]. 2002-01-24.
[49]DE SOUSA I S C, CASTANHEIRA E M S, ROCHA GOMES J I N, et al. Study of the release of a microen-capsulated acid dye in polyamide dyeing using mixed cationic liposomes[J]. Journal of Liposome Research, 2011, 21(2): 151-157.
[50]MARTI M, DE LA MAZA A, PARRA J L, et al. Dyeing wool at low temperatures: New method using liposomes[J]. Textile Research Journal, 2001, 71(8): 678-682.
[51]GOMES J I N R, BAPTISTA A L F. Microencapsulation of acid dyes in mixed lecithin/surfactant liposomic structures[J]. Textile Research Journal, 2001, 71(2): 153-156.
[52]MART M, CODERCH L, DE LA MAZA A, et al. Liposomes of phosphatidylcholine: A biological natural surfactant as a dispersing agent[J]. Coloration Tech-nology, 2007, 123(4): 237-241.
[53]MARTI M, CODERCH L, DE LA MAZA A, et al. Phosphatidilcholine liposomes as vehicles for disperse dyes for dyeing polyester/wool blends[J]. Textile Research Journal, 1998, 68(3): 209-218.
[54]EL-ZAWAHRY M M, ABDELGHAFFAR F. Preparation and characterisation of novel phospholipid cationic liposomes to improve the alkaline hydrolysis and dyeability of polyester fabric[J]. Coloration Technology, 2013, 129(3): 193-202.
Research progress on alkali deweightingpromoter for polyester fabrics
CHEN Linguo ZHANG Hongjuan DING Lei PEI Liujun WANG Jipinga,b
Abstract: Polyester fiber is currently the most widely used synthetic fiber. However, its poor moisture absorption, susceptibility to static electricity, and other issues have hindered its market prospects as a high-end textile material. Alkali reduction treatment can improve the inherent defects of polyester fiber, resulting in a soft and smooth texture, a pleasant sheen, good drapability, water retention, and other advantages. Meanwhile, this treatment makes it has the characteristics of imitated silk. Nevertheless, the traditional alkali reduction process for polyester involves excessive use of alkali, making it difficult to process. Finally, it requires a large amount of acid to neutralize. As a result, there are many problems, such as high energy consumption, serious environmental pollution, and serious damage to the fabric. Additionally, the liquid alkali is also a dangerous chemical, so safety problems should be considered. All these problems seriously restrict the sustainable development of the polyester textile industry. Therefore, reducing the amount of liquid alkali with promoters is currently the most convenient, environmentally friendly, and easily implementable improvement method in the alkali reduction technology.
Currently, promoters are widely used to improve alkali utilization, reduce the environmental hazards of excessive alkali, and impart exceptional performance to fabrics. Promoters can be roughly categorized into quaternary ammonium salts, gelatin protein promoters, cationic polymers, ionic liquids, amines, alcohols, and others.Among them, quaternary ammonium salts are widely used. In terms of effectiveness, most promoters can accelerate the hydrolysis of polyester and reduce the amount of alkali required. And different promoters have different promotion mechanisms. Quaternary ammonium cationic surfactants mainly utilize positively charged quaternary ammonium ions to attack the carbonyl carbon atoms by carrying the hydroxide ions, further promoting the rapid hydrolysis of ester bonds in polyester macromolecules. Gelatin has certain surface activity, infiltration, and colloidal protection. In the process of alkali reduction, gelatin can play a role in swelling fiber and reducing surface tension. Some new alkali reduction promoters are mainly cationic polymers. They mainly adsorb more hydroxide ions through water-soluble quaternary ammonium cation groups, so as to achieve the purpose of promoting the hydrolysis of polyester. Ionic liquid is a kind of compound ionic surfactant and it can completely ionize in water. The cationic part of the ionic liquid has a long carbon chain and strong adsorption capacity for polyester. Its mechanism is similar with quaternary ammonium salts. There are some other additives that can also promote polyester hydrolysis. For example, ammonia mainly generates an amide group at one end and a hydroxyl group at the other end to destroy the polymer chain through the diffusion of amine molecules in the polymer. Alcohol can realize the purpose of surface functionalization of polyester through the exchange reaction of ester and amine.
The traditional alkali reduction treatment of polyester fiber has the following problems, such as high concentration of liquid alkali,great difficulty in processing, serious environmental pollution, and high energy consumption. All these problems seriously restrict the sustainable development of the polyester textile industry. The addition of promoters is an effective way to improve the utilization rate of alkali. The promoter can transfer and enrich the OH- in the solution on the fiber surface, and OH- is more likely to attack the carbon atoms in the carbonyl group with partial positive charge in the polyester molecule. As a result, the hydrolysis reaction of the polyester molecule becomes easy. Therefore, how to effectively use promoters to reduce the amount of liquid alkali has become a research hotspot to promote the sustainable development of polyester textiles.
The development of alkali reduction promoters can be started from the following perspectives: first of all, the new promoter is synthesized to increase the function of the fabric while effectively reducing the amount of liquid alkali and retaining the advantages of liquid alkali treatment. For example, the use of gelatin protein reagents can also play a certain role in fiber repair while improving the performance of fibers. By increasing the study of the combination of accelerators to explore the mechanism, the cost saving treatment formula with the best effect was obtained. The development of alkali reduction technology can also be applied to the alkali reduction dyeing one-bath system of polyester fabrics, which can reduce energy consumption and be more environmentally friendly and efficient. The use of promoters to reduce the alkali concentration provides more possibilities for the pH application range of some alkali-resistant disperse dyes, and development space for alkaline dyeing technology. This provides reference for promoting the industrialization development of polyester fabric alkali reduction technology and realizing the sustainable development of the textile printing and dyeing industry.
Keywords: polyester; alkali reduction; promoter; ecological dyeing and finishing; promotion mechanism
收稿日期:20230516 網(wǎng)絡(luò)出版日期:20230607
基金項目:上海市青年科技英才揚帆計劃項目(21YF1416000);國家自然科學(xué)基金青年項目(22108169);新疆生產(chǎn)建設(shè)兵團科技局重大項目(2019A0001)
作者簡介:陳麟國(1996—),男,安徽蚌埠人,碩士研究生,主要從事紡織品前處理及應(yīng)用性能方面的研究。
通信作者:張紅娟,E-mail:hjz@sues.edu.cn