国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

陰離子型水性聚氨酯超纖革染色性能及模擬

2023-11-22 00:32韓雨蘭杜遠(yuǎn)遠(yuǎn)宋兵李春霖牛家?guī)V
現(xiàn)代紡織技術(shù) 2023年6期
關(guān)鍵詞:動(dòng)力學(xué)模型

韓雨蘭 杜遠(yuǎn)遠(yuǎn) 宋兵 李春霖 牛家?guī)V

摘 要:為探究陰離子型水性聚氨酯超纖革的染色性能,分別以弱酸性染料及中性染料對(duì)其進(jìn)行染色;繪制恒溫上染速率曲線及吸附等溫線,分析這兩種染料對(duì)水性聚氨酯超纖革的染色熱力學(xué)和動(dòng)力學(xué)特征,并對(duì)親和力、染色熱和染色熵等參數(shù)進(jìn)行了計(jì)算和分析。結(jié)果表明:隨著染色溫度的升高,兩種染料對(duì)水性聚氨酯超纖革的上染率逐漸增加,染料對(duì)水性聚氨酯超纖革的上染行為符合偽二級(jí)動(dòng)力學(xué)模型。超纖革中聚酰胺超細(xì)纖維和水性聚氨酯間存在許多微小孔隙,染料在超纖革表面的吸附和微孔中的擴(kuò)散吸附同時(shí)進(jìn)行,兩種染料對(duì)水性聚氨酯超纖革的吸附符合Freundlich吸附模型。水性聚氨酯超纖革染色性能的研究為水性超纖革的染色應(yīng)用提供了理論支持,進(jìn)一步擴(kuò)大了水性超纖革的應(yīng)用領(lǐng)域。

關(guān)鍵詞:水性聚氨酯;超纖革;上染速率;吸附等溫線;動(dòng)力學(xué)模型

中圖分類號(hào):TS193.8 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-265X(2023)06-0199-08

天然皮革含有較多的膠原蛋白,纖維束間相互纏繞構(gòu)成復(fù)雜的三維立體結(jié)構(gòu)[1-3];天然皮革柔軟性、耐磨性好,強(qiáng)度高且吸濕透氣性能好[4-7]。隨著人們環(huán)保意識(shí)的提升以及原材料的不足,開(kāi)發(fā)能替代天然皮革的合成革已成為皮革行業(yè)發(fā)展的趨勢(shì)。超細(xì)纖維合成革相較于天然皮革在物理機(jī)械性能和耐化學(xué)穩(wěn)定性能方面有明顯的改善,成為天然皮革的優(yōu)良替代品。然而超細(xì)纖維合成革在透氣、透濕性及染色性能[6,8-12]方面與天然皮革仍存在明顯的差距。

以往對(duì)溶劑型聚氨酯超纖革的染色研究,主要從染料類型[13]、助劑[14-16]、染色工藝[17-18]、基布改性[19-20]等方面來(lái)解決染色不勻、滲透性差、色牢度差等染色問(wèn)題[21]。水性聚氨酯因分子中引入了大量親水基團(tuán)(如羧酸根、磺酸根),其微觀結(jié)構(gòu)和堆砌狀態(tài)與溶劑型聚氨酯有所不同,分子鏈極性增強(qiáng),Zeta電位在-70~-60 mV;其在染液中溶脹現(xiàn)象明顯,有“凝膠化”的傾向,會(huì)阻礙染液在超纖革孔隙內(nèi)的滲透。因此水性聚氨酯超纖革與溶劑型超纖革的染色性能差異很大,難以借鑒溶劑型超纖革的染色經(jīng)驗(yàn)來(lái)解決染色中遇到的問(wèn)題。本文通過(guò)水性聚氨酯超纖革的染色動(dòng)力學(xué)及熱力學(xué)研究,分析其染色性能和特點(diǎn),為染色工藝的制定和染色問(wèn)題的解決提供一定的借鑒。

1 實(shí) 驗(yàn)

1.1 試劑及原料

無(wú)水乙醇(分析純,天津市科密歐化學(xué)試劑有限公司),冰醋酸(分析純,天津市風(fēng)船化學(xué)試劑科技有限公司),弱酸性藍(lán)MD-R(工業(yè)級(jí),市售),中性依素倫灰(工業(yè)級(jí),市售)。

超纖革為陰離子型水性聚氨酯聚酰胺6超纖革,面密度為509 g/m 聚酰胺6革基布面密度為384 g/m 由明新孟諾卡(江蘇)新材料研究院有限公司提供。

1.2 實(shí)驗(yàn)設(shè)備

紫外-可見(jiàn)-紅外分光光度計(jì)(PE-λ-7500,珀金埃爾默儀器有限公司);電子天平(CP224C,奧豪斯上海有限公司);數(shù)顯恒溫水浴鍋(XMTD-7000,上海梅香儀器有限公司);電熱恒溫鼓風(fēng)干燥箱(GZX-GF101-1-S-II,上海賀德實(shí)驗(yàn)設(shè)備有限公司);循環(huán)水式真空泵(SHZ-D(III),鞏義市予華儀器有限公司);旋轉(zhuǎn)蒸發(fā)儀(RE-52AA,上海雅榮生化設(shè)備有限公司);pH計(jì)(PHS-3C,上海儀電科學(xué)儀器股份有限公司)。

1.3 實(shí)驗(yàn)方法

1.3.1 染料的提純

稱取3 g染料,采取少量多次的方式加入無(wú)水乙醇,充分溶解染料;隨后對(duì)染液進(jìn)行抽濾和沖洗,去除染料中未溶解的無(wú)機(jī)鹽等雜質(zhì);將濾液旋轉(zhuǎn)蒸發(fā)得到提純的染料。將提純后的染料烘干、研磨,待用。

1.3.2 超纖革前處理

將實(shí)驗(yàn)所用的水性聚氨酯超纖革進(jìn)行充分洗滌,去除表面的油污及雜質(zhì)。將處理干凈的水性聚氨酯超纖革烘干,待用。

1.4 測(cè)試方法

1.4.1 標(biāo)準(zhǔn)工作曲線的測(cè)定

配制5種不同質(zhì)量濃度的染料,并在其最大吸收波長(zhǎng)下測(cè)定其吸光度。實(shí)驗(yàn)所用標(biāo)準(zhǔn)工作曲線方程如表1所示。

1.4.2 恒溫上染速率的測(cè)定

在染色過(guò)程中,染料隨染液流動(dòng)并向纖維轉(zhuǎn)移。通過(guò)對(duì)水性聚氨酯超纖革染色過(guò)程中上染速率曲線的測(cè)定,可初步了解染色過(guò)程中染料上染水性聚氨酯超纖革的狀態(tài)。水性聚氨酯超纖革恒溫上染速率曲線染色工藝處方如表2所示。

按照表2染色工藝配制所需的染液,當(dāng)染色溫度達(dá)到所需溫度時(shí),將水性聚氨酯超纖革放入染液中,測(cè)定不同時(shí)間下染液吸光度,利用相應(yīng)的工作曲線方程計(jì)算得到上染速率曲線。

1.4.3 吸附等溫線的測(cè)定

水性聚氨酯超纖革吸附等溫線工藝配方如表3所示。按表3配制不同濃度的染液,在30 ℃時(shí)投入水性聚氨酯超纖革,以恒定速率升溫至所需溫度(T=60、70、80、90 ℃),染色10 h后測(cè)定水性聚氨酯超纖革上染料質(zhì)量濃度Df(mg/g)與染液中染料質(zhì)量濃度Ds(mg/L)。

2 結(jié)果與分析

2.1 染料吸附動(dòng)力學(xué)研究

不同染色溫度下染料對(duì)水性聚氨酯超纖革的恒溫上染速率曲線如圖1所示。在上染過(guò)程中,染料首先與超纖革表面的水性聚氨酯及聚酰胺超細(xì)纖維發(fā)生吸附。隨著染液逐漸滲透進(jìn)入超纖革內(nèi)部細(xì)微的孔隙中,染料對(duì)超纖革內(nèi)部的聚氨酯和纖維發(fā)生吸附。由圖1可知,在染色初始階段,染料上染水性聚氨酯超纖革速率非常快,上染量與時(shí)間幾乎呈線性關(guān)系,隨著時(shí)間的延長(zhǎng),上染趨于平衡。對(duì)于弱酸性染料藍(lán)MD-R而言,隨著染色溫度的升高,平衡上染量逐漸提高,當(dāng)溫度升高至90 ℃時(shí)有所下降。這是因?yàn)殡S著溫度的升高,染料分子熱運(yùn)動(dòng)加劇,從超纖革上脫附的趨勢(shì)增加所致。

對(duì)于中性染料依素倫灰而言,平衡上染量隨著溫度的升高而增加。這是因?yàn)橹行匀玖戏肿油ǔH狈ο窕撬岣@樣能夠在水中完全電離的強(qiáng)極性基團(tuán),更為常見(jiàn)的是甲基磺酰胺基、酰胺基等極性基團(tuán),染料分子在染液中容易聚集,較高的染色溫度有利于染料解聚并向超纖革的內(nèi)部轉(zhuǎn)移。適中的染色溫度可以增強(qiáng)水性PU分子鏈段及染料分子的熱運(yùn)動(dòng),提高染料的平衡上染量。

分別采用準(zhǔn)一級(jí)和準(zhǔn)二級(jí)動(dòng)力學(xué)模型對(duì)這兩種染料上染水性聚氨酯超纖革的過(guò)程進(jìn)行擬合分析。

準(zhǔn)一級(jí)動(dòng)力學(xué)方程認(rèn)為吸附速率與吸附濃度一次方成正比,如式(1)所示:

式中:C∞為平衡時(shí)纖維上染料濃度,mg/g;Ct為t時(shí)刻纖維上染料濃度,mg/g;k1為準(zhǔn)一級(jí)速率常數(shù),min-1;k2為準(zhǔn)二級(jí)速率常數(shù),g/(mg·min)。

不同溫度下,各染料上染水性聚氨酯超纖革過(guò)程的最小二乘法擬合計(jì)算結(jié)果如表4和表5所示。由擬合計(jì)算結(jié)果R2可知,兩種染料對(duì)水性聚氨酯超纖革的上染符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型,上染速率受染色溫度的影響較大。另外,弱酸性染料的k隨染色溫度的升高降低,而中性染料的k受溫度的影響不如弱酸性染料那么明顯。因此,在實(shí)際染色工藝中,中性染料可以采用較高的染色溫度來(lái)獲得更高的平衡上染率,而上染速率不會(huì)受到明顯影響。

2.2 水性聚氨酯超纖革的染色熱力學(xué)研究

2.2.1 染料上染水性聚氨酯超纖革的吸附模型

選取不同初始濃度的染液對(duì)水性聚氨酯超纖革進(jìn)行染色,60 ℃下的吸附等溫線如圖2所示。

本文分別使用Freundlich和Langmuir吸附模型對(duì)染料的上染過(guò)程進(jìn)行擬合。Freundlich吸附模型如式(5)、式(6)所示:

式中:KF為Freundlich吸附常數(shù)(L/g),KL為L(zhǎng)angmuir吸附常數(shù)(L/mg),[S]f為理論單分子吸附飽和吸附量(mg/g)。超纖革對(duì)藍(lán)MD-R的兩種等溫吸附模型擬合如圖3所示,超纖革對(duì)依素倫灰的兩種等溫吸附模型擬合如圖4所示。

由表6可知,兩只染料的Freundlich模型R2更高,其對(duì)水性聚氨酯超纖革的等溫吸附過(guò)程更符合Freunlich等溫吸附模型。染料對(duì)水性聚氨酯超纖革的吸附屬于物理吸附,非定位吸附。在上染過(guò)程中,由于染料除了在水性聚氨酯超纖革表面發(fā)生吸附,染料還會(huì)隨染液不斷滲入超纖革內(nèi)部水性聚氨酯的細(xì)微孔隙中并發(fā)生吸附,染料上染纖維的濃度[D]f不斷增加,在測(cè)試濃度范圍內(nèi)沒(méi)有明顯的極限,表現(xiàn)出一定程度的多層吸附特征。

2.2.2 熱力學(xué)參數(shù)的計(jì)算

通過(guò)染色親和力-Δμ°、染色熱ΔH°和染色熵ΔS°的計(jì)算,進(jìn)一步了解染料對(duì)水性聚氨酯超纖革的上染特點(diǎn)。各參數(shù)的計(jì)算如式(9)—式(11)所示:

式中:R為熱力學(xué)常數(shù),單位為8.314 J/(mol·K),T為熱力學(xué)溫度,單位K。

不同染料對(duì)水性聚氨酯超纖革上染的熱力學(xué)參數(shù)見(jiàn)表7。由表7可知,隨著溫度的升高,染色親和力數(shù)值增加。這表明在高溫的條件下,染料從染液向超纖革轉(zhuǎn)移的趨勢(shì)增大,依素倫灰在相同溫度下親和力高于弱酸性藍(lán)MD-R。

弱酸性藍(lán)MD-R的染色熱為負(fù)值,表明上染為放熱過(guò)程,升高染色溫度會(huì)使染料向解吸方向移動(dòng),平衡上染量下降;但數(shù)值較小,說(shuō)明這種變化不會(huì)太明顯。依素倫灰染色熱為正值,且數(shù)值高,說(shuō)明上染過(guò)程是吸熱的,升高染色溫度,會(huì)使染色向吸附方向移動(dòng),平衡上染率提高。值得注意的是,水性聚氨酯超纖革由聚酰胺纖維和水性聚氨酯復(fù)合構(gòu)成,染色熱是染料對(duì)兩者上染的綜合體現(xiàn),既有材料性質(zhì)方面的,也有組成結(jié)構(gòu)方面的,而非染料分別上染二者的染色熱的簡(jiǎn)單疊加。

兩種染料的染色熵都為正值,說(shuō)明染料上染水性聚氨酯超纖革引起體系紊亂度增大。染色熵的變化不僅與染料本身紊亂度變化有關(guān),還與染色體系中水的紊亂度變化有關(guān)。中性染料依素倫灰的疏水性高于弱酸性藍(lán)MD-R,所以熵值的增加更明顯。

3 結(jié) 論

分別以弱酸性染料藍(lán)MD-R和中性染料依素倫灰對(duì)水性聚氨酯超纖革進(jìn)行染色,對(duì)恒溫上染速率曲線及吸附等溫線進(jìn)行測(cè)定和分析,探討了水性聚氨酯超纖革對(duì)兩種染料的吸附和上染動(dòng)力學(xué)特征。得出以下結(jié)論:

a) 隨著染色溫度的升高,兩種染料對(duì)水性聚氨酯超纖革的上染量逐漸增加。中性染料依素倫灰在溫度較高的條件下具有更高的上染性能,而弱酸性染料藍(lán)MD-R在較高溫條件下易解吸。兩種染料對(duì)水性聚氨酯超纖革的吸附行為符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型。

b) 弱酸性染料藍(lán)MD-R和中性染料依素倫灰對(duì)水性聚氨酯超纖革上染過(guò)程符合Freundlich吸附模型。水性聚氨酯超纖革內(nèi)部含有許多微小的空隙,在染料上染過(guò)程中會(huì)有部分染料進(jìn)入水性聚氨酯超纖革內(nèi)部孔隙中,表現(xiàn)出類似于多層吸附的情況。

c) 隨著染色溫度的升高,兩只染料的染色親和力數(shù)值增加,較高的染色溫度有利于中性染料依素倫灰的進(jìn)一步上染。由于依素倫灰染料中缺乏強(qiáng)極性基團(tuán),導(dǎo)致染色體系的熵值增加。

通過(guò)弱酸性藍(lán)MD-R和中性染料依素倫灰對(duì)水性聚氨酯超纖革的染色吸附及動(dòng)力學(xué)進(jìn)行了相應(yīng)分析。對(duì)水性聚氨酯超纖革的上染特性及染色機(jī)理有了一定的了解,為后續(xù)水性聚氨酯超纖革的染色應(yīng)用提供了理論支持。

參考文獻(xiàn):

[1]朵永超,錢曉明,趙寶寶,等.超纖革仿天然皮革研究進(jìn)展[J].中國(guó)皮革,2019,48(3):41-45.

DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Advances in mircrofiber synthetic leather emulating natural leather[J]. China Leather, 2019, 48(3): 41-45.

[2]QI J B, ZHANG C B, FU J Y, et al. Natural and synthetic leather: A microstructural comparison[J]. Journal of the Society of Leather Technologists and Chemists, 2008, 92(1): 8-13.

[3]WANG Y Y, ZHENG M H, LIU X H, et al. Advanced collagen nanofibers-based functional bio-composites for high-value utilization of leather: A review[J]. Journal of Science: Advanced Materials and Devices, 2021, 6(2): 153-166.

[4]許維.天然皮革微觀結(jié)構(gòu)及其透氣透濕性能研究[D].武漢:武漢紡織大學(xué),2012:1-8.

XU Wei. Study on Natural Leather's ?Micro-structure and Its Permeability of Air and Water Vapor[D]. Wuhan: Wuhan Textile University, 2012: 1-8.

[5]任龍芳,趙國(guó)徽,強(qiáng)濤濤,等.超細(xì)纖維合成革仿天然皮革研究進(jìn)展[J].皮革科學(xué)與工程,2012,22(1):36-40.

REN Longfang, ZHAO Guohui, QIANG Taotao, et al. Advances in the mircrofiber synthetic materials emulating natural leather[J]. Leather Science and Engineering, 2012, 22(1): 36-40.

[6]劉凡,錢曉明.提高超細(xì)纖維合成革透濕透氣性能的研究進(jìn)展[J].紡織導(dǎo)報(bào),2017(8):78-80.

LIU Fan, QIAN Xiaoming. Research progress on improving moisture permeability and air permeability of microfiber synthetic leather[J]. China Textile Leader, 2017(8): 78-80.

[7]ZHANG A H, JI X W, JIA J L, et al. Air permeability and moistore penetration performance of leather from a microscopic view[J]. Journal of the Society of Leather Technologists and Chemists, 2015, 99(1): 30-32.

[8]高龍飛,錢曉明,王立晶,等.上漿漿料對(duì)超細(xì)纖維合成革性能的影響[J].皮革科學(xué)與工程,2021,31(6):39-44.

GAO Longfei, QIAN Xiaoming, WANG Lijing, et al. Effect of sizing material on properties of microfiber synthetic leather[J]. Leather Science and Engineering, 2021, 31(6): 39-44.

[9]張貝貝,李運(yùn),侯瑞婷.天然皮革的濕整理加工工藝對(duì)超細(xì)纖維聚氨酯合成革性能的影響[J].皮革與化工,2019,36(5):20-24.

ZHANG Beibei, LI Yun, HOU Ruiting. Effect of wet finishing technology of natural leather on properties of microfiber polyurethane synthetic leather[J]. Leather and Chemicals, 2019, 36(5): 20-24.

[10]徐娜,劉洪濤,秦民飛,等.膠原蛋白改性超細(xì)纖維合成革基材的吸濕透濕性能研究[J].西部皮革,2018,40(9):46-50.

XU Na, LIU Hongtao, QIN Minfei, et al. Study on moisture absorption properties of collagen modified microfiber synthetic leather substrates[J]. West Leather, 2018, 40(9): 46-50.

[11]XU N, WANG X C, WANG L Z, et al. Modification of PA/PU superfine non-woven fiber for "breath" property using collagen and vegetable tannins[J]. Journal of Industrial Textiles, 2019, 48(10): 1593-1615.

[12]王亞停,趙家琪,王碧佳,等.超細(xì)纖維合成革的染色與功能整理研究進(jìn)展[J].紡織學(xué)報(bào),2020,41(7):188-196.

WANG Yating, ZHAO Jiaqi, WANG Bijia, et al. Research progress in dyeing and functional finishing of microfiber synthetic leather[J]. Journal of Textile Research, 2020, 41(7): 188-196.

[13]潘笑娟,王利民,楊柳波,等.超細(xì)PA/PU合成革用酸性染料的染色性能研究[J].染料與染色,2006(4):27-31.

PAN Xiaojuan, WANG Limin, YANG Liubo, et al. Study on dyeing properties of acid dyes for superfine PA/PU synthetic leather[J]. Dyestuffs and Coloration, 2006(4): 27-31.

[14]胡雪麗,馬興元,郭夢(mèng)亞,等.固色劑SLA在超細(xì)纖維合成革染色中的應(yīng)用研究[J].中國(guó)皮革,2014,43(23):24-27.

HU Xueli, MA Xingyuan, GUO Mengya, et al. Application of fixative SLA in the dyeing of microfiber synthetic leather[J]. China Leather, 2014, 43(23): 24-27.

[15]李崢嶸,涂偉萍,賴應(yīng)光,等.超細(xì)錦綸PU革增深勻染劑Intratex LPUA[J].印染,2010,36(21):27-29.

LI Rongzheng, TU Weiping, LAI Yingguang, et al. Intratex LPUA, Deepening levelling agent for Ultra-fine nylon PU leather[J]. China Dyeing & Finishing, 2010, 36(21): 27-29.

[16]白剛,劉艷春.苯甲醇對(duì)超細(xì)纖維合成革染色性能的影響[J].紡織學(xué)報(bào),2011,32(1):78-81.

BAI Gang, LIU Yanchun. Effect of benzyl alcohol on Dyeing Properties of microfiber synthetic leather[J]. Journal of Textile Research, 2011, 32(1): 78-81.

[17]李長(zhǎng)余.超細(xì)尼龍纖維PU革一浴一步法染色工藝探討[J].染整技術(shù),2014,36(3):41-42.

LI Changyu. Study on one-bath one-step dyeing process for PU leather of superfine nylon fiber[J]. Textile Dyeing and Finishing Journal, 2014, 36(3): 41-42.

[18]胡忠杰.超纖染色牢度的工藝優(yōu)化[J].印染,2018,44(15):32-34.

HU Zhongjie. Process optimization of microfiber dyeing fastness[J]. China Dyeing & Finishing, 2018, 44(15): 32-34.

[19]馬向東.膠原蛋白對(duì)超細(xì)纖維合成革基布的改性及其表面親水性研究[D].西安:陜西科技大學(xué),2020:10-73.

MA Xiangdong. Study on Modification of Microfiber Synthetic Leather Substrate by Collagen and Its Surface Hydrophilicity[D]. Xi'an: Shanxi University of Science and Technology, 2020:10-73.

[20]馬興元,呂凌云,李嘵.聚酰胺超細(xì)纖維合成革基布的酶法改性研究[J].中國(guó)皮革,2010,39(5):36-39.

MA Xingyuan, LU Lingyun, LI Xiao. Enzymatic modification of polyamide microfiber synthetic leather substrates[J]. China Leather, 2010, 39(5): 36-39.

[21]LEE S K, LEE H Y, KIM S D. Dyeing properties of mixture of ultrafine nylon and polyurethane with different types of dye[J]. Fibers and Polymers, 2013, 14(12): 2020-2026.

Dyeing properties andsimulation of anionic waterborne polyurethane microfiber leather

HAN Yulan1, DU Yuanyuan1, SONG Bing2, LI Chunlin2, NIU Jiarong1

Abstract: With the shortage of natural leather resources and the enhancement of people's awareness of environmental protection, the development of artificial leather products that can replace natural leather has become a trend of the industry. In recent years, synthetic leather products have been widely used in household, automobile and other industries. As the artificial leather products are most like natural leather at present, microfiber synthetic leather is often dyed to further expand its application range. In the dyeing process of microfiber synthetic leather, the dyeing properties of microfiber and polyurethane are not consistent, and the problems of levelness and poor color fastness often arise in the dyeing process. For the solvent-based polyurethane microfiber leather, the current dyeing methods and technologies can meet the market demand. For the waterborne polyurethane microfiber leather, influenced by hydrophilic monomers, the internal structure of the polyurethane is changed, and the adsorption and diffusion behavior of dyes on waterborne polyurethane microfiber leather are also changed correspondingly. At present, the dyeing mechanism and dyeing properties of waterborne polyurethane microfiber leather are rarely studied. To improve the dyeing technology of waterborne polyurethane microfiber leather, it is necessary to study the dyeing behavior theoretically.

In this paper, the adsorption kinetics and dyeing thermodynamics of waterborne polyurethane microfiber leather dyed by weak acid dye blue MD-R and neutral dye isolan grey respectively were studied. The uptake of both kinds of dyes on waterborne polyurethane microfiber leather were improved with the increase of the dyeing temperature. The blue MD-R was easily to desorpt from waterborne polyurethane microfiber leather, and the equilibrium dye rate decreased. While the neutral dye was easily to congregate, high dyeing temperature was helpful for dispersion and diffusion, so at 90 ℃ the equilibrium dye rate was increased significantly. During the dyeing process, the adsorption of the two dyes conformed to the quasi-second-order kinetic model. There were many micro interstice between the waterborne polyurethane and polyamide microfibers in the leather. During the dyeing process, the dyes were adsorbed on the surface of the microfiber leather and gradually penetrated into the interstice. The isothermal adsorption of the two dyes on the waterborne polyurethane microfiber leather was consistent with Freunlich adsorption model. The thermodynamic calculation results showed that the dyeing affinity of the two dyes was increased with the increasement of temperatures. The dyeing of waterborne polyurethane microfiber leather with the weak acid dye was an exothermic process, while with the neutral dye was an endothermic process.

Keywords: waterborne polyurethane; microfiber leather; dyeing rate; adsorption isotherm; dynamic model

收稿日期:20230423 網(wǎng)絡(luò)出版日期:20230804

基金項(xiàng)目:技術(shù)開(kāi)發(fā)類橫向合作項(xiàng)目(21021010375)

作者簡(jiǎn)介:韓雨蘭 (1998—),女,江蘇鹽城人,碩士研究生,主要從事水性聚氨酯超纖革染色方面的研究。

通信作者:牛家?guī)V,E-mail: niujiarong@tiangong.edu.cn

猜你喜歡
動(dòng)力學(xué)模型
風(fēng)力發(fā)電機(jī)組動(dòng)力學(xué)建模與仿真分析
基于管網(wǎng)理論的人口遷移動(dòng)力學(xué)模型構(gòu)建
研究模糊控制下車輛的側(cè)傾穩(wěn)定性仿真分析
房地產(chǎn)投資系統(tǒng)動(dòng)力學(xué)模型分析
兩輪自平衡機(jī)器人的動(dòng)力學(xué)模型的分析與建立
四軸飛行器的結(jié)構(gòu)組成和動(dòng)力學(xué)模型
電動(dòng)車輛組合式離合器換擋過(guò)程優(yōu)化控制
企業(yè)項(xiàng)目風(fēng)險(xiǎn)管理中風(fēng)險(xiǎn)識(shí)別的新方法
蓮藕片熱風(fēng)干燥特性及動(dòng)力學(xué)模型
履帶車輛臺(tái)架試驗(yàn)臺(tái)控制方法研究與仿真
阳江市| 曲沃县| 巧家县| 通海县| 梁河县| 固始县| 呼伦贝尔市| 广灵县| 钦州市| 曲水县| 康保县| 宜丰县| 马公市| 道真| 河北区| 七台河市| 安庆市| 新丰县| 慈利县| 济南市| 武宣县| 溆浦县| 桃江县| 三门峡市| 岳阳县| 含山县| 扎兰屯市| 韩城市| 胶南市| 调兵山市| 丁青县| 龙游县| 江陵县| 盘山县| 兴山县| 布尔津县| 枝江市| 三穗县| 乐山市| 宁远县| 抚州市|