王 穎,高淑京,張芳源
(贛南師范大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,江西 贛州 341000)
復(fù)合侵染是指一個宿主個體同時存在多種不同病原體的感染.這些病原體可以屬于不同的物種、不同的類型,或者在同一物種內(nèi)具有多個菌株[1].復(fù)合侵染是植物病為害作物時存在的一種普遍現(xiàn)象,可能會導(dǎo)致疾病的發(fā)展變得更加復(fù)雜,治療和控制也可能變得更具挑戰(zhàn)性.關(guān)于植物病復(fù)合侵染的研究已有很多報(bào)道,如馬鈴薯Y病毒科與其他種類病毒復(fù)合侵染類型[2]、高粱花葉病毒與甘蔗線條花葉病毒復(fù)合侵染[3].另外,玉米致命性壞死病是由玉米枯萎性斑點(diǎn)病毒和馬鈴薯Y病毒科的幾種病毒之一復(fù)合侵染的結(jié)果,它是一種影響玉米作物的嚴(yán)重疾病[4].
許多植物病是通過媒介傳播的[5-6],而病原體與宿主植物之間的相互作用、物理特征、免疫反應(yīng)、營養(yǎng)需求和進(jìn)化因素等會綜合影響媒介的寄主選擇偏好.偏好主要包括寄主種類偏好(即媒介對不同寄主植物種類的選擇偏好)、寄主表型偏好(即媒介對感染和未感染寄主植物表現(xiàn)出不同的偏好)和寄主條件偏好(即攜帶和未攜帶病毒的媒介對受感染或未受感染寄主植物表現(xiàn)出不同的偏好).媒介的寄主的選擇偏好行為會嚴(yán)重影響復(fù)合侵染下疾病的傳播規(guī)律.
然而,在當(dāng)前的研究工作中,通??紤]諸如殺蟲劑應(yīng)用、輪作方式和宿主耐受性等防治措施對復(fù)合侵染疾病控制的作用,而往往忽略了媒介的寄主選擇偏好行為對植物病傳播擴(kuò)散的影響.本文建立基于復(fù)合侵染和媒介寄主選擇偏好下植物病數(shù)學(xué)模型,旨在深入探討媒介的寄主選擇偏好對植物病傳播擴(kuò)散的影響.
在建立模型的過程中,將著重研究協(xié)同效應(yīng),以更好地理解復(fù)合侵染對植物的影響.
在本文的模型中,我們關(guān)注的是兩種不同的病毒,記為病毒a和病毒b.病毒a和病毒b表示植物病原體的兩個不同類型,它們在自然界中都能感染植物.病毒a可能引起某種特定的疾病,而病毒b則引發(fā)另一種不同的癥狀或病害.這兩種病毒通常都可以在同一植物體中找到,導(dǎo)致了復(fù)合侵染的現(xiàn)象. 植物在復(fù)合侵染的情況下,不同病毒之間會引發(fā)各種相互作用方式,包括協(xié)同效應(yīng)、拮抗效應(yīng)或共存效應(yīng).本文假設(shè)兩個病毒之間引發(fā)協(xié)同效應(yīng).
在模型中,將植物分為4種狀態(tài):健康,感染a病毒,感染b病毒和同時感染ab病毒,而媒介只有3種狀態(tài):健康,攜帶a病毒和攜帶b病毒.這兩種病毒既不會通過植物的種子或其他傳播途徑進(jìn)行垂直傳播,也不會在媒介之間傳播.植株可以被單一病毒感染,也可以同時受到兩種病毒的感染.而媒介只能攜帶其中一種病毒,并通過其傳播病原體感染植物.模型的具體形式如下:
(1)
其中:
(2)
由FV-1的譜半徑R0=ρ(FV-1),得到基本再生數(shù)的表達(dá)式:R0=max{R1,R2},其中
定理1對于系統(tǒng)(1),當(dāng)R1<1,R2<1時,無病平衡點(diǎn)E0是局部漸近穩(wěn)定的;當(dāng)R1>1或R2>1時,無病平衡點(diǎn)E0是不穩(wěn)定的.
證明計(jì)算系統(tǒng)(1)在無病平衡點(diǎn)E0處的Jacobian矩陣J(E0),其特征方程為|J(E0-λI)|=-(λ+m)(λ+μph)(λ+μpm)(λ2+b1λ+c1)(λ2+b2λ+c2)=0,其中
計(jì)算得到以下的特征方程
(3)
其中σ1=-(R0,1+R0,2)=-(A13A31B11B33+A23A32B22B33),σ2=-R0,3=-A13A21A32B11B22B33,根據(jù)文獻(xiàn)[9],求解方程(3)可得:
因此b病毒入侵時的入侵再生數(shù)
(4)
然而,盡管(4)式提供了正確的入侵閾值,但并不一定能有效地呈現(xiàn)出病毒b入侵再生數(shù)的解析表達(dá)式.為了提供更合理的生物學(xué)解釋,提出了一個等價的閾值條件為
(5)
證明當(dāng)λ=1時,因此Pb(λ)=0等價于當(dāng)且僅當(dāng)顯然,和很容易證得.
注3類似分析可以得到植物體已經(jīng)感染病毒b的情形下病毒a能夠成功入侵的條件.
本文模型中包含多個參數(shù),每個參數(shù)都具有一定的生物意義,不同參數(shù)值會導(dǎo)致植物病在復(fù)合侵染條件下的傳播方式和效率發(fā)生變化.為了研究這些影響,借助Matlab軟件進(jìn)行數(shù)值模擬,選取參數(shù)如下,可得圖1,圖2和圖3的結(jié)果.
pa1=0.85,pb1=0.78,pa2=0.92,pb2=0.65,pba=0.062,pab=0.075,m=0.3,βpa=0.83,
βpb=0.85,βpab=0.042,βpba=0.063,βa=0.85,βb=0.73,βm=0.00825,μph=0.085,μpa=0.089,
圖1 偏好對植物感染不同病毒下的最終染病規(guī)模和基本再生數(shù)的影響
圖2 偏好對植物感染不同病毒下的最終染病規(guī)模和基本再生數(shù)的影響
圖3 易感媒介的死亡率m對植物感染不同病毒下的最終染病規(guī)模和基本再生數(shù)的影響
圖3探究了易感媒介的死亡率m對不同病毒感染下植物的最終染病規(guī)模和基本再生數(shù)的影響,隨著媒介死亡率的增加,基本再生數(shù)逐漸遞減,因此增加易感媒介的死亡率在抑制植物病害傳播方面具有重要作用.在圖3(B)中,隨著易感媒介死亡率的增加,植物體感染a病毒的最終染病規(guī)模會初時稍微上升,然后逐漸減小至零.不同的是,植物體感染b病毒的最終染病規(guī)模在初始階段會迅速減小至零(圖3(C)),這說明媒介的死亡率對感染病毒的植物體在初始時期非常敏感.綜上所述,通過采取某種方法(如通過生物或化學(xué)手段殺滅媒介昆蟲)來縮短媒介的生命周期,可以有效減小植物病害傳播的趨勢.
本文提出一種復(fù)合侵染和媒介寄主選擇偏好下的植物病數(shù)學(xué)模型,通過求解再生矩陣譜半徑計(jì)算得到了決定疾病是否消亡的基本再生數(shù)和入侵再生數(shù).此外,得到了無病平衡點(diǎn)局部漸近穩(wěn)定的條件.通過數(shù)值模擬,評估了易感媒介對感染a病毒植物以及對感染b病毒植物的偏好系數(shù),以研究其對基本再生數(shù)和植物最終染病規(guī)模的影響.模擬結(jié)果顯示,媒介對寄主植物的偏好會嚴(yán)重影響疾病的傳播與控制.適度降低媒介對植物的偏好有助于降低植物病傳播.此外,通過生物或化學(xué)手段殺滅媒介昆蟲是有效抑制植物病的重要途徑.