張曉陽,雷 洋,湯 濤
(1.海裝沈陽局駐大連地區(qū)第一軍事代表室,遼寧 大連 116011;2.中國艦船研究設(shè)計中心,湖北 武漢 430064)
目前,國內(nèi)外研究者對葉尖泄漏流的研究主要集中在壓氣機和透平這兩類葉輪機械中。在壓氣機中,由于流場內(nèi)存在著逆壓梯度,更易出現(xiàn)氣流分離、大尺度湍動渦結(jié)構(gòu),這會影響流道內(nèi)各種旋渦的生成和發(fā)展,使得葉頂部流場更加復(fù)雜。在特定的條件下,壓氣機流場中還會出現(xiàn)多種復(fù)雜流動結(jié)構(gòu)相互耦合,使流場結(jié)構(gòu)更為惡化,并且耦合機理尚不明確,難以針對這些耦合現(xiàn)象進行有效的抑制。大量研究表明,葉尖泄漏不僅造成機械能的損失,其泄漏渦的發(fā)展、融合與破碎過程還會嚴重影響壓氣機主流流場,造成壓氣機作功能力下降,嚴重時還會引發(fā)失速、喘振。泄漏量越大將使泄漏渦尺度更大且不穩(wěn)定性加強,泄漏渦占據(jù)流道比例越大,對主流流場造成更為嚴重的危害[1]。一般來說,燃氣渦輪發(fā)動機中的高壓壓氣機葉尖間隙每增加0.125 mm,壓氣機效率將會下降0.5%左右。此外,葉尖間隙流也是渦流噪聲的主要來源之一[2],因此,對壓氣機葉頂區(qū)域的旋渦結(jié)構(gòu)及其相關(guān)氣動損失的影響因素分析是非常必要的。
早期針對葉尖間隙流動的研究主要依靠建立模型的方法,但是模型假設(shè)的前提太過于理想化,難以認清其內(nèi)在規(guī)律。近年來,研究者們對葉尖間隙泄漏流動主要是通過實驗結(jié)合數(shù)值模擬的方法來進行研究。周正貴等[3]基于轉(zhuǎn)子靜止靜子轉(zhuǎn)動這一相對運動思想采用平面葉柵實驗?zāi)M了壓氣機動葉葉尖間隙流,并測量了葉片表面壓力分布和葉尖間隙泄漏流量。實驗結(jié)果表明,葉片與端壁有相對移動時相較于無相對移動,葉尖間隙泄漏渦生成得早且間隙泄漏流量較大。LAKSHMINARAYANA等[4]采用五孔探針技術(shù)對葉型為NACA65的低速軸流壓氣機轉(zhuǎn)子葉尖流場進行了測量,發(fā)現(xiàn)葉尖泄漏流在流出葉頂吸力面后沒有形成泄漏渦,而是直接與主流發(fā)生摻混,產(chǎn)生了強烈的流動分離現(xiàn)象。影響葉尖流場的因素很多,本文僅對葉尖間隙影響作用較大的葉尖間隙大小、進口馬赫數(shù)大小及機匣有無相對運動這3種因素進行分析。
本文采用NUMECA中的Fine/Turbo求解器對擴壓葉柵內(nèi)流動進行數(shù)值模擬,計算采用S-A湍流模型。為了驗證計算模型的準(zhǔn)確性,本文計算了在無間隙條件下該葉柵在葉中截面的壓力面與吸力面表面靜壓分布。計算所采用的葉柵葉型幾何參數(shù)如下:弦長60 mm,葉高78.8 mm,葉尖間隙1.2 mm,安裝角18.8°,幾何進氣角46°,幾何出氣角-10°,葉型彎角56°,攻角9°。
計算邊界條件如下:進口總溫288.15 K,總壓101 325 Pa,進氣角37°,出口給定背壓保證進口馬赫數(shù)為0.1。計算域沿流向總共8倍弦長,其中進口2倍弦長,出口5倍弦長。沿額線方向計算域為一個柵距,對應(yīng)的邊界條件采用周期性邊界條件。計算網(wǎng)格見圖1。
圖1 計算網(wǎng)格圖
計算結(jié)果與文獻[5]中的實驗結(jié)果對比見圖2。結(jié)果表明,計算結(jié)果與實驗結(jié)果吻合較好,該計算模型可信。
圖2 無間隙條件下葉中截面葉表靜壓數(shù)值模擬與試驗結(jié)果對比
葉尖摻混損失其實是葉尖泄漏流與主流摻混沿葉片弦長方向的損失累積。Denton葉尖泄漏摻混損失模型是一個簡化的二維模型[6],見圖3。該模型假定泄漏流從葉片頂部的壓力面向吸力面的流動只受兩端壓差的作用,且壓差作用力始終垂直于弦長方向,因此,泄漏流從葉頂壓力面向吸力面流動的過程中速度沿弦長方向的分速度始終保持不變,恒為泄漏流進入葉頂壓力面的速度Vp。同時還假定泄漏流到達葉頂吸力面后與吸力面附近速度為Vs的流體迅速發(fā)生摻混。
Vp—葉頂壓力面的速度;Vs—吸力面附近速度。圖3 Denton葉尖泄漏摻混損失模型
葉尖泄漏摻混損失的表達式如下:
葉尖泄漏摻混損失的表達式是一個迭代方程,在已知進口總、靜壓、葉頂壓力面與吸力面靜壓的情況下便可求得具體的摻混損失。值得注意的是,該式是在流體為不可壓的情況下假設(shè)氣動損失全為摻混損失的前提下成立的。
平面擴壓葉柵葉片幾何葉型具體參數(shù)如下:葉高40 mm,葉尖間隙3.2 mm,柵距45 mm,攻角9°,進口馬赫數(shù)0.1,其他幾何條件與數(shù)值計算設(shè)置相同。為了方便粒子圖像測速技術(shù)(PIV)測量系統(tǒng)的測量,平面擴壓葉柵的上端壁與進口一側(cè)的端壁采用光學(xué)玻璃材質(zhì)。同時,為了避免激光照射玻璃反光影響流場測量,實驗將葉片附近區(qū)域表面涂黑。平面葉柵三維造型見圖4。
圖4 擴壓葉柵UG造型圖
由于葉尖渦系主要集中在葉片吸力面?zhèn)?因此在分析葉尖流場時,葉片吸力面?zhèn)萐3流面的流場的實驗結(jié)果更有意義?;诖?本實驗將主要分析葉片吸力面?zhèn)鹊牧鲌觥?/p>
本實驗分別測得了沿軸向弦長位置25%、50%、75%、100% 4種截面的速度場,見圖5。從圖中可以看到,葉尖泄漏渦的確是沿著流向發(fā)展的過程中尺寸是逐漸增大的,且越來越遠離葉片吸力面,同時,葉尖區(qū)域均存在著速度較大的區(qū)域,這與數(shù)值分析得到的結(jié)論相符。
圖5 4種不同軸向弦長位置速度場(單位:m/s)
選取表1所示的10種不同葉尖間隙大小的算例。為了排除其他因素的影響,計算所采用的邊界條件(保證進口動壓相等)及網(wǎng)格劃分均相同。 選取Case2、Case3、Case4、Case5這4種算例,分別用Q顯示渦方法對葉尖間隙的渦系結(jié)構(gòu)進行顯示,見圖6。從圖中可以看到:4種算例下均存在著葉尖分離渦、葉尖二次渦和通道渦;Case2與Case3中并不存在著葉尖泄漏渦;Case4與Case5中存在著葉尖泄漏渦,它與葉尖二次渦的間距很小,緊貼著葉頂?shù)奈γ嫦蛳掠我苿印?/p>
表1 不同間隙大小算例
圖6 4種算例下Q方法顯示葉尖渦系結(jié)構(gòu)圖
Case0~Case9總壓損失系數(shù)隨葉尖間隙大小變化的折線圖見圖7。葉尖間隙在0.4 mm左右時葉尖泄漏對整個葉柵流場中引起的損失最小,此葉尖間隙大小可作為最佳葉尖間隙。當(dāng)葉尖間隙大于0.4 mm時,隨著葉尖間隙的逐漸增加,總壓損失系數(shù)也隨之增加。葉尖摻混損失是與葉尖泄漏流量成正比的,因此,當(dāng)葉尖間隙增大時,葉尖泄漏流量增加,葉尖摻混損失也隨之升高。為減少不必要的計算量,本文選取Case2、Case4、Case6算例計算了葉尖摻混損失,結(jié)果分別為0.021 8、0.046 4、0.137 5,結(jié)果與上述分析結(jié)論相符。
圖7 不同葉尖間隙下的總壓損失系數(shù)
葉尖間隙大小雖然存在著最佳間隙,但是由于此時的葉尖間隙過小僅為葉片弦長的0.67%,無法應(yīng)用于實際情況中且不利于數(shù)值分析。因此,本節(jié)采用1.2 mm間隙大小的葉柵算例,改變進口馬赫數(shù)(Ma)分別為0.1、0.2、0.3,分析比較進口馬赫數(shù)對葉尖流場的影響。
不同馬赫數(shù)下用Q旋渦顯示法顯示的葉尖渦系結(jié)構(gòu)圖見圖8。從圖中可以看到,馬赫數(shù)的變化并不會改變?nèi)~尖流場的大致的渦系結(jié)構(gòu)。隨著馬赫數(shù)的增加,葉尖泄漏渦越來越遠離葉片吸力面表面。由于葉尖泄漏渦有抑制葉尖二次渦的作用,葉尖泄漏渦的遠離導(dǎo)致葉尖二次渦強度增大,同時葉尖泄漏渦遠離葉片吸力面使得泄漏渦在葉頂尾緣不與葉尖二次渦和葉尖分離渦發(fā)生作用。
圖8 不同馬赫數(shù)下葉尖渦系結(jié)構(gòu)圖
為了計算葉柵端壁附面層損失,由Denton對端壁附面層損失的推導(dǎo)可計算出3種進口馬赫數(shù)下的端壁附面層總壓損失系數(shù)wendmall為
式中:ΔS為熵增。
根據(jù)公式,計算3種進口馬赫數(shù)下葉柵通道總的總壓損失與葉尖摻混損失,計算結(jié)果見表2。
表2 不同馬赫數(shù)下葉柵總壓損失與葉尖摻混損失
從表中可以看出,當(dāng)進口馬赫數(shù)變化時,葉柵內(nèi)的總壓損失和端壁附面層損失變化并不大,但是隨著進口馬赫數(shù)的增加,葉尖的摻混損失隨之逐漸增加,因此,從上述各損失變化的趨勢可以從側(cè)面反映葉柵內(nèi)的旋渦引起的氣動損失隨馬赫數(shù)的增加而減少現(xiàn)象。
壓氣機葉片轉(zhuǎn)動方向是由吸力面向壓力面轉(zhuǎn)動的,因此機匣相對于葉片而言是由壓力面向吸力面移動的。為此,本算例選用1.2 mm葉尖間隙下進口馬赫數(shù)為0.1的算例,上端壁以進口切向速度由葉片壓力面向吸力面移動。為了更加直觀地說明葉尖渦旋結(jié)構(gòu)在流場中移動,定義歸一化螺旋度h為
式中:ω為渦量;v為流體運動速度。
歸一化螺旋度h越接近1,表明渦旋方向與其移動方向越一致;歸一化螺旋度h越接近-1,表明渦旋方向與其移動反方向越一致。圖9為上端壁相對靜止與相對運動2種狀態(tài)下99%葉高截面的歸一化螺旋度云圖。從圖中可以看出,在上端壁相對靜止?fàn)顟B(tài)下時,葉片吸力面附近歸一化螺旋度較高。這主要是由于葉尖泄漏渦渦量方向與其運動方向較為一致,而在流道中部有大塊的歸一化螺旋度較低區(qū)域,這主要是由于通道渦與其運動方向相反,且占據(jù)葉尖流場的大部分區(qū)域并與葉尖泄漏渦相互耦合造成氣動損失。在上端壁相對移動狀態(tài)下時,可以直觀地看到歸一化螺旋度大于0的部分占據(jù)著葉尖流場的絕大部分區(qū)域,只有葉片壓力面附近存在著由通道渦引起的歸一化螺旋度小于0的小塊區(qū)域。這表明葉尖泄漏渦占據(jù)葉尖流場的大部分區(qū)域,通道渦受到擠壓,此時2種渦的相互作用減少,由泄漏流引起的摻混損失較上端壁靜止?fàn)顟B(tài)時增加。
圖9 99%葉高截面的歸一化螺旋度云圖
(1)存在葉尖間隙不一定存在著葉尖泄漏渦。當(dāng)葉尖間隙很小時(<0.4 mm)時,葉尖流場是不存在葉尖泄漏渦的,僅僅只有葉尖分離渦與葉尖二次渦,此時葉尖泄漏流對葉片吸力面附面層損失幾乎不起作用。葉柵內(nèi)總壓損失從葉尖間隙為0開始到0.2 mm左右有一個增加的過程。當(dāng)葉尖間隙繼續(xù)增加至最佳間隙時,開始出現(xiàn)了葉尖泄漏渦,此時葉尖泄漏流減少了葉片吸力面附面層損失。
(2)進口馬赫數(shù)的改變不會改變?nèi)~尖流場渦旋結(jié)構(gòu)種類,但是隨著進口馬赫數(shù)的增加,葉尖泄漏渦越來越遠離葉片吸力面,使得葉尖二次渦強度增加,且不會在葉頂尾緣與葉尖分離渦和葉尖二次渦發(fā)生相互作用。
(3)上端壁的相對移動對減少葉柵內(nèi)的氣動損失是有益的。