萬(wàn)麗麗 王轉(zhuǎn)茸 湯謐 曾紅霞 張學(xué)軍 張娜 任儉 孫玉宏 朱志坤
摘要:以西瓜自交系D66的子葉為外植體,將外植體置于含有不同濃度乙酰乳酸合成酶(Acetolactate synthase,ALS)抑制劑類除草劑(SU除草劑、IMI除草劑)的篩選培養(yǎng)基上,根據(jù)外植體的分化率確定最適宜的除草劑濃度。探討不同植物生長(zhǎng)調(diào)節(jié)劑(6-BA、NAA)濃度配比對(duì)不定芽的增殖作用。結(jié)果表明,SU除草劑中苯磺隆和噻吩磺隆的最適宜濃度均為0.25 mg/L,芐嘧磺隆的最適宜濃度為0.50 mg/L;IMI除草劑中滅草喹和滅草煙的最適宜濃度均為1.50 mg/L;在MS+1.0 mg/L 6-BA+0.5 mg/L NAA培養(yǎng)基中不定芽的增殖率最高,為287.0%;根據(jù)西瓜自交系材料D66確定的除草劑最適宜濃度同樣適用于西瓜雜交種(武農(nóng)8號(hào)、黑美人、甜王1號(hào)、早佳8424)子葉外植體的篩選試驗(yàn)。
關(guān)鍵詞:子葉外植體;ALS抑制類除草劑;西瓜自交系;西瓜雜交種;不定芽增殖;SU除草劑;IMI除草劑
中圖分類號(hào):S651 ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):0439-8114(2023)11-0202-05
DOI:10.14088/j.cnki.issn0439-8114.2023.11.035 開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Study on the differentiation of watermelon cotyledon explants by ALS inhibitor herbicides
WAN Li-li1, WANG Zhuan-rong1, TANG Mi1, ZENG Hong-xia1, ZHANG Xue-jun2,3,
ZHANG Na1, REN Jian1, SUN Yu-hong1, ZHU Zhi-kun4
(1. Wuhan Academy of Agricultural Sciences, Wuhan ?430065,China;2. The Research Center of Hami-melon, Xinjiang Academy of Agricultural Sciences, Urumqi ?830091,China;3. Hainan Sanya Crop Breeding Experimental Center,Xinjiang Academy of Agricultural Sciences, Sanya ?572014,Hainan,China;4.Caidian District Bureau of Agriculture and Rural Affairs, Wuhan ?430199,China)
Abstract:Using the cotyledons of watermelon inbred line D66 as explants, the explants were placed on a screening medium containing different concentrations of acetolactate synthase (ALS) inhibitor herbicides (SU herbicides, IMI herbicides), and the optimal herbicide concentration was determined based on the differentiation rate of the explants. The effect of different plant growth regulators (6-BA, NAA) concentration ratios on the proliferation of adventitious buds was explored. The results showed that the optimal concentrations of tribenuron-methy1 and thifensulfuron-methy1 in SU herbicides were both 0.25 mg/L, while the optimal concentration of bensulfuron was 0.50 mg/L;the most suitable concentrations for IMI herbicides such imazaquin and imazapyr were both 1.50 mg/L;the highest proliferation rate of adventitious buds was observed in MS+1.0 mg/L 6-BA+0.5 mg/L NAA medium, which was 287.0%;the optimal concentration of herbicides determined based on watermelon inbred line D66 materials was also suitable for screening cotyledon explants of watermelon hybrids (Wunong 8, Black Beauty, Tianwang 1, Zaojia 8424).
Key words: cotyledon explants; ALS inhibitory herbicides; watermelon inbred line; watermelon hybrid; adventitious bud proliferation; SU herbicides; IMI herbicides
人口的增長(zhǎng)和極端氣候環(huán)境給農(nóng)作物的生產(chǎn)帶來(lái)挑戰(zhàn),提高作物的產(chǎn)量和對(duì)逆境脅迫的適應(yīng)性是育種工作者需要重點(diǎn)關(guān)注的問(wèn)題。田間雜草與農(nóng)作物競(jìng)爭(zhēng)光照、水肥和氧氣,影響農(nóng)作物的產(chǎn)量和品質(zhì)[1]?;瘜W(xué)除草是現(xiàn)代農(nóng)業(yè)生產(chǎn)中控制雜草的主要手段。乙酰乳酸合成酶(Acetolactate synthase,ALS)抑制劑類除草劑具有廣譜性、活性高、選擇性強(qiáng)和生物安全性高的優(yōu)勢(shì),在田間雜草防控中被廣泛應(yīng)用。主要包括5個(gè)不同結(jié)構(gòu)的化合物家族,分別是磺酰脲類(Sulfonylureas,SU)、咪唑啉酮類(Imidazolinones,IMI)、三唑嘧啶磺酰胺類(Triazolopyrimidines,TP)、嘧啶水楊酸類(Pyrimidyl-benzoates,PB)和磺酰氨羧基三唑啉酮類(Sulfonlyaminocarbonyl-triazolinones,SCT)[2]。SU和IMI是常用的除草劑,這2類除草劑主要用于1年生或多年生闊葉雜草的防除。SU除草劑主要有苯磺隆(Tribenuron-methyl,TM)、噻吩磺?。═hifensulfuron methyl,HAR)、芐嘧磺?。˙ensulfuron methyl,BM)等。IMI除草劑主要有滅草煙(Imazethapyr,IP)和滅草喹(Imazaquin,IQ)等。ALS抑制類除草劑的作用靶標(biāo)是植物內(nèi)源ALS,通過(guò)阻斷底物進(jìn)入ALS酶的活性位點(diǎn)并與之結(jié)合,進(jìn)而影響纈氨酸、亮氨酸、異亮氨酸等支鏈氨基酸的生物合成,影響植物體內(nèi)的蛋白代謝,最終滅殺植物[3]。盡管ALS抑制劑類除草劑具有諸多優(yōu)勢(shì),但其作用位點(diǎn)單一、長(zhǎng)期高頻施用容易產(chǎn)生雜草耐受性,進(jìn)而產(chǎn)生抗藥性雜草種群。
植物對(duì)ALS抑制劑類除草劑產(chǎn)生的抗性機(jī)制如下。①靶標(biāo)抗性(Target-site resistance,TSR)。靶標(biāo)基因ALS保守區(qū)域發(fā)生突變引起氨基酸的改變,導(dǎo)致酶結(jié)構(gòu)或者空間構(gòu)象變化,對(duì)除草劑的敏感性降低進(jìn)而產(chǎn)生抗性。ALS蛋白質(zhì)的研究發(fā)現(xiàn),A96、P171、A179、W548和S627 5個(gè)高度保守結(jié)構(gòu)域中氨基酸突變會(huì)提高植株對(duì)除草劑的抗性[4,5]。②非靶標(biāo)抗性(Non-target-site resistance,NTSR)。通過(guò)減少除草劑的吸收、轉(zhuǎn)運(yùn)和活化能力提高除草劑解毒、降解和誘導(dǎo)損傷修復(fù)能力[6]。細(xì)胞色素P450單氧化酶、谷胱甘肽轉(zhuǎn)移酶(Glutathione S-transferase, GSTS)和糖基轉(zhuǎn)移酶等通過(guò)催化除草劑脫烷基化、環(huán)甲基羥基化、芳環(huán)的羥基化、脫硫氧化,或者催化有害物質(zhì)的親電子基團(tuán)與還原型谷胱甘肽的巰基偶聯(lián)增加疏水性,使有害物質(zhì)更容易穿透細(xì)胞膜分解排出[7-9]?;诳笰LS抑制劑類除草劑的作用機(jī)理,通過(guò)多途徑獲得新型ALS抑制劑類除草劑抗性資源是解決雜草抗藥性的有效策略。目前有學(xué)者已經(jīng)通過(guò)種子EMS誘變與除草劑篩選相結(jié)合、植株體細(xì)胞或者小孢子細(xì)胞與除草劑共培養(yǎng)等方式獲得自發(fā)突變的抗性種子和抗性細(xì)胞系[10-12]。隨著生物技術(shù)的快速發(fā)展,利用轉(zhuǎn)基因和基因編輯技術(shù)實(shí)現(xiàn)ALS與除草劑結(jié)合位點(diǎn)的突變,快速創(chuàng)制抗除草劑的種質(zhì)[13-16]。玉米ALS基因165位Ser替換為Pro,獲得抗氯磺隆除草劑的玉米種質(zhì),西瓜內(nèi)源ALS基因190位Pro替換為Ser,獲得抗除草劑的西瓜種質(zhì)[17]。此外,隨著基因編輯工具的優(yōu)化,利用單堿基編輯器構(gòu)建ALS基因飽合突變體庫(kù)能夠快速獲得抗除草劑的基因資源。利用農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化方法,在含有適宜除草劑濃度的培養(yǎng)基上篩選植物的外植體,能夠獲得抗ALS抑制類除草劑的新種質(zhì)資源[18-20]。遺傳轉(zhuǎn)化的程序包含農(nóng)桿菌侵染、共培養(yǎng)、選擇培養(yǎng)、分化培養(yǎng)和植株再生等,遺傳轉(zhuǎn)化后的組織培養(yǎng)程序中可以施加不同類型的ALS抑制類除草劑,作為再生細(xì)胞的選擇劑,經(jīng)過(guò)分化培養(yǎng)獲得抗不同類型除草劑的再生植株。不同的作物種類、外植體類型對(duì)除草劑的敏感性存在差異,篩選適宜的除草劑濃度對(duì)鑒定抗除草劑種質(zhì)資源顯得尤為重要。
本研究以西瓜子葉為試驗(yàn)材料,置于不同濃度ALS抑制類除草劑的培養(yǎng)基中,研究除草劑對(duì)西瓜組織培養(yǎng)外植體再生的影響,為建立高效的西瓜抗除草劑遺傳轉(zhuǎn)化體系提供科學(xué)依據(jù)。
1 材料與方法
1.1 材料
試驗(yàn)材料為西瓜自交系D66、西瓜雜交種(武農(nóng)8號(hào)、黑美人、甜王1號(hào)、早佳8424)。
1.2 試劑
MS培養(yǎng)基(含維生素)購(gòu)自荷蘭Duchefa公司;植物生長(zhǎng)調(diào)節(jié)劑6-BA(1 mg/mL)和IAA(1 mg/mL)均購(gòu)自生工生物工程(上海)股份有限公司;瓊脂粉Agar[西格瑪奧德里奇(上海)貿(mào)易有限公司]、抑菌劑特美汀均購(gòu)自上海泰坦科技股份有限公司;ALS抑制類除草劑磺酰脲類的苯磺隆、噻吩磺隆 、芐嘧磺隆和咪唑啉酮類的滅草喹、滅草煙均購(gòu)自西格瑪奧德里奇(上海)貿(mào)易有限公司。
1.3 方法
1.3.1 ALS抑制類除草劑的配制 分別稱取10 mg 苯磺隆、噻吩磺隆、芐嘧磺隆、滅草煙和滅草喹固體粉末,用100 μL 2 mol/L NaOH液體溶解,最后用去離子水定容。
1.3.2 除草劑篩選 西瓜種子置于75%乙醇中消毒30 s,1.5%次氯酸鈉消毒20 min,無(wú)菌去離子水沖洗3~5次,接種于MS+0.45 mg/L 6-BA培養(yǎng)基,26 ℃暗培養(yǎng)2~3 d直至胚根伸長(zhǎng)至0.2~0.5 cm。從子葉和胚根接觸位置切開,去除子葉遠(yuǎn)軸端1/3的部分,將剩下的2/3子葉作為外植體。將外植體轉(zhuǎn)移至除草劑篩選培養(yǎng)基(MS+1.0 mg/L 6-BA+除草劑+0.8 g/L Agar+200 mg/L 特美汀培養(yǎng)基),其中除草劑分別為TM、HAR、BM、IQ和IP。SU除草劑設(shè)置不同濃度(A=0.01 mg/L、B=0.05 mg/L、C=0.25 mg/L、D=0.50 mg/L),苯磺隆除草劑對(duì)應(yīng)的篩選培養(yǎng)基分別為TMA、TMB、TMC、TMD,噻吩磺隆除草劑對(duì)應(yīng)的篩選培養(yǎng)基分別為HARA、HARB、HARC、HARD;芐嘧磺隆除草劑對(duì)應(yīng)的篩選培養(yǎng)基分別為BMA、BMB、BMC、BMD。IMI除草劑設(shè)置不同濃度(a=0.25 mg/L、b=0.50 mg/L、c=1.00 mg/L、d=1.50 mg/L),滅草喹除草劑對(duì)應(yīng)的篩選培養(yǎng)基分別為IQa、IQb、IQc、IQd;滅草煙除草劑對(duì)應(yīng)的篩選培養(yǎng)基分別為IPa、IPb、IPc、IPd。不含有除草劑的培養(yǎng)基為對(duì)照(CK)。組織培養(yǎng)的溫度為(25±2) ℃,光照度為1 500~3 000 lx,16 h光照、 8 h黑暗培養(yǎng)。每個(gè)處理3次重復(fù),分別在培養(yǎng)10、25、35 d后記錄外植體的分化率,計(jì)算公式如下:
分化率=(分化出愈傷數(shù)或者不定芽的外植體數(shù)/接種外植體總數(shù))?100% ?(1)
死亡率=(外植體死亡數(shù)/接種外植體總數(shù))?100% ? ? ? ? ? ?(2)
1.3.3 西瓜子葉誘導(dǎo)不定芽 將誘導(dǎo)生成的1~2 cm不定芽轉(zhuǎn)移到含有不同濃度6-BA和NAA的MS培養(yǎng)基中,其中,6-BA濃度分別為0.5、1.0、2.0 mg/L,NAA濃度分別為0.1、0.5、1.5 mg/L。每個(gè)處理接種6~8個(gè)不定芽,3次重復(fù)。30 d后統(tǒng)計(jì)芽增殖率,計(jì)算公式如下:
芽增殖率=(新增出芽數(shù)/原有芽數(shù))?100% ?(3)
1.3.4 數(shù)據(jù)分析 試驗(yàn)數(shù)據(jù)用Excel 2017軟件統(tǒng)計(jì),在SPSS 26.0軟件中采用Duncans法進(jìn)行多組樣本間差異顯著性分析。
2 結(jié)果與分析
2.1 SU除草劑對(duì)西瓜子葉外植體的分化作用
將西瓜自交系D66的子葉作為外植體置于不同類型和濃度的SU除草劑篩選培養(yǎng)基,10、25、35 d后統(tǒng)計(jì)外植體的分化率和死亡率(圖1)。由表1、表2、表3可知,隨著SU除草劑濃度的增加,外植體死亡率呈上升趨勢(shì),分化率呈下降趨勢(shì)。外植體在0.25 mg/L苯磺隆培養(yǎng)基上培養(yǎng)10 d后,外植體的分化率為0,培養(yǎng) 35 d后外植體的死亡率為42.0%;外植體在0.25 mg/L噻吩磺隆培養(yǎng)基上培養(yǎng)10 d后,外植體的分化率為0,培養(yǎng)35 d后外植體的死亡率為55.7%;在0.50 mg/L芐嘧磺隆培養(yǎng)基上培養(yǎng)10 d后,外植體的分化率為0,培養(yǎng)35 d后外植體的死亡率為52.7%。本試驗(yàn)中篩選的是非轉(zhuǎn)基因西瓜材料,外植體沒(méi)有分化表明該處理下外植體不具備分化能力,為今后開展轉(zhuǎn)基因抗除草劑西瓜種質(zhì)的篩選提供參考依據(jù)。因此將最早出現(xiàn)外植體分化率為0時(shí)除草劑的濃度定義為最適宜篩選濃度,苯磺隆和噻吩磺隆除草劑的最適宜篩選濃度均為0.25 mg/L,芐嘧磺隆的最適宜篩選濃度為0.50 mg/L。
2.2 IMI除草劑對(duì)西瓜子葉外植體的分化作用
將西瓜自交系D66的子葉作為外植體置于不同類型和濃度的IMI除草劑培養(yǎng)基中。由表4、表5可知,在1.50 mg/L滅草喹除草劑培養(yǎng)基上西瓜子葉外植體的分化率為0,培養(yǎng)35 d后外植體的死亡率達(dá)49.3%;在1.50 mg/L滅草煙除草劑培養(yǎng)基上西瓜子葉外植體的分化率為0,培養(yǎng)35 d后外植體的死亡率達(dá)45.5%。將最早出現(xiàn)外植體分化率為0時(shí)除草劑的濃度定義為最佳篩選濃度,西瓜子葉外植體在滅草喹和滅草煙培養(yǎng)基上篩選濃度均為1.50 mg/L。
2.3 不同植物生長(zhǎng)調(diào)節(jié)劑濃度配比對(duì)不定芽增殖培養(yǎng)的影響
6-BA濃度分別為0.5、1.0、2.0 mg/L,NAA濃度分別為0.1、0.5、1.5 mg/L,將誘導(dǎo)生成的不定芽置于不同植物生長(zhǎng)調(diào)節(jié)劑濃度配比的培養(yǎng)基中,由表6可知,不同植物生長(zhǎng)調(diào)節(jié)劑(6-BA、NAA)均能促進(jìn)不定芽的增殖。在MS+1.0 mg/L 6-BA+0.5 mg/L NAA的培養(yǎng)基中不定芽的增殖率最高,為287.0%。
2.4 西瓜雜交種的子葉外植體在除草劑培養(yǎng)基上的分化研究
將西瓜雜交種(武農(nóng)8號(hào)、黑美人、甜王1號(hào)、早佳8424)和西瓜自交系D66發(fā)芽2 d后的子葉作為外植體置于除草劑培養(yǎng)基(表7),35 d后統(tǒng)計(jì)4種西瓜雜交種和西瓜自交系D66外植體的分化率和死亡率。4種西瓜雜交種和西瓜自交系D66在0.25 mg/L TM、0.25 mg/L HAR、0.5 mg/L BM、1.5 mg/L IQ和1.5 mg/L IP除草劑培養(yǎng)基中的分化率均為0。西瓜外植體在5種除草劑(TM、HAR、BM、IQ、IP)處理下的死亡率分別為40.0%~50.5%、54.7%~65.0%、40.9%~52.0%、40.7%~52.5%、39.5%~45.2%。
3 結(jié)論
1)西瓜自交系D66子葉外植體在含有SU除草劑苯磺隆和噻吩磺隆的培養(yǎng)基上最適宜濃度均為0.25 mg/L,芐嘧磺隆最適宜的濃度為0.50 mg/L。
2)西瓜自交系D66子葉外植體在含有IMI類除草劑滅草喹和滅草煙培養(yǎng)基上最適宜的濃度均為1.5 mg/L。
3)ALS抑制類除草劑篩選后得到的不定芽在含有1.0 mg/L 6-BA和0.5 mg/L NAA的培養(yǎng)基中芽增殖率最高。
4)4個(gè)西瓜雜交種在0.25 mg/L苯磺隆和噻吩磺隆、0.50 mg/L芐嘧磺隆、1.50 mg/L滅草喹和滅草煙除草劑培養(yǎng)基上的分化率均為0。
4 討論
農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化試驗(yàn)中,在培養(yǎng)基中添加篩選劑能夠有效抑制非轉(zhuǎn)化細(xì)胞或者組織的生長(zhǎng)及增殖。目前植物轉(zhuǎn)基因組織培養(yǎng)篩選中常用的選擇性標(biāo)記主要是Kana、Hyg及Basta等。選擇性標(biāo)記能夠?qū)D(zhuǎn)化細(xì)胞產(chǎn)生選擇壓力,致使未轉(zhuǎn)化的細(xì)胞不能生長(zhǎng)、發(fā)育及分化,而轉(zhuǎn)化的細(xì)胞能夠?qū)Τ輨┊a(chǎn)生抗性。雖然選擇性標(biāo)記基因?qū)Y選轉(zhuǎn)化的細(xì)胞及植株提供了便利,但由于它們大多數(shù)來(lái)自于細(xì)菌或者真菌,會(huì)產(chǎn)生轉(zhuǎn)基因安全問(wèn)題。為了便于轉(zhuǎn)基因作物的市場(chǎng)化,研究者傾向于選擇來(lái)源于植物內(nèi)源突變的除草劑靶基因表達(dá)系統(tǒng)用于轉(zhuǎn)化試驗(yàn)的篩選。ALS抑制類除草劑的作用靶標(biāo)為ALS,該酶在生物體內(nèi)能夠阻斷底物進(jìn)入酶的活性位點(diǎn),抑制支鏈氨基酸的生物合成,破壞生物體的蛋白質(zhì)代謝反應(yīng),最終滅殺植物。采用長(zhǎng)期高強(qiáng)度的除草劑選擇壓或者人工誘變來(lái)獲得ALS抑制類除草劑的種質(zhì)。擬南芥、水稻、馬鈴薯、芥菜型油菜和玉米等作物的ALS基因突變能產(chǎn)生對(duì)除草劑的抗性,這類ALS突變基因被選擇為遺傳轉(zhuǎn)化的篩選標(biāo)記[21-25],將水稻OsALS突變基因型作為選擇標(biāo)記應(yīng)用到大豆、小麥等作物遺傳轉(zhuǎn)化試驗(yàn)[26-28]。Kawai等[29]將水稻細(xì)胞與ALS抑制類除草劑如雙草醚(Bispyribac-sodium)、氯磺?。–hlorsulfuron)、滅草喹共培養(yǎng)獲得自發(fā)突變的抗性細(xì)胞,設(shè)置的篩選濃度為1 nm/L~10 μmol/L。
參考文獻(xiàn):
[1] 劉長(zhǎng)樂(lè),郭 月,李芳芳,等. 抗ALS類除草劑作物種質(zhì)創(chuàng)制與利用研究進(jìn)展[J]. 植物遺傳資源學(xué)報(bào), 2022, 23(2): 333-345.
[2] YU Q, POWLES S B. Resistance to AHAS inhibitor herbicides: Current understanding[J]. Pest management science,2014,70(9): 1340-1350.
[3] MCCOURT J A, PANG S S, KING-SCOTT J, et al. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase[J]. Proceedings of the national academy of sciences of the united states of America, 2006, 103(3): 569-573.
[4] YANG Q, DENG W, WANG S, et al. Effects of resistance mutations of Pro197, Asp376 and Trp574 on the characteristics of acetohydroxyacid synthase (AHAS) isozymes[J].Pest management science, 2018, 74(8): 1870-1879.
[5] YU Q,HAN H,VILA-AIUB M M,et al. AHAS herbicide resistance endowing mutations: Effect on AHAS functionality and plant growth[J]. Journal experimental of botany,2010, 61(14): 3925-3934.
[6] D?LYE C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade[J]. Pest management science, 2013, 69(2): 176-187.
[7] YUAN J S, TRANEL P J, STEWART C N. Non-target-site herbicide resistance: A family business[J]. Trends plant science, 2007, 12(1): 6-13.
[8] SHEN J, YANG Q, HAO L, et al. The metabolism of a novel cytochrome P450 (CYP77B34) in tribenuron-methyl-resistant Descurainia sophia L. to herbicides with different mode of actions[J].International journal of molecular sciences, 2022, 23(10):5812.
[9] ZHAO N, YAN Y, GE L, et al. Target site mutations and cytochrome P450s confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis[J]. Pest management science, 2019, 75(1): 204-214.
[10] ANDERSON J A, MATTHIESEN L, HEGSTAD J. Resistance to an imidazolinone herbicide is conferred by a gene on chromosome 6DL in the wheat line cv. 9804[J]. Weed science, 2004, 52(1): 83-90.
[11] GUO Y, CHENG L, LONG W, et al. Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control[J]. Theoretical and applied genetics, 2020, 133(10): 2811-2824.
[12] SHOBA D, RAVEENDRAN M, MANONMANI S, et al. Development and genetic characterization of a novel herbicide (imazethapyr) tolerant mutant in rice (Oryza sativa L.)[J]. Rice (N Y), 2017, 10(1):151-158.
[13] CHEN Y,WANG Z,NI H,et al. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis[J]. Science China-life sciences,2017,60(5):520-523.
[14] DONG H, HUANG Y, WANG K. The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing[J]. Genes, 2021,12(6):912.
[15] HUSSAIN A, DING X, ALARIQI M, et al. Herbicide resistance: Another hot agronomic trait for plant genome editing[J]. Plants-basel, 2021,10(4):621.
[16] SVITASHEV S, YOUNG J K, SCHWARTZ C, et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA[J]. Plant physiology, 2015, 169(2): 931-945.
[17] TIAN S, JIANG L, CUI X, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant cell reports, 2018, 37(9): 1353-1356.
[18] KUANG Y, LI S, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Molecular plant, 2020, 13(4): 565-572.
[19] LIU X,QIN R,LI J,et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant biotechnology journal,2020,18(9): 1845-1847.
[20] ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nature reviews molecular cell biology, 2020, 21(11): 661-677.
[21] ANDERSSON M, TRIFONOVA A, ANDERSSON A B, et al. A novel selection system for potato transformation using a mutated AHAS gene[J]. Plant cell reports, 2003, 22(4): 261-267.
[22] GABARD J M, CHAREST P J, IYER V N, et al. Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants[J]. Plant physiology, 1989, 91(2): 574-580.
[23] LI Z, HAYASHIMOTO A, MURAI N. A sulfonylurea herbicide resistance gene from arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants[J]. Plant physiology, 1992, 100(2): 662-668.
[24] RAY K, JAGANNATH A, GANGWANI S A, et al. Mutant acetolactate synthase gene is an efficient in vitro selectable marker for the genetic transformation of Brassica juncea(oilseed mustard)[J]. Journal of plant physiology, 2004, 161(9): 1079-1083.
[25] ZHANG Y S, YIN XY, YANG A F, et al. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods[J]. Euphytica, 2005, 144: 11-22.
[26] OGAWA T, KAWAHIGASHI H, TOKI S, et al. Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker[J]. Plant cell reports,2008,27(8):1325-1331.
[27] OKUZAKI A, SHIMIZU T, KAKU K, et al. A novel mutated acetolactate synthase gene conferring specific resistance to pyrimidinyl carboxy herbicides in rice[J]. Plant molecular biology, 2007, 64(1-2): 219-224.
[28] TOUGOU M, YAMAGISHI N, FURUTANI N, et al. The application of the mutated acetolactate synthase gene from rice as the selectable marker gene in the production of transgenic soybeans[J]. Plant cell reports, 2009, 28(5): 769-776.
[29] KAWAI K, KAKU K, IZAWA N. A novel mutant acetolactate synhtase gene from rice cells, which confers resistance to ALS-inhibiting herbicides[J]. Journal of pesticide science,2007, 32(2): 89-98.