摘 要 【目的】石英是海相頁(yè)巖中最重要的礦物之一,以多種形式存在,并具有多種的硅質(zhì)來(lái)源和成因,而不同類型的石英對(duì)于巖石力學(xué)性能和孔隙演化的貢獻(xiàn)是不同的,且相關(guān)研究目前仍較薄弱,制約了對(duì)頁(yè)巖儲(chǔ)層特征的深入認(rèn)識(shí)?!痉椒ā亢?jiǎn)述了近年來(lái)海相頁(yè)巖石英分類的最新進(jìn)展,并在此基礎(chǔ)上,在前期研究較為薄弱的下?lián)P子地區(qū),利用鼓地1井上奧陶統(tǒng)五峰組—下志留統(tǒng)高家邊組海相頁(yè)巖樣品,綜合運(yùn)用薄片分析、X射線衍射分析、地球化學(xué)分析、場(chǎng)發(fā)射掃描電鏡、核磁共振、能譜分析和陰極發(fā)光等多種方法手段,探究海相頁(yè)巖石英類型和硅質(zhì)來(lái)源,并進(jìn)一步討論生物成因微晶石英對(duì)頁(yè)巖力學(xué)性質(zhì)和孔隙發(fā)育等儲(chǔ)層性質(zhì)的影響。【結(jié)果】下?lián)P子地區(qū)鼓地1井五峰組—高家邊組頁(yè)巖石英類型主要為碎屑石英、微晶石英和生物骨架石英,其中碎屑石英為陸源輸入,而微晶石英則為自生來(lái)源。硅質(zhì)生物骨架鏡下證據(jù)、生物硅含量、主微量元素特征等指標(biāo)綜合分析表明硅質(zhì)生物可為微晶石英提供重要的硅質(zhì)來(lái)源?!窘Y(jié)論】海相頁(yè)巖中的生物成因微晶石英增強(qiáng)了頁(yè)巖的脆性,并且相互連接,形成剛性的硅質(zhì)基質(zhì)框架,很大程度上提高了頁(yè)巖的力學(xué)性能。此外,這一剛性框架能夠有效地保護(hù)微晶石英內(nèi)部的有機(jī)質(zhì)孔隙和粒間孔隙不被壓實(shí),有利于孔隙的保存。
關(guān)鍵詞 海相頁(yè)巖;生物成因微晶石英;硅質(zhì)來(lái)源;巖石力學(xué)性質(zhì);孔隙演化
第一作者簡(jiǎn)介 王拔秀,男,1998年出生,碩士研究生,海洋地質(zhì),E-mail: wbx5566677@163.com
通信作者 張鵬輝,男,副教授,油氣地質(zhì)、海洋地質(zhì)和非常規(guī)油氣沉積學(xué),E-mail: zph010@163.com
中圖分類號(hào) P618.13 文獻(xiàn)標(biāo)志碼 A
0 引言
頁(yè)巖氣是一種蘊(yùn)藏于頁(yè)巖層系中具有自生自儲(chǔ)特征的非常規(guī)天然氣資源,頁(yè)巖儲(chǔ)層特征不僅影響頁(yè)巖氣的富集程度,而且對(duì)于后期勘探開發(fā)工作也具有重要影響[1?6]。頁(yè)巖儲(chǔ)層特征同時(shí)受巖石有機(jī)質(zhì)和礦物組分,以及后期成巖作用(如溶蝕作用、膠結(jié)作用和壓實(shí)作用等)的控制[7?15]。有機(jī)質(zhì)作為頁(yè)巖儲(chǔ)層孔隙的主要載體之一,特別是腐泥型干酪根及固體瀝青常含有豐富的納米級(jí)有機(jī)質(zhì)孔隙,早期一些研究普遍認(rèn)為TOC是影響頁(yè)巖孔隙度的重要因素[16?17]。但近年來(lái)進(jìn)一步的研究表明,TOC與孔隙度的關(guān)系是復(fù)雜的,二者之間并非一定存在相關(guān)關(guān)系,這可能與頁(yè)巖存在顯著的無(wú)機(jī)孔隙(也稱基質(zhì)孔隙)有關(guān)[12,18?20]。頁(yè)巖礦物組成不僅是影響儲(chǔ)層孔隙發(fā)育和保存的重要因素,也是影響頁(yè)巖氣富集的重要因素[21?22]。頁(yè)巖中的脆性礦物能夠形成穩(wěn)定的框架,可以減少有機(jī)質(zhì)顆粒受到的有效應(yīng)力,有助于減少對(duì)有機(jī)質(zhì)孔隙的破壞,進(jìn)而有利于孔隙的保存[23?27]。
石英具有高彈性模量、低泊松比和低韌性的特點(diǎn),是頁(yè)巖中最重要的脆性礦物,具有比其他礦物更高的脆性,對(duì)巖石強(qiáng)度和儲(chǔ)層質(zhì)量起著至關(guān)重要的積極作用[2,12,24,28]。頁(yè)巖中的脆性礦物(包括石英、長(zhǎng)石及碳酸鹽礦物等)被廣泛用于脆性指數(shù)(BI值)的計(jì)算[2,29?31],但目前關(guān)于脆性礦物的形式,尤其是石英中的生物成因微晶石英對(duì)于頁(yè)巖脆性等巖石力學(xué)方面影響的研究較少。石英是海相頁(yè)巖中最重要的礦物組分之一,以多種形式存在,并存在多種硅質(zhì)來(lái)源和成因[32?33]。在海洋環(huán)境中,硅質(zhì)來(lái)源和石英的形成機(jī)制是多樣且復(fù)雜的,按硅質(zhì)來(lái)源的不同,可分為碎屑硅、生物硅和熱液硅三類[32?37];此外,次生石英還可在成巖過(guò)程中通過(guò)多種機(jī)制形成,如硅質(zhì)生物碎片的溶解、碎屑石英和硅酸鹽顆粒的溶解或壓溶作用,以及黏土礦物的轉(zhuǎn)化等[33,38]。二氧化硅有多種來(lái)源,包括初級(jí)來(lái)源和次級(jí)來(lái)源,不同來(lái)源的石英在形態(tài)和大小等方面存在差異。近年來(lái),基于硅質(zhì)來(lái)源和石英晶體形態(tài),并借助偏光顯微鏡、場(chǎng)發(fā)射掃描電鏡(FE-SEM)、能譜分析(EDS)和陰極發(fā)光(SEM-CL)等識(shí)別方法,目前已在美國(guó)得克薩斯州上白堊統(tǒng)鷹灘組(Eagle Ford)、白堊系莫里組(Mowry)、米德蘭盆地賓夕法尼亞系克萊恩組(Cline)、北達(dá)科他州威利斯頓盆地上泥盆統(tǒng)—下密西西比統(tǒng)巴肯組(Bakken)、我國(guó)上揚(yáng)子地區(qū)上奧陶統(tǒng)五峰組—下志留統(tǒng)龍馬溪組、上中揚(yáng)子地區(qū)下寒武統(tǒng)牛蹄塘組和塔里木盆地下寒武統(tǒng)玉爾吐斯組等海相頁(yè)巖中發(fā)現(xiàn)了不同類型的石英[22,25,28,33,39?47]。最新研究顯示,生物硅含量與頁(yè)巖孔隙度間可存在較好的正相關(guān)關(guān)系[12,48],表明生物成因石英對(duì)頁(yè)巖孔隙的保存具有積極作用。
揚(yáng)子地塊廣泛發(fā)育的古生界富有機(jī)質(zhì)海相頁(yè)巖是我國(guó)頁(yè)巖氣勘探開采的重點(diǎn)目標(biāo),近年來(lái)在上、中揚(yáng)子地區(qū)已陸續(xù)有古生界海相頁(yè)巖多套層系頁(yè)巖氣的重大突破,并相繼實(shí)現(xiàn)試采和商業(yè)性開采[49?56];而下?lián)P子地區(qū)頁(yè)巖氣研究相對(duì)滯后,目前在古生界勘探突破較少。盡管目前對(duì)上、中揚(yáng)子地區(qū)古生界海相頁(yè)巖的初步研究表明微晶石英有利于頁(yè)巖孔隙的發(fā)育與保存[12,28,32?33,37,57],但總體而言,生物成因微晶石英對(duì)于頁(yè)巖孔隙演化和儲(chǔ)層力學(xué)性質(zhì)的研究還不夠完善,尤其缺少對(duì)下?lián)P子古生界海相頁(yè)巖的相關(guān)研究。本文梳理了近年來(lái)國(guó)內(nèi)外學(xué)者對(duì)海相頁(yè)巖石英分類方面的最新認(rèn)識(shí),并結(jié)合中國(guó)地質(zhì)調(diào)查局青島海洋地質(zhì)研究所于2017年在下?lián)P子巢湖地區(qū)實(shí)施的全取心鉆井——鼓地1井所揭示的厚層上奧陶統(tǒng)五峰組—下志留統(tǒng)高家邊組海相頁(yè)巖,發(fā)現(xiàn)前期未引起足夠關(guān)注的生物成因微晶石英在該套頁(yè)巖中廣泛發(fā)育,并進(jìn)一步討論了生物成因微晶石英特征及其對(duì)海相頁(yè)巖儲(chǔ)層孔隙發(fā)育的影響。以期從新的研究視角進(jìn)一步揭示下?lián)P子地區(qū)古生界海相頁(yè)巖孔隙發(fā)育規(guī)律,并為頁(yè)巖氣儲(chǔ)集和賦存機(jī)理提供較為可靠的地質(zhì)依據(jù)。
1 頁(yè)巖石英的分類與識(shí)別
不同類型的石英對(duì)于頁(yè)巖孔隙發(fā)育和演化的貢獻(xiàn)是不同的,因此識(shí)別和分析頁(yè)巖石英類型至關(guān)重要。根據(jù)硅質(zhì)來(lái)源和石英晶體形態(tài),并借助偏光顯微鏡、場(chǎng)發(fā)射掃描電鏡觀察分析、能譜分析和陰極發(fā)光等方法手段,近年來(lái)在美國(guó)上白堊統(tǒng)鷹灘組頁(yè)巖[40]、中國(guó)上揚(yáng)子下寒武統(tǒng)牛蹄塘組頁(yè)巖[42,46]和上揚(yáng)子五峰組—龍馬溪組頁(yè)巖[25,33,58]等多套海相頁(yè)巖層系中發(fā)現(xiàn)了不同的石英類型,詳細(xì)石英分類如表1所示。本文借助偏光顯微鏡、場(chǎng)發(fā)射掃描電鏡(FESEM)、能譜(EDS)和陰極發(fā)光(SEM-CL)等手段,選取下?lián)P子地區(qū)鼓地1井五峰組—高家邊組底部黑色富含筆石頁(yè)巖層段(1 208.0~1 234.0 m),對(duì)應(yīng)晚奧陶世凱迪階— 早志留世魯?shù)るA,涵蓋Dicellograptuscomplexus ? Paraorthograptus pacificus 帶(WF2~WF3)、Akidograp tus ascensus 帶(LM2)等筆石帶序列[60?61],發(fā)現(xiàn)該套頁(yè)巖中廣泛存在前期未引起足夠重視的多種石英類型,主要包括碎屑石英、微晶石英和生物骨架石英??傮w而言,海相頁(yè)巖中碎屑石英主要通過(guò)河流搬運(yùn)和沉積,主要為陸源輸入,由于長(zhǎng)距離的搬運(yùn),碎屑石英多呈粉砂狀和次圓狀,在SEM-CL下基本為明亮的顆粒[33,41],鼓地1井五峰組—高家邊組頁(yè)巖中的碎屑石英表現(xiàn)出類似的特征,且粒徑多介于10~30 μm(圖1)。
頁(yè)巖中絕大多數(shù)石英可能并非碎屑成因,而主要為自生成因[62]。微晶石英為最常見的自生石英之一,在SEM-CL 下不發(fā)光,為灰暗的形式[12,25,32],可見于多套海相頁(yè)巖層系(圖2)。根據(jù)微晶石英的晶體形態(tài)和分布特征,鼓地1井中的微晶石英可進(jìn)一步細(xì)分為3種類型:Ⅰ型,分散于黏土基質(zhì)中的微晶石英,這類石英在富黏土頁(yè)巖中較為常見,在黏土礦物附近呈片狀或顆粒狀分布,多與蒙脫石的伊利石化有關(guān)(圖2a,g);Ⅱ型,自形微晶石英(圖2b,h),具有獨(dú)特的晶體形態(tài),在拋光樣中多呈六邊形,形貌樣中為六方棱柱狀,發(fā)育程度好,直徑多介于1~2 μm;Ⅲ型,無(wú)定形微晶石英(圖2c,d),直徑從數(shù)百納米到幾微米不等,沒有特定的形狀,發(fā)育豐富的粒間孔隙[33]。其中大部分的Ⅱ型和Ⅲ型微晶石英可能來(lái)源于放射蟲等硅質(zhì)生物的溶解,即生物成因來(lái)源[62?63]。
生物骨架石英,主要指硅質(zhì)生物骨骼、碎片及其分泌物[33],在頁(yè)巖中最為常見的是放射蟲和海綿骨針。放射蟲等硅質(zhì)生物生長(zhǎng)發(fā)育需要大量的硅,頁(yè)巖中大量硅質(zhì)生物的存在表明沉積時(shí)的水體富含硅[23,64?66]。以晚奧陶世—早志留世時(shí)期揚(yáng)子地區(qū)為例,揚(yáng)子地區(qū)大致表現(xiàn)為一種隆凹相間的古地理格局,這種格局導(dǎo)致古揚(yáng)子海與外海隔離,形成半封閉局限滯留海盆,伴隨冰期后海侵事件而導(dǎo)致海平面上升,上升流提供了豐富的營(yíng)養(yǎng)物質(zhì),海洋初級(jí)生產(chǎn)力高,硅質(zhì)生物較為繁盛[67?70]。鼓地1井五峰組—高家邊組頁(yè)巖放射蟲和海綿骨針分布較為廣泛(圖3),這些微體生物化石多為硅質(zhì)、有機(jī)質(zhì)所填充,或被溶蝕而產(chǎn)生孔洞。
此外,頁(yè)巖中石英類型還包括石英次生加大和石英脈,其中石英次生加大在陰極發(fā)光圖像下多為暗發(fā)光或弱發(fā)光,可與碎屑石英相區(qū)分(圖4a,b);石英脈常與方解石和黏土礦物等礦物相伴生,這些石英脈寬度多為幾微米到幾千微米不等(圖4c,d)[25,28,33],但這兩種石英類型在鼓地1井中很少見。
2 微晶石英硅質(zhì)來(lái)源的判定指標(biāo)
頁(yè)巖自生微晶石英的硅質(zhì)來(lái)源較為廣泛,包括火山玻璃轉(zhuǎn)化、黏土礦物轉(zhuǎn)化、硅酸鹽礦物溶解,以及硅質(zhì)生物骨架溶解與再沉淀等[33,71?73],可通過(guò)鏡下觀察、主微量元素和生物硅含量等多種指標(biāo)和方法手段來(lái)綜合判定樣品中的硅質(zhì)來(lái)源。
2.1 硅質(zhì)生物骨架
頁(yè)巖中存在放射蟲和海綿骨針等硅質(zhì)生物骨架,可通過(guò)鏡下觀察來(lái)識(shí)別,這些硅質(zhì)生物可為成巖作用早期自生石英的沉淀提供較為豐富的硅質(zhì)來(lái)源[12,28,66,74]。鼓地1井五峰組—高家邊組頁(yè)巖鏡下可見放射蟲(圖3a,b)和海綿骨針(圖3c,d),其中放射蟲多呈紡錘形、橢圓形和圓形,直徑大多在100 μm左右,顯微鏡下部分樣品可見放射狀結(jié)構(gòu)。
2.2 主微量判定指標(biāo)
2.2.1 主微量元素及其比值
Al/ (Fe+Al+Mn)比值通常用于評(píng)估熱液活動(dòng)對(duì)于海洋沉積物的影響,且比值隨著熱液輸入的減少而增加[75],可以作為確定硅質(zhì)成因的一項(xiàng)關(guān)鍵指標(biāo)。其中,純熱液的Al/(Fe+Al+Mn)比值小于0.01,而日本半深海Kamiaso 生物燧石的Al/(Fe+Al+Mn) 比值為0.60[35,66,75?76]。鼓地1 井五峰組— 高家邊組頁(yè)巖的Al/(Fe+Al+Mn)比值為0.65~0.76,平均為0.70(表2),表明硅質(zhì)為非熱液成因。
主微量元素含量對(duì)于判別硅質(zhì)來(lái)源具有重要意義,其中Fe、Mn元素的富集主要與熱液有關(guān),而Al元素富集則與陸源碎屑相關(guān)[66,77],因而可通過(guò)Al-Fe-Mn三角圖來(lái)判別頁(yè)巖是否為熱液成因[35,75]。如圖5所示,選取的揚(yáng)子地區(qū)下古生界海相頁(yè)巖樣品具有高Al值和極低的Mn值,為非熱液成因;而中揚(yáng)子新元古界埃迪卡拉系留茶坡組頁(yè)巖則基本落在高Fe值一側(cè)[78],反映為熱液成因。Zr可表征與重礦物相關(guān)的碎屑輸入[79],在判別頁(yè)巖樣品為非熱液成因的基礎(chǔ)上,可通過(guò)SiO2與Zr的二元圖解來(lái)進(jìn)一步判斷其是否為生物成因。若SiO2與Zr呈正相關(guān)關(guān)系,反映為碎屑成因;若SiO2 與Zr呈負(fù)相關(guān)關(guān)系,則表明為生物成因[80]。鼓地1井五峰組—高家邊組頁(yè)巖SiO2與Zr呈較好的負(fù)相關(guān)關(guān)系,且相關(guān)系數(shù)(R2)與已證實(shí)硅質(zhì)為生物成因的上揚(yáng)子地區(qū)牛蹄塘組和龍馬溪組頁(yè)巖類似(圖6),因此,鼓地1井五峰組—高家邊組頁(yè)巖生物成因構(gòu)成了硅質(zhì)的重要來(lái)源。
2.2.2 生物硅含量
陸殼中SiO2/Al2O3值約為3.6[81?82],即若SiO2/Al2O3值位于3.6附近,則表明頁(yè)巖中的硅質(zhì)均為陸源輸入。鼓地1 井五峰組—高家邊組頁(yè)巖SiO2/Al2O3 值介于3.81~11.98,平均為6.25,反映明顯存在其他硅質(zhì)來(lái)源。此外,在Si含量與Al含量交匯圖中,位于伊利石Si/Al 線之上的樣品表明其存在過(guò)量硅[83]。鼓地1井頁(yè)巖樣品均位于伊利石Si/Al 線的上方區(qū)域(圖7),由于前文已排除硅質(zhì)的熱液來(lái)源,故過(guò)量硅可視為生物硅。因此,生物硅可通過(guò)總硅含量減去碎屑硅含量來(lái)估計(jì)[21],其含量可通過(guò)公式(1)進(jìn)行計(jì)算:
3 生物成因微晶石英對(duì)頁(yè)巖儲(chǔ)層的影響
3.1 生物成因微晶石英對(duì)巖石力學(xué)的影響
頁(yè)巖組分與結(jié)構(gòu)是控制其力學(xué)性能的重要因素,高脆性的礦物(包括石英、長(zhǎng)石、黃鐵礦和碳酸鹽礦物)對(duì)巖石的力學(xué)強(qiáng)度具有積極的貢獻(xiàn)[84?85]。脆性指數(shù)(BI值),已被廣泛用于表征頁(yè)巖的脆性,主要包括基于巖石力學(xué)彈性系數(shù)(楊氏模量和泊松比)的力學(xué)BI值和脆性礦物含量的礦物BI值兩種。力學(xué)BI值需要大量樣品的巖石力學(xué)分析測(cè)試和昂貴的成本,而礦物BI值往往導(dǎo)致巖石脆性的人為優(yōu)化,為此,本文借助礦物組成和力學(xué)性能相結(jié)合的方法來(lái)計(jì)算鼓地1井五峰組—高家邊組頁(yè)巖的BI值(表3),計(jì)算方法見公式2[31]:
石英與其他脆性礦物相比,具有更高的脆性[2,31],是頁(yè)巖中最重要的脆性礦物之一。不同來(lái)源的石英是影響巖石脆性的主要因素,會(huì)表現(xiàn)出不同的巖石力學(xué)性能[30,57,85]。近期的研究表明,與以碎屑石英和蒙脫石伊利石化形成的分散在黏土基質(zhì)中的微晶石英為主的頁(yè)巖相比,以生物成因微晶石英為主的頁(yè)巖往往具有更高的楊氏模量與脆性[57]。鼓地1井五峰組—高家邊組頁(yè)巖的生物硅含量與BI值具有較好的正相關(guān)性(圖8),表明生物成因微晶石英的發(fā)育在一定程度上提高了頁(yè)巖的脆性,這也與前人在上揚(yáng)子四川盆地牛蹄塘組頁(yè)巖[57]、上揚(yáng)子四川盆地龍馬溪組頁(yè)巖[33]和中、上揚(yáng)子五峰組—龍馬溪組頁(yè)巖[85]等研究較為一致。上述結(jié)果進(jìn)一步表明,存在于頁(yè)巖基質(zhì)中大量的生物成因微晶石英可以相互連接,構(gòu)成剛性框架[17,33,48],形成有效的支撐,進(jìn)而提高頁(yè)巖的力學(xué)性能。此外,近期對(duì)上揚(yáng)子?xùn)|南緣下寒武統(tǒng)牛蹄塘組頁(yè)巖的研究發(fā)現(xiàn),當(dāng)石英含量介于55%~70%時(shí),碎屑石英和生物成因石英的比例更適合裂縫的產(chǎn)生,頁(yè)巖脆性相對(duì)更高;而當(dāng)石英含量高于70%,且其類型主要為生物成因石英時(shí),脆性反而會(huì)有所降低[57]。
3.2 生物成因微晶石英對(duì)孔隙保存的影響
核磁共振(NMR)是一種快速、無(wú)創(chuàng)、無(wú)損的技術(shù),近年來(lái)已被初步應(yīng)用于測(cè)定頁(yè)巖的孔隙類型、孔徑分布以及孔隙度等[48,86]。通過(guò)分析鼓地1井五峰組—高家邊組頁(yè)巖核磁共振孔隙度與巖石組成的關(guān)系可知,孔隙度與TOC具有一定的正相關(guān)性,與生物硅具有較好的正相關(guān)性,而與伊利石之間具有較好的負(fù)相關(guān)性(圖9),表明TOC對(duì)孔隙度具有一定的促進(jìn)作用,而生物硅的富集有利于孔隙的發(fā)育與保存。鼓地1井頁(yè)巖樣品中的黏土礦物主要為伊利石,相對(duì)含量占97.75%,填充粒間孔隙而導(dǎo)致孔隙度降低。此外,孔隙度分量與孔徑曲線顯示,鼓地1井頁(yè)巖中低生物硅含量的樣品以直徑為10 nm(綠色條帶)為主,而較高生物硅含量的樣品在10~100 nm的范圍(藍(lán)色條帶)內(nèi)孔隙度有所增加且孔徑分布更為均勻。這可能是隨著生物硅含量的增加,處于10~100 nm的微晶石英粒間孔隙和有機(jī)質(zhì)孔隙得以更好的發(fā)育與保存。
生物成因微晶石英來(lái)源于硅質(zhì)生物的溶解和再沉淀,硅質(zhì)生物的原始成分一般為蛋白石-A,蛋白石-A是一種高度無(wú)序的非晶態(tài)硅質(zhì)物質(zhì)且性質(zhì)不穩(wěn)定,在40 ℃~50 ℃時(shí)會(huì)發(fā)生快速溶解—脫水—再沉淀反應(yīng),生成蛋白石-CT,并在60 ℃~75 ℃時(shí)會(huì)進(jìn)一步發(fā)生溶解—再沉淀反應(yīng),逐漸形成高硬度結(jié)構(gòu)的隱晶質(zhì)和微晶石英集合體[32,48,87?88]。由于蛋白石-A和蛋白石-CT的穩(wěn)定性均不高,其成巖的溫度和壓力相對(duì)較低,在成巖作用早期便完成向更為穩(wěn)定的生物成因微晶石英的轉(zhuǎn)變[63,89]。蛋白石-A向蛋白石-CT轉(zhuǎn)化階段,孔隙度損失率高;而蛋白石-CT向微晶石英轉(zhuǎn)化階段,孔隙度損失率低,且損失幅度顯著減小[89]。因而這些形成于成巖作用早期的生物成因微晶石英便構(gòu)成了剛性框架,提高了頁(yè)巖的抗壓實(shí)能力,并有效抑制原生孔隙在埋藏壓實(shí)過(guò)程中的進(jìn)一步減小,從而使原生孔隙得以良好保存,且在發(fā)生顯著的孔隙度損失之前就已開始保持孔隙度[48,89]。而在成巖作用晚期,壓實(shí)作用對(duì)頁(yè)巖原生孔隙的破壞程度較為有限,孔隙度損失極為緩慢[89]。在一些生物硅對(duì)總硅貢獻(xiàn)較大的海相頁(yè)巖中,常見次生有機(jī)質(zhì)填充生物成因微晶石英粒間孔隙空間,且這些有機(jī)質(zhì)內(nèi)部有機(jī)質(zhì)孔隙較為發(fā)育[12,25,33,37,48]。下?lián)P子地區(qū)鼓地1井五峰組—高家邊組頁(yè)巖Ro 值介于1.67%~2.11%,平均為1.83%,大多處于高成熟階段,同樣可見有機(jī)質(zhì)填充于生物成因微晶石英粒間孔隙空間,且有機(jī)質(zhì)孔隙發(fā)育較為廣泛(圖10)。頁(yè)巖中有機(jī)質(zhì)和黏土礦物受壓實(shí)作用影響易發(fā)生塑性變形,而生物成因微晶石英則可形成剛性框架,增強(qiáng)其抗壓實(shí)能力,使其內(nèi)部的有機(jī)質(zhì)孔隙得以保存[33]。近年來(lái)越來(lái)越多的研究表明,在剛性框架存在的情況下,頁(yè)巖原生粒間孔隙和有機(jī)質(zhì)孔隙往往得以較好的保存[17?18,24?25]。對(duì)鼓地1井五峰組—高家邊組底部頁(yè)巖的研究進(jìn)一步表明,生物成因微晶石英可在下?lián)P子地區(qū)古生界海相頁(yè)巖中廣泛發(fā)育,有利于孔隙的保存,有助于進(jìn)一步揭示下?lián)P子地區(qū)古生界海相頁(yè)巖孔隙發(fā)育與演化規(guī)律,為尋找頁(yè)巖氣有利賦存區(qū)提供進(jìn)一步的地質(zhì)依據(jù)。
4 結(jié)論
(1) 海相頁(yè)巖石英類型可大致劃分為碎屑石英、自生微晶石英、石英次生加大、生物骨架石英和石英脈五種類型;其中微晶石英作為最常見的一種自生石英類型,基于其晶體形態(tài)和分布特征的差異,可細(xì)分為分散于黏土基質(zhì)中的微晶石英、自形微晶石英和無(wú)定形微晶石英共3種類型。下?lián)P子地區(qū)鼓地1井五峰組—高家邊組頁(yè)巖石英類型主要為碎屑石英、微晶石英和生物骨架石英,其中碎屑石英在陰極發(fā)光下顯示為明亮的顆粒,而微晶石英呈現(xiàn)為在陰極發(fā)光下不發(fā)光或暗發(fā)光的自生來(lái)源特征,生物骨架石英則多為放射蟲和海綿骨針的生物碎片。
(2) 海相頁(yè)巖中微晶石英可存在多種硅質(zhì)來(lái)源,鏡下及地球化學(xué)指標(biāo)指示,生物成因構(gòu)成了鼓地1井五峰組—高家邊組頁(yè)巖微晶石英重要的硅質(zhì)來(lái)源。
(3) 生物成因微晶石英對(duì)頁(yè)巖儲(chǔ)層發(fā)育具有重要的影響,能夠增強(qiáng)頁(yè)巖的脆性并形成剛性框架,提高了頁(yè)巖的力學(xué)性質(zhì),使其抗壓實(shí)能力增強(qiáng),有利于頁(yè)巖內(nèi)部孔隙空間特別是粒間孔隙和有機(jī)質(zhì)孔隙的保存。
參考文獻(xiàn)(References)
[1] Montgomery S L, Jarvie D M, Bowker K A, et al. Mississippian
Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale
play with multi-trillion cubic foot potential[J]. AAPG Bulletin,
2005, 89(2): 155-175.
[2] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas
systems: The Mississippian Barnett Shale of north-central Texas
as one model for thermogenic shale-gas assessment[J]. AAPG
Bulletin, 2007, 91(4): 475-499.
[3] 張金川,徐波,聶海寬,等. 中國(guó)頁(yè)巖氣資源勘探潛力[J]. 天然
氣工業(yè),2008,28(6):136-140.[Zhang Jinchuan, Xu Bo, Nie Haikuan,
et al. Exploration potential of shale gas resources in China
[J]. Natural Gas Industry, 2008, 28(6): 136-140.]
[4] 鄒才能,董大忠,王社教,等. 中國(guó)頁(yè)巖氣形成機(jī)理、地質(zhì)特征及資
源潛力[J]. 石油勘探與開發(fā),2010,37(6):641-653.[Zou Caineng,
Dong Dazhong, Wang Shejiao, et al. Geological characteristics,
formation mechanism and resource potential of shale gas in China
[J]. Petroleum Exploration and Development, 2010, 37(6):
641-653.]
[5] 蔣裕強(qiáng),董大忠,漆麟,等. 頁(yè)巖氣儲(chǔ)層的基本特征及其評(píng)價(jià)
[J]. 天然氣工業(yè),2010,30(10):7-12.[Jiang Yuqiang, Dong Dazhong,
Qi Lin, et al. Basic features and evaluation of shale gas
reservoirs[J]. Natural Gas Industry, 2010, 30(10): 7-12.]
[6] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore
types and networks in mudrocks and a descriptive classification
for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96
(6): 1071-1098.
[7] 劉樹根,馬文辛,Luba J,等. 四川盆地東部地區(qū)下志留統(tǒng)龍馬
溪組頁(yè)巖儲(chǔ)層特征[J]. 巖石學(xué)報(bào),2011,27(8):2239-2252.[Liu
Shugen, Ma Wenxin, Luba J, et al. Characteristics of the shale
gas reservoir rocks in the Lower Silurian Longmaxi Formation,
east Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27
(8): 2239-2252.]
[8] 陳文玲,周文,羅平,等. 四川盆地長(zhǎng)芯1 井下志留統(tǒng)龍馬溪組
頁(yè)巖氣儲(chǔ)層特征研究[J]. 巖石學(xué)報(bào),2013,29(3):1073-1086.
[Chen Wenling, Zhou Wen, Luo Ping, et al. Analysis of the shale gas
reservoir in the Lower Silurian Longmaxi Formation, Changxin 1
well, southeast Sichuan Basin, China[J]. Acta Petrologica Sinica,
2013, 29(3): 1073-1086.]
[9] Ko L T, Loucks R G, Zhang T W, et al. Pore and pore network
evolution of Upper Cretaceous Boquillas (Eagle Ford–equivalent)
mudrocks: Results from gold tube pyrolysis experiments[J].
AAPG Bulletin, 2016, 100(11): 1693-1722.
[10] 譚靜強(qiáng),張煜麟,羅文彬,等. 富有機(jī)質(zhì)泥頁(yè)巖微納米孔隙結(jié)
構(gòu)研究進(jìn)展[J]. 礦物巖石地球化學(xué)通報(bào),2019,38(1):18-29.
[Tan Jingqiang, Zhang Yulin, Luo Wenbin, et al. Research
progress on microscale and nanoscale pore structures of organicrich
muddy shales[J]. Bulletin of Mineralogy, Petrology and
Geochemistry, 2019, 38(1): 18-29.]
[11] Gao Z Y, Fan Y P, Xuan Q X, et al. A review of shale pore structure
evolution characteristics with increasing thermal maturities
[J]. Advances in Geo-Energy Research, 2020, 4(3): 247-259.
[12] Dong T, He Q, He S, et al. Quartz types, origins and organic
matter-hosted pore systems in the lower Cambrian Niutitang Formation,
Middle Yangtze Platform, China[J]. Marine and Petroleum
Geology, 2021, 123: 104739.
[13] 騰格爾,盧龍飛,俞凌杰,等. 頁(yè)巖有機(jī)質(zhì)孔隙形成、保持及其
連通性的控制作用[J]. 石油勘探與開發(fā),2021,48(4):687-
699.[Borjigin T, Lu Longfei, Yu Lingjie, et al. Formation, preservation
and connectivity control of organic pores in shale[J]. Petroleum
Exploration and Development, 2021, 48(4): 687-699.]
[14] 徐良偉,楊克基,魯文婷,等. 富有機(jī)質(zhì)泥頁(yè)巖微納米孔隙系
統(tǒng)演化特征及模式研究新進(jìn)展[J]. 沉積學(xué)報(bào),2022,40(1):1-
21.[Xu Liangwei, Yang Keji, Lu Wenting, et al. New research
progress on organic-rich shale micro- and nanoscale pore system
evolution characteristics and models[J]. Acta Sedimentologica
Sinica, 2022, 40(1): 1-21.]
[15] 盧龍飛,劉偉新,魏志紅,等. 四川盆地志留系頁(yè)巖成巖特征
及其對(duì)孔隙發(fā)育與保存的控制[J]. 沉積學(xué)報(bào),2022,40(1):73-
87.[Lu Longfei, Liu Weixin, Wei Zhihong, et al. Diagenesis of
the Silurian shale, Sichuan Basin: Focus on pore development
and preservation [J]. Acta Sedimentologica Sinica, 2022, 40(1):
73-87.]
[16] Jarvie D M. Shale resource systems for oil and gas: Part 1—
shale-gas resource systems[M]//Breyer J A. Shale reservoirsgiant
resources for the 21st century. AAPG Memoir, 2012:
69-87.
[17] Milliken K L, Day-Stirrat R J. Cementation in mudrocks: Brief
review with examples from cratonic basin mudrocks[M]//Chatellier
J Y, Jarvie D M. Critical assessment of shale resource plays.
AAPG Memoir, 2013: 133-150.
[18] Fishman N S, Hackley P C, Lowers H A, et al. The nature of porosity
in organic-rich mudstones of the Upper Jurassic Kimmeridge
Clay Formation, North Sea, offshore United Kingdom[J].
International Journal of Coal Geology, 2012, 103: 32-50.
[19] Ardakani O H, Sanei H, Ghanizadeh A, et al. Hydrocarbon potential
and reservoir characteristics of Lower Cretaceous Garbutt
Formation, Liard Basin Canada[J]. Fuel, 2017, 209: 274-289.
[20] Nie H K, Sun C X, Liu G X, et al. Dissolution pore types of the
Wufeng Formation and the Longmaxi Formation in the Sichuan
Basin, South China: Implications for shale gas enrichment[J].
Marine and Petroleum Geology, 2019, 101: 243-251.
[21] Ross D J K, Bustin R M. Investigating the use of sedimentary
geochemical proxies for paleoenvironment interpretation of thermally
mature organic-rich strata: Examples from the Devonian–
Mississippian shales, western Canadian sedimentary basin[J].
Chemical Geology, 2009, 260(1/2): 1-19.
[22] Han C, Han M, Jiang Z X, et al. Source analysis of quartz from
the Upper Ordovician and Lower Silurian black shale and its effects
on shale gas reservoir in the southern Sichuan Basin and its
periphery, China[J]. Geological Journal, 2019, 54(1): 438-449.
[23] 盧龍飛,秦建中,申寶劍,等. 川東南涪陵地區(qū)五峰組—龍馬
溪組硅質(zhì)頁(yè)巖的生物成因及其油氣地質(zhì)意義[J]. 石油實(shí)驗(yàn)地
質(zhì),2016,38(4):460-465,472.[Lu Longfei, Qin Jianzhong,
Shen Baojian, et al. Biogenic origin and hydrocarbon significance
of siliceous shale from the Wufeng-Longmaxi Formations
in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology
amp; Experiment, 2016, 38(4): 460-465, 472.]
[24] Guo X W, Qin Z J, Yang R, et al. Comparison of pore systems
of clay-rich and silica-rich gas shales in the Lower Silurian Longmaxi
Formation from the Jiaoshiba area in the eastern Sichuan
Basin, China[J]. Marine and Petroleum Geology, 2019, 101:
265-280.
[25] Dong T, He S, Chen M F, et al. Quartz types and origins in the
Paleozoic Wufeng-Longmaxi Formations, eastern Sichuan Basin,
China: Implications for porosity preservation in shale reservoirs
[J]. Marine and Petroleum Geology, 2019, 106: 62-73.
[26] Chen L, Jiang Z X, Liu Q X, et al. Mechanism of shale gas occurrence:
Insights from comparative study on pore structures of
marine and lacustrine shales[J]. Marine and Petroleum Geology,
2019, 104: 200-216.
[27] 董大忠,梁峰,管全中,等. 四川盆地五峰組—龍馬溪組頁(yè)巖
氣優(yōu)質(zhì)儲(chǔ)層發(fā)育模式及識(shí)別評(píng)價(jià)技術(shù)[J]. 天然氣工業(yè),2022,
42(8):96-111.[Dong Dazhong, Liang Feng, Guan Quanzhong,
et al. Development model and identification evaluation technology
of Wufeng-Longmaxi Formation quality shale gas reservoirs
in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8):
96-111.]
[28] Qiu Z, Liu B, Dong D Z, et al. Silica diagenesis in the Lower Paleozoic
Wufeng and Longmaxi Formations in the Sichuan Basin,
South China: Implications for reservoir properties and paleoproductivity[
J]. Marine and Petroleum Geology, 2020, 121:
104594.
[29] 李鉅源. 東營(yíng)凹陷泥頁(yè)巖礦物組成及脆度分析[J]. 沉積學(xué)報(bào),
2013,31(4):616-620.[Li Juyuan. Analysis on mineral components
and frangibility of shales in Dongying Depression[J]. Acta
Sedimentologica Sinica, 2013, 31(4): 616-620.]
[30] Dong T, Harris N B, Ayranci K, et al. The impact of rock composition
on geomechanical properties of a shale formation: Middle
and Upper Devonian Horn River Group shale, Northeast British
Columbia, Canada[J]. AAPG Bulletin, 2017, 101(2): 177-204.
[31] Huo Z P, Zhang J C, Li P, et al. An improved evaluation method
for the brittleness index of shale and its application: A case study
from the southern North China Basin[J]. Journal of Natural Gas
Science and Engineering, 2018, 59: 47-55.
[32] Xi Z D, Tang S H, Zhang S H, et al. Characterization of quartz
in the Wufeng Formation in northwest Hunan province, South
China and its implications for reservoir quality[J]. Journal of Petroleum
Science and Engineering, 2019, 179: 979-996.
[33] Xu H, Zhou W, Hu Q H, et al. Quartz types, silica sources and
their implications for porosity evolution and rock mechanics in
the Paleozoic Longmaxi Formation shale, Sichuan Basin[J]. Marine
and Petroleum Geology, 2021, 128: 105036.
[34] Reynolds J H, Verhoogen J. Natural variations in the isotopic
constitution of silicon[J]. Geochimica et Cosmochimica Acta,
1953, 3(5): 224-234.
[35] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated
siliceous rocks from the northern Pacific their geological
significance as indication od ocean ridge activity[J]. Sedimentary
Geology, 1986, 47(1/2): 125-148.
[36] Moore T C Jr. Biogenic silica and chert in the Pacific Ocean[J].
Geology, 2008, 36(12): 975-978.
[37] Zhao J H, Jin Z K, Jin Z J, et al. Origin of authigenic quartz in
organic-rich shales of the Wufeng and Longmaxi Formations in
the Sichuan Basin, South China: Implications for pore evolution
[J]. Journal of Natural Gas Science and Engineering, 2017, 38:
21-38.
[38] McBride E F. Quartz cement in sandstones: A review[J]. Earth-
Science Reviews, 1989, 26(1/2/3): 69-112.
[39] Fishman N S, Egenhoff S O, Boehlke A R, et al. Petrology and
diagenetic history of the upper shale member of the Late Devonian-
Early Mississippian Bakken Formation, Williston Basin, North
Dakota[M]//Larsen D, Egenhoff S O, Fishman N S. Paying attention
to mudrocks: Priceless!. Geological Society of America,
2015: 125-151.
[40] Milliken K L, Ergene S M, Ozkan A. Quartz types, authigenic
and detrital, in the upper Cretaceous Eagle Ford Formation,
south Texas, USA[J]. Sedimentary Geology, 2016, 339:
273-288.
[41] Milliken K L, Olson T. Silica diagenesis, porosity evolution, and
mechanical behavior in siliceous mudstones, Mowry Shale (Cretaceous),
Rocky Mountains, U. S. A. [J]. Journal of Sedimentary
Research, 2017, 87(4): 366-387.
[42] Niu X, Yan D T, Zhuang X G, et al. Origin of quartz in the lower
Cambrian Niutitang Formation in south Hubei province, Upper
Yangtze Platform[J]. Marine and Petroleum Geology, 2018,
96: 271-287.
[43] 孫川翔,聶海寬,劉光祥,等. 石英礦物類型及其對(duì)頁(yè)巖氣富
集開采的控制:以四川盆地及其周緣五峰組—龍馬溪組為例
[J]. 地球科學(xué),2019,44(11):3692-3704.[Sun Chuanxiang,
Nie Haikuan, Liu Guangxiang, et al. Quartz type and its control
on shale gas enrichment and production: A case study of the
Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding
areas, China[J]. Earth Science, 2019, 44(11): 3692-
3704.]
[44] Peng J W, Milliken K L, Fu Q L. Quartz types in the Upper
Pennsylvanian organic‐rich Cline Shale (Wolfcamp D), Midland
Basin, Texas: Implications for silica diagenesis, porosity evolution
and rock mechanical properties[J]. Sedimentology, 2020, 67
(4): 2040-2064.
[45] 張鵬輝,陳志勇,薛路,等. 塔里木盆地西北緣下寒武統(tǒng)黑色
巖系差異性成巖演化及其影響因素[J]. 巖石學(xué)報(bào),2020,36
(11):3463-3476.[Zhang Penghui, Chen Zhiyong, Xue Lu, et
al. The differential diagenetic evolution and its influencing factors
of lower Cambrian black rock series in the northwestern
margin of Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11):
3463-3476.]
[46] Chen X L, Shi W Z, Hu Q H, et al. Origin of authigenic quartz
in organic-rich shales of the Niutitang Formation in the northern
margin of Sichuan Basin, South China: Implications for pore network
development[J]. Marine and Petroleum Geology, 2022,
138: 105548.
[47] 劉國(guó)恒,翟剛毅,楊銳,等. 石英結(jié)晶度指數(shù):中國(guó)四川盆地及
周緣晚奧陶世—早志留世富有機(jī)質(zhì)頁(yè)巖中硅質(zhì)為生物成因的
定量性新證據(jù)[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2021,51(7):
1135-1149.[Liu Guoheng, Zhai Gangyi, Yang Rui, et al. Quartz
crystallinity index: New quantitative evidence for biogenic silica
of the Late Ordovician to Early Silurian organic-rich shale in the
Sichuan Basin and adjacent areas, China[J]. Science China
(Seri. D): Earth Sciences, 2021, 51(7): 1135-1149.]
[48] Knapp L J, Ardakani O H, Uchida S, et al. The influence of rigid
matrix minerals on organic porosity and pore size in shale reservoirs:
Upper Devonian Duvernay Formation, Alberta, Canada
[J]. International Journal of Coal Geology, 2020, 227: 103525.
[49] Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications
for shale gas exploration in China[J]. AAPG Bulletin,
2013, 97(8): 1325-1346.
[50] 郭旭升,胡東風(fēng),魏志紅,等. 涪陵頁(yè)巖氣田的發(fā)現(xiàn)與勘探認(rèn)
識(shí)[J]. 中國(guó)石油勘探,2016,21(3):24-37.[Guo Xusheng, Hu
Dongfeng, Wei Zhihong, et al. Discovery and exploration of
Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21
(3): 24-37.]
[51] Liu Z Q, Guo S B, Lv R. Shale-gas play risk of the Lower Cambrian
on the Yangtze Platform, South China[J]. AAPG Bulletin,
2020, 104(5): 989-1009.
[52] 張君峰,許浩,周志,等. 鄂西宜昌地區(qū)頁(yè)巖氣成藏地質(zhì)特征
[J]. 石油學(xué)報(bào),2019,40(8):887-899.[Zhang Junfeng, Xu Hao,
Zhou Zhi, et al. Geological characteristics of shale gas reservoir
in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40
(8): 887-899.]
[53] 陳孔全,李君軍,唐協(xié)華,等. 中揚(yáng)子地區(qū)五峰組—龍馬溪組
頁(yè)巖氣成藏關(guān)鍵地質(zhì)因素[J]. 天然氣工業(yè),2020,40(6):18-
30.[Chen Kongquan, Li Junjun, Tang Xiehua, et al. Key geological
factors for shale gas accumulation in the Wufeng-
Longmaxi Fms in the central Yangtze area[J]. Natural Gas Industry,
2020, 40(6): 18-30.]
[54] 邱振,鄒才能. 非常規(guī)油氣沉積學(xué):內(nèi)涵與展望[J]. 沉積學(xué)報(bào),
2020,38(1):1-29.[Qiu Zhen, Zou Caineng. Unconventional
petroleum sedimentology: Connotation and prospect[J]. Acta
Sedimentologica Sinica, 2020, 38(1): 1-29.]
[55] 鄒才能,趙群,叢連鑄,等. 中國(guó)頁(yè)巖氣開發(fā)進(jìn)展、潛力及前景
[J]. 天然氣工業(yè),2021,41(1):1-14.[Zou Caineng, Zhao Qun,
Cong Lianzhu, et al. Development progress, potential and prospect
of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):
1-14.]
[56] 施振生,邱振. 海相細(xì)粒沉積層理類型及其油氣勘探開發(fā)意
義[J]. 沉積學(xué)報(bào),2021,39(1):181-196.[Shi Zhensheng, Qiu
Zhen. Main bedding types of marine fine-grained sediments and
their significance for oil and gas exploration and development
[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196.]
[57] Liu J S, Ding W L, Wang R Y, et al. Quartz types in shale and
their effect on geomechanical properties: An example from the
lower Cambrian Niutitang Formation in the Cen'gong block,
South China[J]. Applied Clay Science, 2018, 163: 100-107.
[58] Yang X R, Yan D T, Wei X S, et al. Different formation mechanism
of quartz in siliceous and argillaceous shales: A case study
of Longmaxi Formation in South China[J]. Marine and Petroleum
Geology, 2018, 94: 80-94.
[59] Dowey P J, Taylor K G. Extensive authigenic quartz overgrowths
in the gas-bearing Haynesville-Bossier Shale, USA[J].
Sedimentary Geology, 2017, 356: 15-25.
[60] Chen Q, Fan J X, Zhang L N, et al. Paleogeographic evolution
of the Lower Yangtze region and the break of the “platformslope-
basin” pattern during the Late Ordovician[J]. Science China
Earth Sciences, 2018, 61(5): 625-636.
[61] 王文娟,陳建文,雷寶華,等. 下?lián)P子巢湖鼓地1 井五峰組—高
家邊組生物地層及部分筆石帶缺失原因[J]. 海洋地質(zhì)前沿,
2021,37(4):61-67.[Wang Wenjuan, Chen Jianwen, Lei Baohua,
et al. Cause of the partial missing of graptolite zones in
Wufeng and Kaochiapien Formations of well GD-1, Chaohu area,
Lower Yangtze region[J]. Marine Geology Frontiers, 2021,
37(4): 61-67.]
[62] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz
silt in mudstones and implications for silica cycling[J]. Nature,
2000, 406(6799): 981-985.
[63] Schieber J. Early diagenetic silica deposition in algal cysts and
spores: A source of sand in black shales?[J]. Journal of Sedimentary
Research, 1996, 66(1): 175-183.
[64] Lampitt R S, Salter I, Johns D. Radiolaria: Major exporters of
organic carbon to the deep ocean[J]. Global Biogeochemical Cycles,
2009, 23(1): GB1010.
[65] Crosta X, Romero O E, Ther O, et al. Climatically-controlled siliceous
productivity in the eastern gulf of Guinea during the last
40 000 yr[J]. Climate of the Past, 2012, 8(2): 415-431.
[66] 王淑芳,鄒才能,董大忠,等. 四川盆地富有機(jī)質(zhì)頁(yè)巖硅質(zhì)生
物成因及對(duì)頁(yè)巖氣開發(fā)的意義[J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)
版),2014,50(3):476-486. [Wang Shufang, Zou Caineng,
Dong Dadong, et al. Biogenic silica of organic-rich shale in Sichuan
Basin and its significance for shale gas[J]. Acta Scientiarum
Naturalium Universitatis Pekinensis, 2014, 50(3):
476-486.]
[67] Gorjan P, Kaiho K, Fike D A, et al. Carbon-and sulfur-isotope
geochemistry of the Hirnantian (Late Ordovician) Wangjiawan
(Riverside) section, South China: Global correlation and environmental
event interpretation[J]. Palaeogeography, Palaeoclimatology,
Palaeoecology, 2012, 337-338: 14-22.
[68] Liu Y, Li C, Algeo T J, et al. Global and regional controls on marine
redox changes across the Ordovician-Silurian boundary in
South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,
2016, 463: 180-191.
[69] Khan M Z, Feng Q L, Zhang K, et al. Biogenic silica and organic
carbon fluxes provide evidence of enhanced marine productivity
in the Upper Ordovician-Lower Silurian of South China[J].
Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534:
109278.
[70] Cai Q S, Hu M Y, Zhang B M, et al. Source of silica and its implications
for organic matter enrichment in the Upper Ordovician-
Lower Silurian black shale in western Hubei province, China:
Insights from geochemical and petrological analysis[J]. Petroleum
Science, 2022, 19(1): 74-90.
[71] Peltonen C, Marcussen ?, Bj?rlykke K, et al. Clay mineral diagenesis
and quartz cementation in mudstones: The effects of
smectite to illite reaction on rock properties[J]. Marine and Petroleum
Geology, 2009, 26(6): 887-898.
[72] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late
Cretaceous mudstones, northern North Sea: Changes in rock
properties due to dissolution of smectite and precipitation of
micro-quartz crystals[J]. Marine and Petroleum Geology, 2010,
27(8): 1752-1764.
[73] Dong T, Harris N B, Knapp L J, et al. The effect of thermal maturity
on geomechanical properties in shale reservoirs: An example
from the Upper Devonian Duvernay Formation, western
Canada sedimentary basin[J]. Marine and Petroleum Geology,
2018, 97: 137-153.
[74] Lei Z H, Dashtgard S E, Wang J, et al. Origin of chert in Lower
Silurian Longmaxi Formation: Implications for tectonic evolution
of Yangtze Block, South China[J]. Palaeogeography, Palaeo‐
climatology, Palaeoecology, 2019, 529: 53-66.
[75] Yamamoto K. Geochemical characteristics and depositional environments
of cherts and associated rocks in the Franciscan and
Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2):
65-108.
[76] Bostr?m K, Kraemer T, Gartner S. Provenance and accumulation
rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific
pelagic sediments[J]. Chemical Geology, 1973, 11(2):
123-148.
[77] Wedepohl K H. Environmental influences on the chemical composition
of shales and clays[J]. Physics and Chemistry of the
Earth, 1971, 8: 307-333.
[78] Tan J Q, Wang Z H, Wang W H, et al. Depositional environment
and hydrothermal controls on organic matter enrichment in the
lower Cambrian Niutitang shale, southern China[J].
AAPG Bulletin, 2021, 105(7): 1329-1356.
[79] Gambacorta G, Trincianti E, Torricelli S. Anoxia controlled by
relative sea-level changes: An example from the Mississippian
Barnett Shale Formation[J]. Palaeogeography, Palaeoclimatology,
Palaeoecology, 2016, 459: 306-320.
[80] Wright A M, Spain D, Ratcliffe K T. Application of inorganic
whole rock geochemistry to shale resource plays[C]//Canadian
unconventional resources and international petroleum conference.
Calgary, Canada: SPE, 2010: 137946.
[81] Taylor S R, McLennan S M. The continental crust: Its composition
and evolution[M]. Oxford: Blackwell Scientific Publication,
1985.
[82] Taylor S R, McLennan S M. The geochemical evolution of the
continental crust[J]. Reviews of Geophysics, 1995, 33(2):
241-265.
[83] Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett
Formation, Fort Worth Basin, Texas: Bulk geochemical inferences
and Mo–TOC constraints on the severity of hydrographic
restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25.
[84] Rybacki E, Meier T, Dresen G. What controls the mechanical
properties of shale rocks?–Part II: Brittleness[J]. Journal of Petroleum
Science and Engineering, 2016, 144: 39-58.
[85] Ye Y P, Tang S H, Xi Z D, et al. Quartz types in the Wufeng-
Longmaxi Formations in southern China: Implications for porosity
evolution and shale brittleness[J]. Marine and Petroleum Geology,
2022, 137: 105479.
[86] Liu Z S, Liu D M, Cai Y D, et al. Application of nuclear magnetic
resonance (NMR) in coalbed methane and shale reservoirs: A
review[J]. International Journal of Coal Geology, 2020, 218:
103261.
[87] Isaacs C M. Porosity reduction during diagenesis of Monterey
Formation, Santa Barbara, California: Abstract[M]. AAPG Bulletin,
1981, 65(5): 940-941.
[88] Rice S B, Freund H, Huang W L, et al. Application of Fourier
Transform infrared spectroscopy to silica diagenesis: The opal-A
to opal-CT transformation[J]. Journal of Sedimentary Research,
1995, 65(4a): 639-647.
[89] 盧龍飛,劉偉新,俞凌杰,等. 生物蛋白石早期成巖相變特征
及對(duì)硅質(zhì)頁(yè)巖孔隙發(fā)育與孔徑分布的影響[J]. 石油實(shí)驗(yàn)地質(zhì),
2020,42(3),363-370.[Lu Longfei, Liu Weixin, Yu Lingjie, et
al. Early diagenesis characteristics of biogenic opal and its influence
on porosity and pore network evolution of siliceous shale
[J]. Petroleum Geology amp; Experiment, 2020, 42(3): 363-370.]