摘要:2023年12月18日甘肅臨夏回族自治州積石山縣發(fā)生6.2級地震,引發(fā)大量的滑坡和崩塌等地質(zhì)災(zāi)害?;邳S土高原強震數(shù)據(jù)庫中2013年岷縣—漳縣6.6級地震的地震動記錄回歸分析所得的Newmark位移預(yù)測模型,利用震前精度為30 m分辨率地形以及1∶250萬地質(zhì)圖等數(shù)據(jù),考慮豎向地震加速度以及冬灌的影響,對距震中擴展100 km范圍內(nèi)的地區(qū)進行滑坡危險性快速評估,并與震前地質(zhì)災(zāi)害分布以及震后遙感解譯和實地調(diào)查結(jié)果進行對比。研究結(jié)果顯示:靜態(tài)安全系數(shù)較低的區(qū)域更容易發(fā)生地質(zhì)災(zāi)害;滑坡危險區(qū)主要位于距震中27 km的范圍內(nèi),危險區(qū)內(nèi)河道和分水嶺發(fā)育,地層以新近系和第四系為主,與已有研究結(jié)果的重合度較高。研究表明,Newmark位移法適用于積石山區(qū)域內(nèi)的震后滑坡危險性評價,但其并未考慮土體液化的情況,低估了液化災(zāi)害發(fā)生的危險程度。
關(guān)鍵詞:Newmark位移; 區(qū)域滑坡危險性分析; 豎向地震加速度; 快速評估
中圖分類號: P319文獻標(biāo)志碼:A文章編號: 1000-0844(2024)04-0825-11
DOI:10.20000/j.1000-0844.20240310001
Rapid assessment of landslides induced by the Jishishan
MS6.2 earthquake based on Newmark modelMA Xingyu WANG Lanmin PU Xiaowu XU Shiyang(1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute ofEngineering Mechanics, CEA, Harbin 150080, Heilongjiang, China;2. Key Laboratory of Loess Earthquake Engineering of CEA amp; Gansu Province, Lanzhou 730000, Gansu, China)Abstract: "On December 18, 2023, an MS6.2 earthquake hit Jishishan County, Linxia Hui Autonomous Prefecture, Gansu Province. This phenomenon induced numerous geological disasters, such as landslides and collapses. The Newmark displacement prediction model was first derived from the regression analysis of ground motion records of the 2013 Minxian-Zhangxian MS6.6 earthquake in the strong earthquake database of the Loess Plateau. Therefore, considering the vertical seismic acceleration and the influence of winter irrigation, a rapid assessment of landslide risk in the area within 100 km from the epicenter was conducted using 30-m resolution topography and a 1:2.5 million geological map before the earthquake. Assessment results were compared with the distribution of geological disasters before the earthquake and the results of remote sensing interpretation and field investigation after the earthquake. The comparative results reveal that areas with low static safety factors are prone to geological disasters. The landslide risk area is mainly located within 27 km from the epicenter, where the channels and watersheds are highly developed, and the strata mainly comprise Neogene and Quaternary formations, demonstrating high similarity to the existing research results. The study demonstrates that the Newmark displacement method is appropriate for assessing post-earthquake landslide risk in the Jishishan area. However, the Newmark displacement method overlooks soil liquefaction, thereby underestimating the degree of danger of liquefaction.
Keywords:Newmark displacement; regional landslide hazard analysis; vertical seismic acceleration; rapid assessment
0引言
滑坡作為地震誘發(fā)的主要次生災(zāi)害之一,不僅能直接造成人員傷亡和財產(chǎn)損失,其產(chǎn)生的滑坡堆積體還會掩埋道路、堵塞河流,從而延緩救援進度,加劇震害損失[1-2]。2008年汶川地震、2010年玉樹地震以及2022年瀘定地震等多次強震均出現(xiàn)了滑坡掩埋村莊、堵塞救援道路的情況[3-5]。由此可知,震后區(qū)域滑坡危險性的快速評估對判斷受災(zāi)區(qū)域和震后救援均具有極其重要的意義。目前,國內(nèi)外針對震后區(qū)域滑坡危險性評估的方法較多,主要有層次分析法、權(quán)重分析法、數(shù)值模擬法、Newmark位移法以及機器學(xué)習(xí)方法等[6-8]。其中Newmark位移法具有物理力學(xué)機制明確、計算簡便以及所需參數(shù)較少等優(yōu)點,尤其在研究區(qū)域缺少歷史災(zāi)害目錄以及因天氣原因?qū)е碌倪b感影像不清晰的條件下,Newmark位移法的優(yōu)勢更為顯著[9]。
Newmark位移的計算方法主要有3種,分別為剛性塊體法、解耦以及耦合計算[10]。剛性塊體法為傳統(tǒng)的Newmark位移分析法,將滑體假定為剛體,當(dāng)向下的地震加速度a超過臨界加速度ac時,滑體向下運動,對超過部分的a進行二次積分,獲得滑體累加位移[11]。解耦計算和耦合計算是對剛性塊體計算的改進,突破了滑體為傳統(tǒng)剛體的假定[12]。解耦計算分為兩個部分:首先假設(shè)沒有明確的滑移面,利用數(shù)值模擬程序計算土體在地震過程中相應(yīng)滑體的平均加速度時程k;然后將k與ac進行比較,計算累計位移。耦合計算則更加復(fù)雜,將滑體的動力響應(yīng)和位移一起分析,以考慮滑動位移對滑體地震動響應(yīng)的影響[10]。相較于剛體位移方法,解耦和耦合計算適用于滑體厚度更深、更加復(fù)雜的情況[12-14]。在區(qū)域危險性分析中,須針對每一個柵格進行Newmark位移計算。但按照目前的臺站密度以及計算條件,嚴(yán)格的Newmark方法是不現(xiàn)實的[15]。因此,國內(nèi)外研究人員在利用Newmark模型進行區(qū)域地震滑坡危險性分析時,多采用基于強震動記錄回歸得到的Newmark經(jīng)驗?zāi)P瓦M行分析[16]。由于解耦和耦合方法在計算時需要更為詳細(xì)的參數(shù)信息以及更加復(fù)雜的運算,盡管也有研究人員基于解耦或耦合的方法開發(fā)了相應(yīng)區(qū)域的Newmark經(jīng)驗?zāi)P停?7-19],但上述兩種方法主要用于單體滑坡的地震位移計算[20-22]。在進行區(qū)域危險性分析時,大多都基于傳統(tǒng)剛性塊體假定,通過對已有強震動記錄進行回歸分析,得到不同的Newmark經(jīng)驗?zāi)P停?3-26],并取得了大量的應(yīng)用成果[27-30]。
2023年12月18日23時59分,甘肅臨夏回族自治州積石山縣發(fā)生6.2級地震,震源深度為10 km。此次地震共造成151人死亡,980人受傷,同時誘發(fā)了許多的地質(zhì)災(zāi)害[31]。震后,許多研究人員基于實地調(diào)查和衛(wèi)星影像對此次地震誘發(fā)的地質(zhì)災(zāi)害進行了分析,取得了一系列的研究成果。王立朝等[32]在震后甘肅、青海兩省地質(zhì)災(zāi)害隱患核查的基礎(chǔ)上,對積石山地震誘發(fā)地質(zhì)災(zāi)害的特征、控制因素、發(fā)展趨勢進行了分析,研究表明,地質(zhì)災(zāi)害主要分布于發(fā)震斷層附近,發(fā)育密度隨地震烈度增強而增大,且斷層上盤效應(yīng)較為顯著。黃觀文等[33]基于實時全球?qū)Ш蕉ㄎ幌到y(tǒng)(Global Navigation Satellite System,GNSS)和加速度數(shù)據(jù),對遠場易發(fā)區(qū)滑坡潛在危害性進行了評估,發(fā)現(xiàn)積石山地震對距震源 64 km以內(nèi)的滑坡易發(fā)區(qū)影響較大。陳博等[34]基于歷史滑坡清單以及峰值加速度(Peak Ground Acceleration,PGA)分布,利用支持向量機模型給出了此次地震誘發(fā)滑坡的概率以及空間分布,同時,基于地震前后的衛(wèi)星影像實現(xiàn)了積石山地震誘發(fā)同震滑坡的應(yīng)急識別,并對滑坡的影響因素進行了分析。鐵永波等[35] 采用地面調(diào)查、遙感解譯和空間疊加統(tǒng)計等方法,對積石山和瀘定地震地質(zhì)災(zāi)害發(fā)育分布特征和控災(zāi)因子的差異性進行了研究。李為樂等[36]基于多源高分辨率遙感解譯和已有研究成果對比分析,初步揭示了該次地震地質(zhì)災(zāi)害的基本特征和發(fā)育分布規(guī)律。劉帥等[37]通過應(yīng)急排查和野外調(diào)查,對震后積石山縣地質(zhì)災(zāi)害的基本類型、空間分布特征和發(fā)育規(guī)律進行了研究,同時,基于調(diào)查結(jié)果,利用隨機森林模型對積石山縣內(nèi)的同震地質(zhì)災(zāi)害進行了易發(fā)性評價。郭富赟等[31]通過遙感解譯和實地調(diào)查,對此次地震誘發(fā)地質(zhì)災(zāi)害的類型、空間分布規(guī)律和發(fā)育特征進行了詳細(xì)研究。陳鵬等[38]基于合成孔徑雷達干涉測量(Interferometric Synthetic Aperture Radar,InSAR)和光學(xué)影像對積石山地震誘發(fā)地質(zhì)災(zāi)害進行解譯,共解譯以小型黃土滑坡為主的滑坡4 996處,且絕大部分位于震中距5~30 km的范圍內(nèi)。劉曉杰等[39]基于遙感影像,采用機器學(xué)習(xí)方法,快速建立了積石山地震震后滑坡目錄,并給出了滑坡的分布特征。
由上可知,Newmark位移法具有物理力學(xué)機制明確、計算簡便、所需參數(shù)較少、不受滑坡清單以及遙感影像限制等優(yōu)勢。本文利用黃土高原地震數(shù)據(jù)庫中2013年岷縣—漳縣6.6級地震強地震動記錄回歸分析所得的Newmark位移預(yù)測模型,基于震前30 m分辨率地形數(shù)據(jù)以及1∶250萬地質(zhì)圖等資料,考慮豎向地震加速度以及冬灌的影響,對積石山震中擴展100 km范圍內(nèi)的滑坡危險性進行評價,并與已有的調(diào)查結(jié)果進行對比。研究結(jié)果旨在為Newmark位移法在積石山地區(qū)的適用性、震后斜坡危險性評估、災(zāi)后救援和重建提供較為科學(xué)的參考依據(jù)。
1區(qū)域地震地質(zhì)概況
2023年積石山6.2級地震的震中位置為35.70°N、102.79°E,震源深度為10 km。此區(qū)域為甘東南活動構(gòu)造區(qū),屬于青藏高原東部南北地震帶[40]。區(qū)域內(nèi)的主要活動斷裂有西秦嶺北緣斷裂、拉脊山斷裂帶以及倒淌河—臨夏斷裂等。此次地震為逆沖型地震,破裂面呈現(xiàn)SE—NW走向,發(fā)震斷裂為拉脊山北緣斷裂[41]。研究區(qū)出露的地層有前白堊系、古近系、新近系和第四系等。其中第四系地層較為完整,主要有下更新統(tǒng)(Qp1)、中更新統(tǒng)(Qp2)、上更新統(tǒng)(Qp3)以及全新統(tǒng)(Qh),主要分布于河流兩側(cè)、沖溝及盆地內(nèi)。下更新統(tǒng)(Qp1)主要為五泉山組(下部為沖積礫石層,上部為洪積微膠結(jié)礫石層夾粉砂質(zhì)黏土)。中更新統(tǒng)(Qp2)主要為黏質(zhì)砂土、砂礫石層。上更新統(tǒng)(Qp3)主要為黃土、礫石層、亞砂土和亞黏土層。全新統(tǒng)(Qh)主要為沖洪積砂、礫石層以及亞砂土[42](圖1)。
2震后滑坡危險性快速評估
2.1Newmark模型基本原理
Newmark于1965年提出一種評價壩體地震穩(wěn)定性的簡化模型。該模型將滑體簡化為剛體,認(rèn)為滑體在地震作用下會沿著最危險的滑面運動,當(dāng)向下的地震加速度a超過臨界加速度ac時,滑體向下運動,累加位移達到臨界狀態(tài)時,斜坡失穩(wěn)[11](圖2)。
2.2靜態(tài)安全系數(shù)和臨界加速度
本文在1∶250萬公開版地質(zhì)圖的基礎(chǔ)上(圖1),對積石山地震震中100 km范圍內(nèi)的區(qū)域進行了工程地質(zhì)分組。分類依據(jù)主要參考1∶250 萬地質(zhì)圖以及前人研究結(jié)果[30]。不同巖組的物理力學(xué)參數(shù)按王濤等[43]的研究成果進行賦值(表1),賦值結(jié)果如圖4~6所示。
本文坡度數(shù)據(jù)由國家冰川凍土沙漠科學(xué)中心提供,分辨率為30 m,如圖7所示。根據(jù)式(1),基于ArcGIS平臺,對震中100 km范圍內(nèi)區(qū)域的靜態(tài)安全系數(shù)進行計算。在計算過程中滑體厚度d取為3 m[30];由于震前未發(fā)生大規(guī)模的降雨,巖土體的飽和程度m取為0,但考慮到冬灌的影響,將有農(nóng)作物的地區(qū)的m取為50%(圖8)。此外,在計算過程中出現(xiàn)了部分區(qū)域的安全系數(shù)小于1的情況,這是由于同一巖組包含不同的巖層,而在賦予參數(shù)時賦予了同樣的參數(shù),這就導(dǎo)致部分地區(qū)的安全系數(shù)不符合實際情況。參照馬思遠等人的做法,將此部分區(qū)域的靜態(tài)安全系數(shù)賦值為1.01[27],所得結(jié)果如圖9所示。根據(jù)圖9可知,歷史災(zāi)害點(滑坡和崩塌)主要分布于低穩(wěn)定性和中穩(wěn)定性的區(qū)域,表明巖體分組以及物理力學(xué)參數(shù)較為符合實際情況。通過靜態(tài)安全系數(shù)的分布,可以為工程選址以及災(zāi)害預(yù)防提供一定程度的參考。在得到靜態(tài)安全系數(shù)的基礎(chǔ)上,利用式(2)獲取研究區(qū)域內(nèi)臨界加速度的分布,如圖10所示。
2.3Newmark預(yù)測模型
已有的研究表明,基于強震動記錄回歸得到的位移模型具有區(qū)域相關(guān)性[24,44]。Newmark位移預(yù)測模型中,Ambraseys于1988年提出的模型參數(shù)最為簡單,僅有臨界加速度比一項,故其應(yīng)用也較為廣泛[12,45]。本文在已有黃土高原地震數(shù)據(jù)庫的基礎(chǔ)上,基于震級、震中相近的原則,選取了2013年岷縣—漳縣6.6級地震的強地震動數(shù)據(jù),對Ambraseys模型進行回歸分析。為提高信噪比,在計算前對強震動記錄進行基線校正和帶通濾波(帶通濾波的頻率為0.1~25 Hz)。選取臨界加速度ac為0.02g、0.05g、0.1g、0.15g、0.2g以及0.25g,對強震動記錄中的正向加速度超過臨界加速度ac的部分進行二次積分累加,獲得Newmark位移值(圖3)[44],擬合結(jié)果如圖11所示,擬合公式如下[式(4)]:
2.5Nemark地震位移分布
基于已得到的研究區(qū)域臨界加速度值和PGA值(圖10和圖12),利用式(4),對研究區(qū)內(nèi)的累計Newmark地震位移進行計算。據(jù)已有的強地震動數(shù)據(jù)可知(表2),此次積石山地震的豎向加速度較大①。研究表明,當(dāng)豎向地震加速度較大時,會對Newmark位移值產(chǎn)生較大影響。因此,在利用式(4)得到區(qū)域Newmark位移值后,采用式(5)對其進行修正[46]:
危險區(qū)、中危險區(qū)、高危險區(qū)以及極高危險區(qū)[15] [圖13(a)],并將其與已有的調(diào)查研究結(jié)果進行對比[圖13(f)~(i)][34,36,38-39]。由圖13(a)和圖13(f)~(i)可知,Newmark位移區(qū)主要位于距震中27 km的范圍內(nèi),與陳鵬等[38]基于InSAR 和光學(xué)影像解譯所得震中距范圍相符。Newmark位移區(qū)主要涉及積石山縣、循化撒拉族自治縣以及民和回族土族自治縣等,靠近震中位置的Newmark位移較大,但整體Newmark位移值偏小,表明此次地震災(zāi)害主要以中小規(guī)模黃土滑坡和淺表層巖質(zhì)崩塌為主,且崩塌的數(shù)量相對較多[31,36]。Newmark位移區(qū)沿斷層兩側(cè)分布,表現(xiàn)為受逆沖構(gòu)造的“上下盤效應(yīng)”[31]。已有的研究表明,河道以及分水嶺對滑坡具有較大的影響[48]。由圖13(b)和(c)可知,Newmark位移分布區(qū)內(nèi)河道、分水嶺較為發(fā)育,表明此區(qū)域地形復(fù)雜。分水嶺處裂隙較為發(fā)育,結(jié)合此區(qū)域高程較大[圖13(e)]以及構(gòu)造活動強烈等因素,可推測區(qū)域內(nèi)的表面松散堆積物較為豐富,這為滑坡的發(fā)生提供了地形和物質(zhì)基礎(chǔ)。由圖13(d)可知,Newmark位移主要分布區(qū)內(nèi)主要以新近系(泥巖、雜黏土等)以及第四系(黃土、砂土等)為主,這是由于黃土具有較強的地震易損性,較易產(chǎn)生滑坡以及崩塌等地質(zhì)災(zāi)害。這也驗證了此次積石山地震誘發(fā)地質(zhì)災(zāi)害的空間特征為軟弱黃土地質(zhì)環(huán)境的顯著控制[31]。
綜上可知,產(chǎn)生Newmark位移的區(qū)域與基于遙感影像解譯,以及實地調(diào)查所得范圍重合度較高,表明Newmark位移法在積石山區(qū)域具有較強的適用性。此外,圖13(a)中出現(xiàn)了一些零散柵格的Newmark位移值過大,這是由于強行對靜態(tài)安全系數(shù)小于1的區(qū)域賦值為1.01,對整體結(jié)果影響較小。此外,在地震中造成嚴(yán)重傷亡的青海省海東市民和縣永川鄉(xiāng)金田村和草灘村液化滑移災(zāi)害并未被劃分成中高風(fēng)險區(qū),這是因為Newmark位移模型并未考慮土體液化的情況,低估了液化災(zāi)害發(fā)生的風(fēng)險。
3結(jié)論
本文基于2013年岷縣—漳縣6.6級地震強地震動記錄回歸分析所得的Newmark位移預(yù)測模型,利用震前30 m分辨率地形數(shù)據(jù)以及1∶250萬地質(zhì)圖等數(shù)據(jù),考慮豎向地震加速度和冬灌的影響,對距離積石山6.2級地震震中100 km范圍內(nèi)的區(qū)域的滑坡危險性進行了評估,得出如下結(jié)論:
(1) 根據(jù)與已有災(zāi)害點的對比,靜態(tài)安全系數(shù)較低的區(qū)域更容易發(fā)生地質(zhì)災(zāi)害,在工程建設(shè)中應(yīng)采取相應(yīng)的安全措施。
(2) 滑坡危險區(qū)內(nèi)河道以及分水嶺較為發(fā)育、海拔較高、構(gòu)造活動強烈、地層以第四系和新近系為主,為滑坡的發(fā)生提供了物質(zhì)條件。
(3) 滑坡危險區(qū)與已有的調(diào)查結(jié)果重合度較高,表明Newmark位移法適用于積石山地區(qū)的震后滑坡危險性快速評估。在類似研究區(qū)域內(nèi)缺少歷史災(zāi)害目錄以及在震后因天氣原因?qū)е碌倪b感影像不清晰的條件下,可采用Newmark位移法對震后滑坡危險性進行快速評估,用于判斷受災(zāi)區(qū)域和指導(dǎo)救援。
(4) Newmark位移法未能考慮土體液化情況,低估了液化流滑災(zāi)害發(fā)生的風(fēng)險。
本文采用的研究區(qū)域的資料比例尺較大,研究的主要目的是驗證Newmark預(yù)測模型在積石山地區(qū)的適用性。隨著研究資料精度的提升,所得結(jié)果的準(zhǔn)確度也將不斷增加。致謝:衷心感謝中國地震局工程力學(xué)研究所萬衛(wèi)博士、彭達博士以及哈爾濱工業(yè)大學(xué)蘇浩然博士在資料收集和軟件使用中提供的幫助。感謝中國地震災(zāi)害防御中心地震活動斷層探察數(shù)據(jù)中心(https://www.activefault-datacenter.cn)提供數(shù)據(jù)支撐。分析過程中使用的地形數(shù)據(jù)、歷史災(zāi)害數(shù)據(jù),及土地類型數(shù)據(jù)均由自國家冰川凍土沙漠科學(xué)中心提供,1∶250 萬地質(zhì)圖來源于全國地質(zhì)資料館,在此一并表示感謝。
參考文獻(References)
[1]黃潤秋.20世紀(jì)以來中國的大型滑坡及其發(fā)生機制[J].巖石力學(xué)與工程學(xué)報,2007,26(3):433-454.HUANG Runqiu.Large-scale landslides and their sliding mechanisms in China since the 20th century[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433-454.
[2]殷躍平.汶川八級地震地質(zhì)災(zāi)害研究[J].工程地質(zhì)學(xué)報,2008,16(4):433-444.YIN Yueping.Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J].Journal of Engineering Geology,2008,16(4):433-444.
[3]崔鵬,韋方強,何思明,等.5·12汶川地震誘發(fā)的山地災(zāi)害及減災(zāi)措施[J].山地學(xué)報,2008,26(3):280-282.CUI Peng,WEI Fangqiang,HE Siming,et al.Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J].Mountain Research,2008,26(3):280-282.
[4]許沖,徐錫偉,于貴華.玉樹地震滑坡分布調(diào)查及其特征與形成機制[J].地震地質(zhì),2012,34(1):47-62.XU Chong,XU Xiwei,YU Guihua.Study on the characteristics,mechanism,and spatial distribution of Yushu earthquake triggered landslides[J].Seismology and Geology,2012,34(1):47-62.
[5]蔡曉光,常晁瑜,李孝波.四川瀘定6.8級地震地質(zhì)災(zāi)害調(diào)查[J].防災(zāi)科技學(xué)院學(xué)報,2022,24(4):11-22.CAI Xiaoguang,CHANG Chaoyu,LI Xiaobo.Investigation on seismic geological hazards of the Luding,Sichuan MS6.8 earthquake in 2022[J].Journal of Institute of Disaster Prevention,2022,24(4):11-22.
[6]PRADHAN B,MANSOR S,PIRASTEH S,et al.Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model[J].International Journal of Remote Sensing,2011,32(14):4075-4087.
[7]KOHNO M,HIGUCHI Y,ONO Y.Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination[J].Natural Hazards,2023,116(2):1485-1512.
[8]HUANG D R,WANG G,DU C Y,et al.An integrated SEM-Newmark model for physics-based regional coseismic landslide assessment[J].Soil Dynamics and Earthquake Engineering,2020,132:106066.
[9]楊志華,張永雙,郭長寶,等.基于Newmark模型的尼泊爾MS8.1地震滑坡危險性快速評估[J].地質(zhì)力學(xué)學(xué)報,2017,23(1):115-124.YANG Zhihua,ZHANG Yongshuang,GUO Changbao,et al.Landslide hazard rapid assessment in the MS8.1 Nepal earthquake-impacted area,based on Newmark model[J].Journal of Geomechanics,2017,23(1):115-124.
[10]JIBSON R W.Methods for assessing the stability of slopes during earthquakes:a retrospective[J].Engineering Geology,2011,122(1/2):43-50.
[11]NEWMARK N M.Effects of earthquakes on dams and embankments[J].Géotechnique,1965,15(2):139-160.
[12]RATHJE E M,BRAY J D.An examination of simplified earthquake:induced displacement procedures for earth structures[J].Canadian Geotechnical Journal,1999,36(1):72-87.
[13]BRAY J D,RATHJE E M.Earthquake-induced displacements of solid-waste landfills[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(3):242-253.
[14]SONG J,LU Z X,JI J,et al.A fully nonlinear coupled seismic displacement model for earth slope with multiple slip surfaces[J].Soil Dynamics and Earthquake Engineering,2022,159:107353.
[15]王濤,吳樹仁,石菊松,等.基于簡化Newmark位移模型的區(qū)域地震滑坡危險性快速評估:以汶川MS8.0地震為例[J].工程地質(zhì)學(xué)報,2013,21(1):16-24.WANG Tao,WU Shuren,SHI Jusong,et al.Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model:Wenchuan MS8.0 earthquake[J].Journal of Engineering Geology,2013,21(1):16-24.
[16]JIBSON R W.Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis[J].Transportation research record,1993,1411:9-17.
[17]RATHJE E M,ANTONAKOS G.A unified model for predicting earthquake-induced sliding displacements of rigid and flexible slopes[J].Engineering Geology,2011,122(1/2):51-60.
[18]MACEDO J,BRAY J,TRAVASAROU T.Simplified procedure for estimating seismic slope displacements in subduction zones[C]//Proceedings of the 16th World Conference on Earthquake Engineering. Santiago:[s.n.],2017.
[19]DU W Q,WANG G,HUANG D R.Evaluation of seismic slope displacements based on fully coupled sliding mass analysis and NGA-West2 database[J].Journal of Geotechnical and Geoenvironmental Engineering,2018,144(8):06018006.
[20]MAKDISI F I,SEED H B.Simplified procedure for estimating dam and embankment earthquake-induced deformations[J].Journal of the Geotechnical Engineering Division,1978,104(7):849-867.
[21]BAZIAR M H,REZAEIPOUR H,JAFARIAN Y.Decoupled solution for seismic permanent displacement of earth slopes using deformation-dependent yield acceleration[J].Journal of Earthquake Engineering,2012,16(7):917-936.
[22]JI J,WANG C W,CUI H Z,et al.A simplified nonlinear coupled Newmark displacement model with degrading yield acceleration for seismic slope stability analysis[J].International Journal for Numerical and Analytical Methods in Geomechanics,2021,45(10):1303-1322.
[23]JIBSON R W.Regression models for estimating coseismic landslide displacement[J].Engineering Geology,2007,91(2-4):209-218.
[24]HSIEH S Y,LEE C T.Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration[J].Engineering Geology,2011,122(1-2):34-42.
[25]RAJABI A M,MAHDAVIFAR M R,KHAMEHCHIYAN M,et al.A new empirical estimator of coseismic landslide displacement for Zagros Mountain region (Iran)[J].Natural Hazards,2011,59(2):1189-1203.
[26]CHOUSIANITIS K,DEL GAUDIO V,KALOGERAS I,et al.Predictive model of Arias intensity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece[J].Soil Dynamics and Earthquake Engineering,2014,65:11-29.
[27]馬思遠,許沖,王濤,等.應(yīng)用2類Newmark簡易模型進行2008年汶川地震滑坡評估[J].地震地質(zhì),2019,41(3):774-788.MA Siyuan,XU Chong,WANG Tao,et al.Application of two simplified Newmark models to the assessment of landslides triggered by the 2008 Wenchuan earthquake[J].Seismology and Geology,2019,41(3):774-788.
[28]JIBSON R W,HARP E L,MICHAEL J A.A method for producing digital probabilistic seismic landslide hazard maps[J].Engineering geology,2000,58(3-4):271-289.
[29]陳曉利,單新建,張凌,等.地震誘發(fā)滑坡的快速評估方法研究:以2017年MS7.0九寨溝地震為例[J].地學(xué)前緣,2019,26(2):312-320.CHEN Xiaoli,SHAN Xinjian,ZHANG Ling,et al.Quick assessment of earthquake-triggered landslide hazards:a case study of the 2017 MS7.0 Jiuzhaigou earthquake[J].Earth Science Frontiers,2019,26(2):312-320.
[30]劉甲美,王濤,杜建軍等.四川瀘定MS6.8地震誘發(fā)崩滑災(zāi)害快速評估[J].水文地質(zhì)工程地質(zhì),2023,50(2):84-94.LIU Jiamei,WANG Tao,DU Jianjun,et.al.Emergency rapid assessment of landslides induced by the Luding MS6.8 earthquake in Sichuan of China[J].Hydrogeology amp; Engineering Geolog Y,2023,50(2):84-94.
[31]郭富赟,張永軍,竇曉東,等.甘肅積石山MS6.2地震次生地質(zhì)災(zāi)害分布規(guī)律與發(fā)育特征[J].蘭州大學(xué)學(xué)報(自然科學(xué)版),2024,60(1):6-12.GUO Fuyun,ZHANG Yongjun,DOU Xiaodong,et al.Distribution patterns and development characteristics of secondary geological hazards caused by the MS6.2 earthquake in Jishishan,Gansu[J].Journal of Lanzhou University (Natural Sciences),2024,60(1):6-12.
[32]王立朝,侯圣山,董英,等.甘肅積石山MS6.2地震的同震地質(zhì)災(zāi)害基本特征及風(fēng)險防控建議[J/OL].中國地質(zhì)災(zāi)害與防治學(xué)報,(2023-12-28)[2024-05-10].https://link.cnki.net/urlid/11.2852.P.20231228.1352.002.WANG Lichao,HOU Shengshan,DONG Ying,et.al.Basic characteristics of co-seismic geological hazards induced by Jishishan MS6.2 earthquake and suggestions for their risk control[J/OL].The Chinese Journal of Geological Hazard and Control,(2023-12-28)[2024-05-10].https://link.cnki.net/urlid/11.2852.P.20231228.1352.002.
[33]黃觀文,景策,李東旭,等.甘肅積石山6.2級地震對滑坡易發(fā)區(qū)的變形影響分析[J/OL].武漢大學(xué)學(xué)報(信息科學(xué)版),(2023-12-28)[2024-05-10].https://doi.org/10.13203/j.whugis20230490.HUANG Guanwen,JING Ce,LI Dongxu,et al.Deformation analysis of Jishishan MW6.2 earthquake on the landslide hazard area[J/OL].Geomatics and Information Science of Wuhan University,(2023-12-28)[2024-05-10].https://doi.org/10.13203/j.whugis20230490.
[34]陳博,宋闖,陳毅,等.2023年甘肅積石山MS6.2地震同震滑坡和建筑物損毀情況應(yīng)急識別與影響因素研究[J/OL].武漢大學(xué)學(xué)報(信息科學(xué)版),(2024-01-02)[2024-05-10].https://doi.org/10.13203/J.whugis20230497.CHEN Bo,SONG Chuang,CHEN Yi,et al.Emergency identification and influencing factor analysis of coseismic landslides and building damages induced by the 2023 MS6.2 Jishishan (Gansu,China) earthquake[J/OL].Geomatics and Information Science of Wuhan University,(2024-01-02)[2024-05-10].https://doi.org/10.13203/J.whugis20230497.
[35]鐵永波,張憲政,曹佳文,等.積石山MS6.2和瀘定MS6.8地震地質(zhì)災(zāi)害發(fā)育規(guī)律對比[J].成都理工大學(xué)學(xué)報(自然科學(xué)版),2024,51(1):9-21,59.TIE Yongbo,ZHANG Xianzheng,CAO Jiawen,et al.Comparative research of characteristics of geological hazards induced by Jishishan (MS6.2) and Luding (MS6.8) earthquakes[J].Journal of Chengdu University of Technology (Science amp; Technology Edition),2024,51(1):9-21,59.
[36]李為樂,許強,李雨森,等.2023年積石山MS6.2地震同震地質(zhì)災(zāi)害初步分析[J].成都理工大學(xué)學(xué)報(自然科學(xué)版),2024,51(1):33-45,90.LI Weile,XU Qiang,LI Yusen,et al.Preliminary analysis of the coseismic geohazards induced by the 2023 Jishishan MS6.2 earthquake[J].Journal of Chengdu University of Technology (Science amp; Technology Edition),2024,51(1):33-45,90.
[37]劉帥,何斌,王濤,等.甘肅積石山縣MS6.2地震同震地質(zhì)災(zāi)害發(fā)育特征與易發(fā)性評價[J/OL].地質(zhì)力學(xué)學(xué)報,(2024-02-04)[2024-05-10].https://link.cnki.net/urlid/11.3672.P.20240202.1443.002.LIU Shuai,HE Bin,WANG Tao,et al.Development characteristics and susceptibility assessment of co-seismic geological Hazards in Jishishan MS6.2 earthquake,Gansu Province[J/OL].Journal of Geomechanics,(2024-02-04)[2024-05-10].https://link.cnki.net/urlid/11.3672.P.20240202.1443.002.
[38]陳鵬,邱梁才,姚宜斌,等.基于InSAR和光學(xué)影像解譯的2023年甘肅積石山MS6.2震后地表形變和災(zāi)害分析[J/OL].武漢大學(xué)學(xué)報(信息科學(xué)版),(2024-04-19)[2024-05-10].https://doi.org/10.13203/j.whugis20240074.CHEN Peng,QIU Liangcai,YAO Yibin,et al.Surface deformation and hazard analysis after the 2023 MS6.2 earthquake in Jishishan,Gansu Province based on InSAR and optical imagery interpretation[J/OL].Geomatics and Information Science of Wuhan University,(2024-04-19)[2024-05-10].https://doi.org/10.13203/j.whugis20240074.
[39]劉曉杰,趙超英,李濱,等.基于InSAR技術(shù)的甘肅積石山震區(qū)活動滑坡識別與動態(tài)形變監(jiān)測[J/OL].武漢大學(xué)學(xué)報(信息科學(xué)版),(2024-04-07)[2024-05-10].https://doi.org/10.13203/j.whugis20240054.LIU Xiaojie,ZHAO Chaoying,LI Bin,et al.Identification and dynamic deformation monitoring of active landslides in the Jishishan earthquake area,Gansu,China using InSAR technology[J/OL].Geomatics and Information Science of Wuhan University,(2024-04-07)[2024-05-10].https://doi.org/10.13203/j.whugis20240054.
[40]王潤妍,萬永革,宋澤堯,等.2023年12月18日甘肅積石山6.2級地震震源機制及其對周圍區(qū)域的應(yīng)力影響[J].地震,2024,44(1):175-184.WANG Runyan,WAN Yongge,SONG Zeyao,et al.Focal mechanism and stress implication on the surrounding region of the Jishishan,Gansu MS6.2 earthquake on December 18,2023[J].Earthquake,2024,44(1):175-184.
[41]陸詩銘,吳中海,李智超.2023年12月18日甘肅省積石山6.2級地震的控震構(gòu)造及特征[J].地震科學(xué)進展,2024,54(1):86-93.LU Shiming,WU Zhonghai,LI Zhichao.Seismic structure characteristics of the 18 December 2023 M6.2 Jishishan earthquake,Gansu Province[J].Progress in Earthquake Sciences,2024,54(1):86-93.
[42]張波.西秦嶺NWW向斷裂系的幾何圖像與變形分配[D].北京:中國地震局地質(zhì)研究所,2020.ZHANG Bo.Fault geometry and deformation partition of WNW-trending faults in the West Qinling Mountain[D].Beijing:Institute of Geology,China Earthquake Administration,2020.
[43]王濤,劉甲美,栗澤桐,等.中國地震滑坡危險性評估及其對國土空間規(guī)劃的影響研究[J].中國地質(zhì),2021,48(1):21-39.WANG Tao,LIU Jiamei,LI Zetong,et al.Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J].Geology in China,2021,48(1):21-39.
[44]徐光興,姚令侃,李朝紅,等.基于汶川地震強震動記錄的邊坡永久位移預(yù)測模型[J].巖土工程學(xué)報,2012,34(6):1131-1136.XU Guangxing,YAO Lingkan,LI Chaohong,et al.Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan earthquake[J].Chinese Journal of Geotechnical Engineering,2012,34(6):1131-1136.
[45]AMBRASEYS N N,MENU J M.Earthquake-induced ground displacements[J].Earthquake Engineering amp; Structural Dynamics,1988,16(7):985-1006.
[46]DU W Q.Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis[J].Engineering Geology,2018,239:13-21.
[47]魏延坤,陳曉利.不同地震滑坡危險性評價方法的適用性探討:以瑪多MS7.4地震為例[J].地震地質(zhì),2022,44(3):590-603.WEI Yankun,CHEN Xiaoli.Applicability of different seismic landslide risk assessment methods:a case study of Maduo MS7.4 earthquake[J].Seismology and Geology,2022,44(3):590-603.
[48]DAHLQUIST M P,WEST A J,LI G.Landslide-driven drainage divide migration and quantifying progress toward topographic steady state[C]//AGU Fall Meeting Abstracts,2017:EP51B-1649.
(本文編輯:任棟)