国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

納米纖維素基材料在柔性電子器件中的應(yīng)用

2024-01-20 06:02熊鑫寧洪龍方志強(qiáng)蘇國(guó)平黎振超劉賢哲姚日暉彭俊彪
包裝工程 2024年1期
關(guān)鍵詞:電子器件襯底纖維素

熊鑫,寧洪龍,方志強(qiáng),蘇國(guó)平,黎振超,劉賢哲,姚日暉*,彭俊彪

先進(jìn)材料

納米纖維素基材料在柔性電子器件中的應(yīng)用

熊鑫1a,b,寧洪龍1a,b,方志強(qiáng)1c,d,蘇國(guó)平1a,b,黎振超2,劉賢哲3,姚日暉1a,b*,彭俊彪1a,b

(1.華南理工大學(xué) a.材料科學(xué)與工程學(xué)院 b.發(fā)光材料與器件國(guó)家重點(diǎn)實(shí)驗(yàn)室 c.輕工科學(xué)與工程學(xué)院 d.制漿造紙工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣州 510641;2.廣東風(fēng)華高新科技股份有限公司 新型電子元器件關(guān)鍵材料與工藝國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東 肇慶 526060;3.五邑大學(xué)應(yīng)用物理與材料學(xué)院 柔性傳感材料與器件研究開(kāi)發(fā)中心,廣東 江門(mén) 529020)

由于納米纖維素基材料良好的柔韌性、熱力學(xué)性能和高透明度,近年來(lái)在柔性電子產(chǎn)品中引起越來(lái)越多的關(guān)注。通過(guò)綜述該領(lǐng)域的研究進(jìn)展,將有助于研究人員更高效地開(kāi)展研究。綜述3類(lèi)納米纖維素的制備方法及將納米纖維素基材料應(yīng)用在柔性電子產(chǎn)品中的研究進(jìn)展。分別闡述納米纖維素基材料應(yīng)用于器件柔性襯底及絕緣材料的研究實(shí)例,并討論納米纖維素在各種應(yīng)用方向中的優(yōu)勢(shì)以及存在的問(wèn)題,最后對(duì)材料的未來(lái)應(yīng)用前景進(jìn)行展望。納米纖維素是天然纖維素與納米技術(shù)結(jié)合的產(chǎn)物,可主要?jiǎng)澐譃槔w維素納米纖絲、纖維素納米晶以及細(xì)菌纖維素3類(lèi)。近年來(lái),納米纖維素基材料作為電子器件柔性襯底、絕緣材料等研究均有許多成果問(wèn)世。雖然納米纖維素基電子器件的開(kāi)發(fā)還主要停留在實(shí)驗(yàn)室階段,但是與傳統(tǒng)的石油化工產(chǎn)品相比,納米纖維素具有原材料豐富、環(huán)??山到獾葍?yōu)點(diǎn)。對(duì)納米纖維素基新型材料的開(kāi)發(fā)利用,有助于解決人類(lèi)社會(huì)中日益嚴(yán)重的電子垃圾問(wèn)題。

納米纖維素;柔性電子;可再生;絕緣層

高分子材料由于具有絕緣性好、種類(lèi)多樣、易加工等特點(diǎn),目前應(yīng)用已經(jīng)十分廣泛,塑料、纖維、橡膠等高分子材料在生活中隨處可見(jiàn)。但是,各類(lèi)高分子材料大量使用的同時(shí),也產(chǎn)生了許多一系列相應(yīng)的副作用有待解決。比如,某些高分子材料的原材料本身或加工過(guò)程中的添加劑存在毒性,可能會(huì)危害人體健康;某些高分子材料廢棄后難以降解,造成“白色污染”[1]。隨著人類(lèi)社會(huì)信息化、電子化的發(fā)展,社會(huì)中每年產(chǎn)生的電子垃圾急劇增長(zhǎng),對(duì)保護(hù)生態(tài)環(huán)境提出了巨大挑戰(zhàn)[2]。為了從根本上解決這一問(wèn)題,開(kāi)發(fā)出可大規(guī)模應(yīng)用于各類(lèi)電子產(chǎn)品中的環(huán)境友好型高分子材料是非常必要的[3]?;谶@樣的背景下,納米纖維素基材料逐漸進(jìn)入了研究人員的視野。

作為世界上儲(chǔ)量最豐富的生物聚合物之一,纖維素具有清潔無(wú)毒、可生物降解且生物相容性好等優(yōu)點(diǎn)[4]。天然纖維素基材料于造紙、服裝等行業(yè)已經(jīng)應(yīng)用了數(shù)千年,而納米纖維素是一種傳統(tǒng)纖維素材料與納米技術(shù)結(jié)合而誕生的新型材料[5-6]。納米纖維素繼承了天然纖維素的基本結(jié)構(gòu)以及良好的生物相容性,同時(shí)由于其納米級(jí)的尺寸,納米纖維素還兼具了納米粒子的特性,如強(qiáng)度高、比表面積大、穩(wěn)定性好、光學(xué)透明性好且易交織成網(wǎng)狀結(jié)構(gòu)等。因此,許多研究人員嘗試將納米纖維素基材料應(yīng)用于電子器件中,開(kāi)發(fā)出符合環(huán)保理念的新型綠色電子產(chǎn)品。

鑒于納米纖維素良好的應(yīng)用前景,通過(guò)完成本篇論文,可以幫助新入門(mén)的研究人員簡(jiǎn)單、快速地了解有關(guān)納米纖維素的研究進(jìn)展,并制定研究路線(xiàn)。本文主要分為2部分,第1部分主要綜述3類(lèi)納米纖維素的制備工藝以及主要性能參數(shù),第2部分綜述納米纖維素基材料應(yīng)用于器件柔性襯底以及絕緣材料的研究實(shí)例,并展望材料未來(lái)的應(yīng)用前景。

1 納米纖維素的分類(lèi)及制備方法

纖維素(C6H10O5)是一種由D-葡萄糖單元由β-(1→4)糖苷鍵連接而成的高分子量的同聚糖。纖維素分子鏈通過(guò)氫鍵和范德華力結(jié)合構(gòu)成具有結(jié)晶區(qū)和無(wú)定型區(qū)的纖維素原纖絲,進(jìn)而聚集成纖維素微纖束,并最終形成纖維素纖維,如圖1a所示。每個(gè)葡萄糖單元在C2、C3和C6上有羥基,能夠在纖維素大分子的分子內(nèi)部和分子間形成氫鍵,其重復(fù)片段的分子結(jié)構(gòu)如圖1b所示,這種結(jié)構(gòu)通常被認(rèn)為是葡萄糖的二聚體,稱(chēng)為纖維二糖[7]。

納米纖維素指至少一個(gè)維度為納米尺度的天然纖維素納米材料。目前,納米纖維素可以通過(guò)多種方法從植物或細(xì)菌等來(lái)源進(jìn)行提取,常用于提取納米纖維素的方法包括物理方法,化學(xué)方法以及生物方法,也可以使用物理化學(xué)結(jié)合法。根據(jù)纖維素來(lái)源及形態(tài)參數(shù)的差異,納米纖維素可劃分為3種類(lèi)別:纖維素納米纖絲、納米微晶纖維素以及細(xì)菌納米纖維素,如表1所示。其中,纖維素納米纖絲和納米微晶纖維素來(lái)源于植物,可通過(guò)不同的工藝從植物纖維中提取得到。細(xì)菌納米纖維素則由細(xì)菌產(chǎn)生。

1.1 纖維素納米纖絲

纖維素納米纖絲(Cellulose Nanofibril, CNF)的結(jié)構(gòu)由原始纖維素纖維的無(wú)定形區(qū)和結(jié)晶區(qū)組成,呈微纖絲狀,具有網(wǎng)絡(luò)或網(wǎng)狀結(jié)構(gòu),極易形成氫鍵,具有長(zhǎng)徑比大,比表面積大,強(qiáng)度高,熱穩(wěn)定性好等特點(diǎn)。

目前,CNF主要采用物理機(jī)械法進(jìn)行制備,即對(duì)纖維素原料進(jìn)行物理作用,減小其尺寸到納米尺度。物理機(jī)械法主要包括高壓均質(zhì)法[22],高速攪拌法、熱壓法、研磨[23]、冷凍粉碎[24]、超聲波處理[25]等。其中高壓均質(zhì)法由于效率高、易控制且工藝中不涉及有機(jī)溶劑,是CNF制備中最常用的一種物理機(jī)械法。其工作過(guò)程中,首先將纖維素原料導(dǎo)入高壓均質(zhì)閥中,使物料在高壓環(huán)境下反復(fù)與碰撞環(huán)發(fā)生高速碰撞,利用由此產(chǎn)生的剪切作用力實(shí)現(xiàn)纖維素的細(xì)化和均質(zhì)。物理機(jī)械法制備的CNF在纖維高度微細(xì)化后比表面積增大,表面裸露出大量的羥基,因此表現(xiàn)出較好的吸水性和黏結(jié)力。

圖1 纖維素結(jié)構(gòu)示意圖[8-10]

表1 納米纖維素的分類(lèi)

Tab.1 Classification of nanocellulose

然而,通過(guò)以高壓均質(zhì)法為代表的物理機(jī)械法制備CNF,存在制備時(shí)間長(zhǎng)、能耗高、設(shè)備易受損害等缺點(diǎn)。因此,實(shí)際制備過(guò)程中,往往需要先對(duì)纖維素原料進(jìn)行預(yù)處理,以大大降低制備所需時(shí)長(zhǎng)及能耗。常見(jiàn)的預(yù)處理方法包括酶解法[26]、羧甲基化法[27-28]、TEMPO氧化法[29-30]、磷酸化法等[31-32]。在一些研究中,通過(guò)預(yù)處理手段可將纖維素表面的醇羥基轉(zhuǎn)化為帶負(fù)電的羧基或羧甲基,使得纖維素原纖之間產(chǎn)生靜電斥力,氫鍵作用點(diǎn)減少,氫鍵更難形成,纖維素原纖直接的結(jié)合力減弱,更容易分解細(xì)化。

1.2 納米微晶纖維素

納米微晶纖維素(Cellulose Nanocrystal, CNC)由纖維素原料經(jīng)過(guò)化學(xué)處理后剩下的高結(jié)晶度剛性棒狀顆粒組成,其力學(xué)性能優(yōu)異,具有高結(jié)晶度、高彈性模量、高拉伸強(qiáng)度等特點(diǎn)。從纖維素纖維中分離CNC的主流方法是基于無(wú)機(jī)酸水解法的化學(xué)處理,這是由于纖維素的非晶區(qū)抗酸性較差,而纖維素的結(jié)晶區(qū)具有更致密的物理化學(xué)結(jié)構(gòu),具有較好的抗酸性。通過(guò)酸處理過(guò)程可將纖維素的非晶區(qū)水解除去,而結(jié)晶區(qū)能抵抗酸溶液侵蝕,則會(huì)被保留下來(lái)。包括硫酸[33]、鹽酸[34]、磷酸[35]和氫溴酸[36]在內(nèi)的多種酸均可用于提取CNC,其中硫酸水解目前應(yīng)用最為廣泛。硫酸可將纖維素表面的羥基置換為帶負(fù)電的硫酸根基團(tuán),硫酸根基團(tuán)之間產(chǎn)生的靜電排斥力使CNC的分散穩(wěn)定性更好[37],然而硫酸的使用存在一些缺點(diǎn),如CNC的熱穩(wěn)定性低、設(shè)備易腐蝕、用水量大以及環(huán)境不友好等[38]。因此,一些研究人員著眼于探索硫酸的替代品,如離子液體[39-40]、馬來(lái)酸、草酸[41]、甲苯磺酸、富馬酸和檸檬酸水解[42]等。

1.3 細(xì)菌納米纖維素

細(xì)菌納米纖維素(Bacterial Nanocellulose, BNC)是由細(xì)菌(如木醋桿菌)在含有糖源的水培養(yǎng)基中合成的一種由帶狀納米纖維組成的網(wǎng)狀納米纖維素。一般來(lái)說(shuō),BNC的結(jié)構(gòu)隨培養(yǎng)條件和菌株種類(lèi)的差異而有所不同[43-46]。BNC的化學(xué)結(jié)構(gòu)單元與前文所述的2種植物納米纖維素相同,但BNC更薄,且具有純度高(約100%)、結(jié)晶度高、熱穩(wěn)定性強(qiáng)等優(yōu)勢(shì)。木材或植物纖維素在純化過(guò)程中通常會(huì)引入多種官能團(tuán),如羧基或羰基,而B(niǎo)NC中不含除醇以外的其他官能團(tuán),同時(shí)也不含其他聚合物,如木質(zhì)素、半纖維素或果膠等,這有助于BNC在生物醫(yī)學(xué)中的應(yīng)用。BNC合成的生化過(guò)程包括3個(gè)主要步驟:葡萄糖殘基聚合成β-1,4葡聚糖、細(xì)胞外分泌線(xiàn)狀鏈、葡聚糖鏈通過(guò)氫鍵和范德華力在細(xì)胞外空間排列而結(jié)晶[47]。目前,主要有2種方法用于培養(yǎng)菌株生產(chǎn)BNC:靜態(tài)培養(yǎng)法[48]和攪拌培養(yǎng)法[49],培養(yǎng)時(shí)間一般從幾天到2周不等[50]。

2 納米纖維素在電子產(chǎn)品中的應(yīng)用

近年來(lái),越來(lái)越多研發(fā)人員將目光投向柔性電子器件的開(kāi)發(fā),如太陽(yáng)能電池、有機(jī)發(fā)光二極管、薄膜晶體管[51]、超級(jí)電容器等?;诩{米纖維素制備的薄膜具有優(yōu)異的柔韌性、納米級(jí)的表面粗糙度、超高的透明度及優(yōu)異的力學(xué)性能和熱性能,可以直接作為襯底材料應(yīng)用于透明柔性電子器件中,也可以通過(guò)與其他功能材料復(fù)合的方式改善其性能。同時(shí),納米纖維素薄膜也被證明具有優(yōu)異的介電性能,可以作為一種綠色絕緣材料應(yīng)用于下一代環(huán)保電子產(chǎn)品中。

2.1 柔性電子器件的襯底材料

襯底是電子器件的重要組成部分,它獨(dú)立支撐電子器件的運(yùn)行與工作,襯底薄膜的光學(xué)、機(jī)械和熱性能是決定電子器件性能的關(guān)鍵因素[52]。目前常見(jiàn)的襯底材料多為玻璃或塑料。玻璃襯底高密度及高剛性的特點(diǎn)使其不適用于柔性電子器件中。塑料襯底(PET、PEN、PI、PC等)具有高透明度、高柔韌性及輕便的優(yōu)勢(shì)[53-54],可應(yīng)用于柔性電子器件。但是塑料襯底普遍存在低熱耐久性和高熱膨脹系數(shù)(CTE)的缺點(diǎn),襯底與器件其他層之間熱膨脹系數(shù)的巨大差異會(huì)在界面處造成不良應(yīng)力,從而導(dǎo)致整個(gè)器件在制造過(guò)程中彎曲或變形[55],這一定程度上限制了塑料襯底在柔性電子器件中的應(yīng)用。

以CNF制成的納米紙具有優(yōu)異的熱穩(wěn)定性(>180 ℃)、化學(xué)耐久性,以及較低的熱膨脹系數(shù)(CTE:5×10?6~10×10?6K),是一種很有前途的柔性襯底,有望廣泛應(yīng)用于柔性電子器件中[56-66]。2012年,Hu等[67]展示了一種由CNF制成的新型柔性透明納米紙,并作為光電器件的襯底制備了太陽(yáng)能電池。然而,器件表現(xiàn)出較差的性能(最大光能轉(zhuǎn)化效率(PCE)為0.4%)和較差的整流,主要是因?yàn)镃NF襯底的表面相對(duì)粗糙(表面高度變化為 40 nm)。2013年,Zhou等[68]在相對(duì)CNF襯底表面粗糙度低得多的獨(dú)立透明CNC襯底上制造了聚合物太陽(yáng)能電池,具有以下結(jié)構(gòu):CNC/Ag(20 nm)/聚乙烯亞胺乙氧基化(PEIE)/活性層/MoO3/Ag,如圖2a所示。圖2b顯示了太陽(yáng)能電池在黑暗和95 mW/cm2的AM1.5照明下的J-V特性曲線(xiàn)。太陽(yáng)能電池的PCE(2.7%)高于其他可再生襯底上制造的聚合物太陽(yáng)能電池,但相較于玻璃/氧化銦錫(ITO)襯底上制造的類(lèi)似結(jié)構(gòu)器件的(PCE值約為6%)低,這歸因于半透明Ag(20 nm)底部電極的低透射率。同年,Zhou等[69]又在CNC襯底上報(bào)告了新的太陽(yáng)能電池器件結(jié)構(gòu),使用半透明PEDOT:PSS作為頂部空穴收集電極,同時(shí)使用反射性Ag/聚乙烯亞胺(PEI)作為底部電子收集電極,器件結(jié)構(gòu)如圖4c所示,新的器件顯示出(0.64±0.02)的高填充因子(FF)和(3.8±0.2)%的高平均PCE。

圖2 2種基于CNC襯底的太陽(yáng)能電池結(jié)構(gòu)

2013年,Hu等[70]制備了TEMPO氧化CNF納米紙,發(fā)現(xiàn)CNF直徑與納米紙的光學(xué)性能存在聯(lián)系。如圖3所示,直徑越大,成紙透明度越低,而霧度越高。實(shí)際應(yīng)用中,高霧度高透明度的紙比較適用于太陽(yáng)能電池等戶(hù)外電子設(shè)備[31, 71-73],而高透明度低霧度的紙更適用于顯示器等領(lǐng)域。研究團(tuán)隊(duì)通過(guò)調(diào)整紙張內(nèi)纖維素微米纖維與納米纖維素的比例可制備光學(xué)性能可調(diào)的納米紙?;诩{米纖維素紙的優(yōu)異光學(xué)性能與力學(xué)性能,制備了一系列透明納米紙基電子器件,如透明發(fā)光二極管[58]、透明晶體管[74]、觸摸屏[62]、太陽(yáng)能電池[75]。

在以往的研究中,基于薄透明CNF納米紙襯底制備的OTFT具有良好的柔韌性[55]。但是由于納米紙襯底無(wú)法耐受較高的退火溫度,器件性能和熱退火之間的矛盾然是實(shí)現(xiàn)高性能納米紙TFT應(yīng)用的障礙。2017年,Ning等[77]使用IGZO/Al2O3雙層薄膜作為溝道有源層,通過(guò)傳統(tǒng)的物理氣相沉積方法在光學(xué)性能優(yōu)異(92%透明度,0.85%透射霧度)和超光滑(在5×5 μm掃描區(qū)域中面粗糙度為1.8 nm)的CNF納米紙基板上制造了高性能TFT,器件結(jié)構(gòu)如圖4a所示,制備過(guò)程無(wú)需進(jìn)一步熱退火處理。如圖4b所示,器件表現(xiàn)出優(yōu)異的工作特性:飽和遷移率為15.8 cm2/(V·s),開(kāi)關(guān)比為4.4×105,閾值電壓為?0.42 V,亞閾值擺幅為0.66 V/dec。室溫下,納米紙基高性能IGZO/Al2O3TFT的成功制備,有助于研發(fā)廉價(jià)綠色、柔性輕質(zhì)的顯示器件。

2023年,Zhong等[78]以寬度為3~5 nm的CNF為原料,通過(guò)旋涂法在玻璃基板上制備了表面粗糙度為3.49 nm的納米紙作為器件襯底,并在透明納米紙上通過(guò)室溫物理氣相沉積制備了具有底柵結(jié)構(gòu)的雙層溝道(IGZO/Al2O3)TFT,如圖5所示。旋涂制備的納米紙具有超光滑表面,且室溫制備工藝可以防止TFT沉積過(guò)程中納米紙發(fā)生分解或形變。因此,納米紙TFT的每個(gè)功能層截面都沒(méi)有觀(guān)察到明顯的皺紋,平坦的IGZO/Al2O3層可以減少TFT的內(nèi)部缺陷,同時(shí)提高器件的穩(wěn)定性。所制備的納米紙TFT不僅表現(xiàn)出高達(dá)21.98 cm2/(V·s)的飽和遷移率、5.07×106的on/Ioff開(kāi)關(guān)比和0.75 V/dec的亞閾值擺幅,而且表現(xiàn)出良好的偏置穩(wěn)定性。這項(xiàng)研究對(duì)開(kāi)發(fā)綠色、可持續(xù)且廉價(jià)的透明紙電子產(chǎn)品具有重要意義。

圖3 CNF直徑對(duì)納米紙光學(xué)性能的影響[76]

圖4 基于CNF基板的TFT結(jié)構(gòu)及器件特性[77]

圖5 基于CNF納米紙襯底的TFT[78]

不同于直接將納米纖維素紙作為器件襯底,部分研究人員嘗試將CNF與其他功能材料進(jìn)行復(fù)合以獲得性能優(yōu)勢(shì)[79-83]。迄今為止報(bào)道的納米復(fù)合材料薄膜的整體性能還有較大的提升空間,特別是導(dǎo)熱性和拉伸強(qiáng)度。2023年,Chen等[84]通過(guò)使用CCNF1.2(羧基含量為1.2 mmol/g的羧甲基化CNF)同時(shí)作為BNNS(氮化硼納米片)的有效分散劑和增強(qiáng)基質(zhì),制備了具有優(yōu)異綜合性能的BNNS-CNF納米復(fù)合薄膜,制備過(guò)程如圖6a所示。CCNF1.2的高長(zhǎng)徑比使其對(duì)BNNS具有優(yōu)異的分散能力,提供強(qiáng)大的空間位阻排斥力。同時(shí),CCNF1.2與BNNS表現(xiàn)出最強(qiáng)的疏水-疏水相互作用,其羧基與BNNS的?OH完全通過(guò)氫鍵相互作用。因此,如圖6b所示,BNNS-CCNF1.2薄膜(BNNS質(zhì)量分?jǐn)?shù)為50%)表現(xiàn)出致密的排列結(jié)構(gòu)和優(yōu)異的綜合性能(拉伸強(qiáng)度為125.0 MPa、面內(nèi)導(dǎo)熱率為17.3 W/(m·K)和改善的耐水性),BNNS-CCNF1.2薄膜在1 kHz時(shí)的介電常數(shù)為1.06,介電常數(shù)在高頻(10 kHz至1 MHz)下的漂移可以忽略不計(jì)。這項(xiàng)工作證明了CCNF在提高BNNS-CNF薄膜整體性能方面的有效性,并為其在下一代電子設(shè)備的先進(jìn)熱管理中的實(shí)際應(yīng)用鋪平了道路。

圖6 BNNS-CCNF1.2復(fù)合薄膜[84]

目前距納米紙誕生已經(jīng)過(guò)了10年時(shí)間,研究人員對(duì)納米紙的制備、性能研究以及各種納米紙襯底在柔性電子器件的應(yīng)用已經(jīng)初步取得了一系列的突破和成果。納米紙作為一種天然可再生的新型襯底,同時(shí)兼具優(yōu)異的力學(xué)性能、光學(xué)性能和熱穩(wěn)定性,被認(rèn)為在柔性電子器件領(lǐng)域具有光明的應(yīng)用前景,目前已成功應(yīng)用于薄膜晶體管、太陽(yáng)能電池、有機(jī)發(fā)光二極管[85]等多種電子器件中。但是,目前有關(guān)納米紙及納米紙基襯底材料應(yīng)用于電子器件領(lǐng)域的研究多處于實(shí)驗(yàn)室階段,實(shí)現(xiàn)大規(guī)模商業(yè)化應(yīng)用的過(guò)程還面臨一些科學(xué)技術(shù)問(wèn)題和挑戰(zhàn)[86]。在納米紙制備方面,目前通過(guò)真空過(guò)濾法或鑄涂法制備納米紙的工藝時(shí)間成本太高,未來(lái)需研發(fā)新的生產(chǎn)工藝和設(shè)備實(shí)現(xiàn)納米紙的高效率制備;在器件構(gòu)建方面,基于納米紙基襯底的器件性能與玻璃或塑料基器件還存在差距,未來(lái)需進(jìn)一步優(yōu)化納米紙的光、電、熱穩(wěn)定性及力學(xué)性能,深入研究納米紙襯底的結(jié)構(gòu)與各項(xiàng)性能參數(shù)對(duì)器件性能的影響,進(jìn)一步提升納米紙電子器件的性能。

2.2 電子器件的絕緣材料

絕緣材料是各種電子器件的重要組成部分之一,目前電子行業(yè)中常用的無(wú)機(jī)絕緣材料大多不可降解,廢棄后會(huì)對(duì)環(huán)境造成破壞。由于具有穩(wěn)定的化學(xué)結(jié)構(gòu)與致密的物理堆積,納米纖維素薄膜有被用作絕緣材料的潛力。同時(shí),納米纖維素還具有柔韌性好、表面光滑、質(zhì)量輕盈、高透明度、低熱膨脹和生物相容性好等優(yōu)點(diǎn),基于納米纖維素的絕緣材料有望用于高性能環(huán)保電子器件中。目前,已有一些基于納米纖維素薄膜作絕緣層的晶體管等電子器件的報(bào)道[87-94]。

2014年,Gaspar等[93]首次報(bào)道了一種基于CNC絕緣薄膜的透明場(chǎng)效應(yīng)晶體管,制備過(guò)程首先采用鑄涂法制備厚度為20 μm的CNC薄膜,隨后將其他器件結(jié)構(gòu)構(gòu)建在CNC兩側(cè),該器件的制備過(guò)程及器件結(jié)構(gòu)如圖7a所示。在該結(jié)構(gòu)中,CNC薄膜同時(shí)充當(dāng)FET器件的基板和絕緣層。FET器件性能如圖7b所示,其溝道飽和遷移率高于7 cm2/(V·s),源漏電流開(kāi)關(guān)比高于105,亞閾值擺幅為2.11 V/dec。Fortunato等[95-99]的一系列研究結(jié)果表明基于納米纖維素薄膜絕緣材料制備高性能場(chǎng)效應(yīng)電子器件具有可行性。

2017年,Cunha等[92]以CNF薄膜單獨(dú)作為絕緣層,并以IGZO薄膜作為半導(dǎo)體層制備了TFT器件,器件結(jié)構(gòu)如圖8a所示。CNF薄膜由羧甲基化CNF制備,由于羧甲基化過(guò)程會(huì)在納米纖維素溶液中引入可移動(dòng)的離子,因此所得CNF薄膜具有離子膠介電特性。在低頻(~200 Hz)下可獲得較高的有效電容密度(2~6 μF/cm2),IGZO TFT工作電壓小于2 V,開(kāi)/關(guān)電流比高于106,關(guān)態(tài)電流約為10–8A,表明CNF絕緣層具有良好的絕緣特性。同年,Shao等[100]在紙襯底/銀電極復(fù)合材料上依次沉積CNF薄膜和氧化銦鋅(IZO)薄膜制備了晶體管器件,其結(jié)構(gòu)如圖8b所示。經(jīng)測(cè)試,當(dāng)測(cè)試電場(chǎng)設(shè)為?3.0~3.0 kV/cm時(shí),CNF薄膜的最大漏電流密度約為10?6A/cm2,與常規(guī)氧化物絕緣材料接近。同時(shí),得益于CNF絕緣薄膜的低漏電流和高電容,所得薄膜晶體管的開(kāi)啟電壓小于1.5 V,開(kāi)關(guān)比高于107,關(guān)態(tài)電流低于10?10A。

圖7 兼具襯底和絕緣層功能的CNC薄膜[93]

圖8 基于CNF絕緣層的電子器件

目前,用作絕緣材料的納米纖維素主要采用鑄涂法制備,先制得大片的薄膜后再進(jìn)行切割。這樣的工藝不能精確控制薄膜的厚度、尺寸等,不利于器件的小型化以及集成化。噴墨印刷是一種綠色環(huán)保的溶液法薄膜沉積工藝,具有節(jié)約材料、生產(chǎn)速率快、無(wú)需光刻以及成本低廉等優(yōu)勢(shì),有望克服傳統(tǒng)鑄涂、過(guò)濾工藝的不足,從而促進(jìn)CNF絕緣薄膜在大規(guī)模集成電路的應(yīng)用。2020年,Zhou等[101]報(bào)道了通過(guò)噴墨打印制備均勻的CNF薄膜的研究,并基于CNF絕緣層構(gòu)建了IGZO TFT,器件結(jié)構(gòu)及性能如圖11所示。該研究中,選用TEMPO氧化處理的CNF作為原材料,加入合適濃度的PVA、EG及FSO作為添加劑調(diào)控墨水的黏度、表面張力及墨水揮發(fā)速率,得到了適用于印刷系統(tǒng)的、具有快速自凝膠特性的CNF墨水。印刷后的CNF薄膜表現(xiàn)出良好的均勻性,同時(shí)還兼具高透明度、低漏電流密度和高效率電容等優(yōu)異性能。以噴墨打印CNF薄膜為絕緣層的高性能薄膜晶體管,其遷移率大于10 cm2/(V·s),電流開(kāi)關(guān)比超過(guò)5×104。該項(xiàng)研究證明了CNF絕緣薄膜具有大規(guī)模應(yīng)用于電子元器件的潛力。

圖9 基于噴墨打印CNF絕緣薄膜的IGZO TFT[101]

隨著對(duì)納米纖維素基材料的研究和認(rèn)識(shí)不斷深入,其用途不局限于作為電子器件的襯底材料,還有望作為電子器件的功能組件,提升電子器件的性能。納米纖維素薄膜具有極高的光學(xué)透過(guò)率、良好的電學(xué)絕緣性以及獨(dú)特的離子膠電容特性,有望作為絕緣層廣泛應(yīng)用于透明電子器件、低功耗電子器件以及環(huán)保電子器件中,從而減緩電子廢棄物帶來(lái)的環(huán)境問(wèn)題。然而,目前納米纖維素絕緣薄膜的應(yīng)用仍存在不少問(wèn)題。納米纖維素薄膜主要采用鑄涂工藝制備,往往只能先得到大片的薄膜,之后再根據(jù)需求進(jìn)行切割,制備流程需要額外的剝離、轉(zhuǎn)移以及切割過(guò)程,難以兼容大規(guī)模的工業(yè)生產(chǎn)。進(jìn)一步地,通過(guò)鑄涂法不能精確控制薄膜的厚度、尺寸等,所得薄膜的厚度、尺寸過(guò)大,不利于器件的小型化以及集成化。此外,由于薄膜不能精細(xì)圖形化,多個(gè)器件集成時(shí)需要共用一片薄膜作為絕緣層,因此相互之間存在耦合串?dāng)_現(xiàn)象,不利于集成電路的穩(wěn)定工作。噴墨印刷技術(shù)具有定位準(zhǔn)確、尺寸可控以及圖形化精度高等優(yōu)點(diǎn),基于噴墨印刷技術(shù)開(kāi)發(fā)納米纖維素薄膜制備工藝,有望克服傳統(tǒng)鑄涂、過(guò)濾工藝的不足,從而促進(jìn)CNF絕緣薄膜在大規(guī)模集成電路的應(yīng)用。

3 結(jié)語(yǔ)

納米纖維素基材料擁有柔韌性好、透明度高、質(zhì)量輕盈以及環(huán)境友好等優(yōu)點(diǎn)。近年來(lái),許多關(guān)于納米纖維素基材料應(yīng)用于電子器件中作為柔性襯底或其他功能材料的研究被報(bào)道。本文介紹了納米纖維素的制備工藝以及納米纖維素基材料在電子器件中的應(yīng)用。雖然已經(jīng)取得了許多成果和突破,但目前對(duì)納米纖維素基電子器件的開(kāi)發(fā)還主要停留在實(shí)驗(yàn)室階段,目前常用的納米紙制備方法,如真空過(guò)濾法或鑄涂法,制備流程較為復(fù)雜,且所制備的薄膜厚度往往較大,無(wú)法實(shí)現(xiàn)薄膜尺寸的精確控制,納米纖維素想要在未來(lái)柔性電子產(chǎn)品中取得大范圍應(yīng)用,還需要解決納米紙低成本、大面積制備的問(wèn)題,未來(lái)需研發(fā)新的生產(chǎn)工藝和設(shè)備實(shí)現(xiàn)納米紙的高效率制備。在器件構(gòu)建方面,基于納米紙基襯底的器件性能與玻璃或塑料基器件還存在差距,納米紙基材料無(wú)法耐受較高的工藝溫度,一定程度上限制了其在高性能電子器件中的應(yīng)用,未來(lái)需進(jìn)一步優(yōu)化納米紙的光、電、熱穩(wěn)定性及力學(xué)性能,深入研究納米紙襯底的結(jié)構(gòu)與各項(xiàng)性能參數(shù)對(duì)器件性能的影響,進(jìn)一步提升納米紙電子器件的性能。為了實(shí)現(xiàn)商業(yè)化應(yīng)用,必須加強(qiáng)與其他學(xué)科之間的交叉融合,找到納米纖維素材料及器件制備的新理論與新工藝,在高效率制備及優(yōu)異器件性能等方向?qū)で笸黄?。納米纖維素可從自然界中儲(chǔ)量豐富的植物纖維素中獲取,同時(shí)具有環(huán)保無(wú)毒且可生物降解等優(yōu)點(diǎn),符合當(dāng)今世界對(duì)環(huán)境保護(hù)的理念,未來(lái)與傳統(tǒng)的石油化工產(chǎn)品進(jìn)行競(jìng)爭(zhēng)將是大勢(shì)所趨??梢韵嘈?,納米紙襯底將會(huì)成為主流的新型綠色柔性襯底,推動(dòng)下一代電子器件朝著柔性、質(zhì)輕、低成本、可降解的方向發(fā)展,促進(jìn)人類(lèi)社會(huì)的可持續(xù)發(fā)展。

[1] QIN M, CHEN C Y, SONG B, et al. A Review of Biodegradable Plastics to Biodegradable Microplastics: Another Ecological Threat to Soil Environments?[J]. Journal of Cleaner Production, 2021, 312: 127816.

[2] LIU Q, CAO J, LI K Q, et al. Chromosomal Aberrations and DNA Damage in Human Populations Exposed to the Processing of Electronics Waste[J]. Environmental Science and Pollution Research, 2009, 16(3): 329-338.

[3] ZHANG T M, ZHANG Y, WANG X Y, et al. Characterization of the Nano-Cellulose Aerogel from Mixing CNF and CNC with Different Ratio[J]. Materials Letters, 2018, 229: 329-338.

[4] KUMAR R, SHARMA R K, SINGH A P. Grafted Cellulose: A Bio-Based Polymer for Durable Applications[J]. Polymer Bulletin, 2018, 75(5): 2213-2242.

[5] FANG Z Q, ZHANG H L, QIU S Y, et al. Versatile Wood Cellulose for Biodegradable Electronics[J]. Advanced Materials Technologies, 2021, 6(2): 2000928.

[6] FANG Z Q, HOU G Y, CHEN C J, et al. Nanocellulose-Based Films and Their Emerging Applications[J]. Current Opinion in Solid State and Materials Science, 2019, 23(4): 100764.

[7] EICHHORN S J. Cellulose Nanowhiskers: Promising Materials for Advanced Applications[J]. Soft Matter, 2011, 7(2): 303-315.

[8] ZHU H L, JIA Z, CHEN Y C, et al. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir[J]. Nano Letters, 2013, 13(7): 3093-3100.

[9] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: A New Family of Nature-Based Materials[J]. Angewandte Chemie (International Ed in English), 2011, 50(24): 5438-5466.

[10] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500.

[11] IFUKU S, YANO H. Effect of a Silane Coupling Agent on the Mechanical Properties of a Microfibrillated Cellulose Composite[J]. International Journal of Biological Macromolecules, 2015, 74: 428-432.

[12] LAVOINE N, DESLOGES I, DUFRESNE A, et al. Microfibrillated Cellulose - Its Barrier Properties and Applications in Cellulosic Materials: A Review[J]. Carbohydrate Polymers, 2012, 90(2): 735-764.

[13] WEI P, LI G H, GAO S, et al. Effectively Reinforcing Rolled Reconstituted Tobacco with Carboxymethylated Cellulose Fibers[J]. Cellulose, 2023, 30(11): 7129-7140.

[14] ZHOU J, FANG Z Q, CHEN K H, et al. Improving the Degree of Polymerization of Cellulose Nanofibers by Largely Preserving Native Structure of Wood Fibers[J]. Carbohydrate Polymers, 2022, 296: 119919.

[15] CHEN K H, QIN F M, FANG Z Q, et al. Mechanically Stable Core-Shell Cellulose Nanofibril/Sodium Alginate Hydrogel Beads with Superior Cu(II) Removal Capacity[J]. International Journal of Biological Macromolecules, 2022, 222: 1353-1363.

[16] ZHANG D J, LI G H, LIU Y, et al. Favorable Combination of Foldability and Toughness of Transparent Cellulose Nanofibril Films by a PET Fiber-Reinforced Strategy[J]. International Journal of Biological Macromolecules, 2020, 164: 3268-3274.

[17] ZHOU J, FANG Z Q, CUI J Y, et al. Wood-Inspired Strategy to Toughen Transparent Cellulose Nanofibril Films[J]. Carbohydrate Polymers, 2021, 259: 117759.

[18] TRACHE D, HUSSIN M H, MOHAMAD HAAFIZ M K, et al. Recent Progress in Cellulose Nanocrystals: Sources and Production[J]. Nanoscale, 2017, 9(5): 1763-1786.

[19] MOON R J, MARTINI A, NAIRN J, et al. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994.

[20] SANI A, DAHMAN Y. Improvements in the Production of Bacterial Synthesized Biocellulose Nanofibres Using Different Culture Methods[J]. Journal of Chemical Technology & Biotechnology, 2009, 85(2): 151-164.

[21] HUANG Y, ZHU C L, YANG J Z, et al. Recent Advances in Bacterial Cellulose[J]. Cellulose, 2014, 21(1): 1-30.

[22] ZIMMERMANN T, BORDEANU N, STRUB E. Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential[J]. Carbohydrate Polymers, 2010, 79(4): 1086-1093.

[23] 顧俐慧, 金永燦. 木質(zhì)纖維素納米纖絲的制備與表征[J]. 纖維素科學(xué)與技術(shù), 2018, 26(2): 31-37.

GU L H, JIN Y C. Preparation and Characterization of Lignocellulose Nanofibril (LCNF)[J]. Journal of Cellulose Science and Technology, 2018, 26(2): 31-37.

[24] ALEMDAR A, SAIN M. Biocomposites from Wheat Straw Nanofibers: Morphology, Thermal and Mechanical Properties[J]. Composites Science and Technology, 2008, 68(2): 557-565.

[25] CHENG Q, WANG S, RIALS T G J C P A A S, et al. Poly(Vinyl Alcohol) Nanocomposites Reinforced with Cellulose Fibrils Isolated by High Intensity Ultrasonication[J]. Composites Part A Applied Science & Manufacturing, 2009, 40(2): 218-224.

[26] CARVALHO A F, DE OLIVA NETO P, SILVA D, et al. Xylo-Oligosaccharides from Lignocellulosic Materials: Chemical Structure, Health Benefits and Production by Chemical and Enzymatic Hydrolysis[J]. Food Research International, 2013, 51(1): 75-85.

[27] W?GBERG L, DECHER G, NORGREN M, et al. The Build-up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes[J]. Langmuir, 2008, 24(3): 784-795.

[28] EYHOLZER C, BORDEANU N, LOPEZ-SUEVOS F, et al. Preparation and Characterization of Water-Redispersible Nanofibrillated Cellulose in Powder Form[J]. Cellulose, 2010, 17(1): 19-30.

[29] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-Oxidized Cellulose Nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.

[30] SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose[J]. Biomacromolecules, 2006, 7(6): 1687-1691.

[31] HOU G Y, ZHAO S S, LI Y J, et al. Mechanically Robust, Flame-Retardant Phosphorylated Cellulose Films with Tunable Optical Properties for Light Management in LEDs[J]. Carbohydrate Polymers, 2022, 298: 120129.

[32] HOU G Y, ZHAO S S, PENG L Y, et al. A Systematic Study for the Structures and Properties of Phosphorylated Pulp Fibers Prepared under Various Conditions[J]. Cellulose, 2022, 29(13): 7365-7376.

[33] BONDESON D, MATHEW A, OKSMAN K. Optimization of the Isolation of Nanocrystals from Microcrystalline Celluloseby Acid Hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.

[34] YU H Y, QIN Z Y, LIANG B L, et al. Facile Extraction of Thermally Stable Cellulose Nanocrystals with a High Yield of 93% through Hydrochloric Acidhydrolysis under Hydrothermal Conditions[J]. Journal of Materials Chemistry A, 2013, 1(12): 3938-3944.

[35] CAMARERO E S, KUHNT T, FOSTER E J, et al. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis[J]. Biomacromolecules, 2013, 14(4): 1223-1230.

[36] SADEGHIFAR H, FILPPONEN I, CLARKE S P, et al. Production of Cellulose Nanocrystals Using Hydrobromic Acid and Click Reactions on Their Surface[J]. Journal of Materials Science, 2011, 46(22): 7344-7355.

[37] 唐麗榮, 黃彪, 戴達(dá)松, 等. 納米纖維素晶體的制備及表征[J]. 林業(yè)科學(xué), 2011, 47(9): 119-122.

[38] LIU Y F, WANG H S, YU G, et al. A Novel Approach for the Preparation of Nanocrystalline Cellulose by Using Phosphotungstic Acid[J]. Carbohydrate Polymers, 2014, 110: 415-422.

[39] TAN X, ABD HAMID S B, LAI C W. Preparation of High Crystallinity Cellulose Nanocrystals (CNCS) by Ionic Liquid Solvolysis[J]. Biomass and Bioenergy, 2015, 81: 584-591.

[40] MAO J, OSORIO-MADRAZO A, LABORIE M P. Preparation of Cellulose I Nanowhiskers with a Mildly Acidic Aqueous Ionic Liquid: Reaction Efficiency and Whiskers Attributes[J]. Cellulose, 2013, 20(4): 1829-1840.

[41] CHEN L H, ZHU J Y, BAEZ C, et al. Highly Thermal-Stable and Functional Cellulose Nanocrystals and Nanofibrils Produced Using Fully Recyclable Organic Acids[J]. Green Chemistry, 2016, 18(13): 3835-3843.

[42] NAGARAJAN K J, BALAJI A N, KASI RAJAN S T, et al. Preparation of Bio-Eco Based Cellulose Nanomaterials from Used Disposal Paper Cups through Citric Acid Hydrolysis[J]. Carbohydrate Polymers, 2020, 235: 115997.

[43] LI S H, HUANG D K, YANG J C, et al. Freestanding Bacterial Cellulose-Polypyrrole Nanofibres Paper Electrodes for Advanced Energy Storage Devices[J]. Nano Energy, 2014, 9: 309-317.

[44] YANO H, SUGIYAMA J, NAKAGAITO A, et al. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers[J]. Advanced Materials, 2005, 17(2): 153-155.

[45] KONDO T, RYTCZAK P, BIELECKI S. Chapter 4 - Bacterial NanoCellulose Characterization[M]. Bacterial Nanocellulose. Amsterdam; Elsevier. 2016: 59-71.

[46] SHI Z J, PHILLIPS G O, YANG G. Nanocellulose Electroconductive Composites[J]. Nanoscale, 2013, 5(8): 3194-3201.

[47] JR R. Cellulose Structure and Biosynthesis: What is in Store for the 21st Century?[J]. Journal of Polymer Science Part A Polymer Chemistry, 2004, 42(3): 487-495.

[48] BROWN R M, WILLISON J H, RICHARDSON C L. Cellulose Biosynthesis in Acetobacter Xylinum: Visualization of the Site of Synthesis and Direct Measurement of the in Vivo Process[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(12): 4565-4569.

[49] CAMPANO C, BALEA A, BLANCO A, et al. Enhancement of the Fermentation Process and Properties of Bacterial Cellulose: A Review[J]. Cellulose, 2016, 23(1): 57-91.

[50] GATENHOLM P, KLEMM D. Bacterial Nanocellulose as a Renewable Material for Biomedical Applications[J]. MRS Bulletin, 2010, 35(3): 208-213.

[51] LIANG Z H, WU W J, FU X, et al. Flexible High-Entropy Poly(vinyl alcohol) Dielectric Films were Prepared at a Low Temperature and Applied to an Indium Gallium Zinc Oxide Thin-Film Transistor[J]. The Journal of Physical Chemistry Letters, 2023, 14(41): 9245-9249.

[52] 楊曌, 李保昌, 王燁, 等. 基板表面粗糙度對(duì)電阻薄膜微觀(guān)形貌及電學(xué)性能的影響[J]. 材料研究與應(yīng)用, 2022, 16(4): 505-510.

YANG Z, LI B C, WANG Y, et al. Effect of Substrate Surface Roughness on the Morphology and Electrical Properties of Resistance Films[J]. Materials Research and Application, 2022, 16(4): 505-510.

[53] PARK J S, KIM T W, STRYAKHILEV D, et al. Flexible Full Color Organic Light-Emitting Diode Display on Polyimide Plastic Substrate Driven by Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors[J]. Applied Physics Letters, 2009, 95(1): 013503.

[54] 周廷亮, 朱偉剛, 胡鳳鳴, 等. 基于碳纖維漿料的柔性薄膜彎曲傳感器制備與研究[J]. 材料研究與應(yīng)用, 2023, 17(2): 323-328.

ZHOU T L, ZHU W G, HU F M, et al. Preparation and Study of Flexible Thin Film Bending Sensors Based on Carbon Fiber Slurry[J]. Materials Research and Application, 2023, 17(2): 323-328.

[55] FUJISAKI Y, KOGA H, NAKAJIMA Y, et al. Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array[J]. Advanced Functional Materials, 2014, 24(12): 323-328.

[56] HENRIKSSON M, BERGLUND L. Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde[J]. Journal of Applied Polymer Science, 2007, 106(4): 2817-2824.

[57] FUKUZUMI H, SAITO T, IWATA T, et al. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation[J]. Biomacromolecules, 2009, 10(1): 162-165.

[58] ZHU H L, XIAO Z G, LIU D T, et al. Biodegradable Transparent Substrates for Flexible Organic-Light-Emitting Diodes[J]. Energy & Environmental Science, 2013, 6(7): 2105-2111.

[59] YAO R H, LI X Q, LI Z H, et al. Fabrication and Properties of Silver Nanowire Flexible Transparent Electrode; Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT)[C]// Inst Microelectron Chinese Acad Sci, Shanghai, Ieee: New York, 2018: 454-456.

[60] MING S Y, CHEN G, HE J H, et al. Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films[J]. Langmuir, 2017, 33(34): 8455-8462.

[61] TAO J S, FANG Z Q, ZHANG Q, et al. Super-Clear Nanopaper from Agro-Industrial Waste for Green Electronics[J]. Advanced Electronic Materials, 2017, 3(5): 1600539.

[62] FANG Z Q, ZHU H L, PRESTON C, et al. Highly Transparent and Writable Wood All-Cellulose Hybrid Nanostructured Paper[J]. Journal of Materials Chemistry C, 2013, 1(39): 6191-6197.

[63] GUO Y C, FANG Z Q, DU M D, et al. Flexible and Biocompatible Nanopaper-Based Electrode Arrays for Neural Activity Recording[J]. Nano Research, 2018, 11(10): 5604-5614.

[64] LI Y Y, ZHU H L, GU H B, et al. Strong Transparent Magnetic Nanopaper Prepared by Immobilization of Fe3O4Nanoparticles in a Nanofibrillated Cellulose Network[J]. Journal of Materials Chemistry A, 2013, 1(48): 15278-15283.

[65] FANG Z Q, LI B, LIU Y, et al. Critical Role of Degree of Polymerization of Cellulose in Super-Strong Nanocellulose Films[J]. Matter, 2020, 2(4): 1000-1014.

[66] SHUOYANG Q, HUILONG Z, QIANGU Y, et al. Flexible Lumped Microwave Passive Components and Filters on Cellulose Nanofibril Substrates[J]. IEEE Journal of Microwaves, 2023: 96-101.

[67] HU L B, ZHENG G Y, YAO J, et al. Transparent and Conductive Paper from Nanocellulose Fibers[J]. Energy & Environmental Science, 2013, 6(2): 513-518.

[68] ZHOU Y H, FUENTES-HERNANDEZ C, KHAN T M, et al. Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates[J]. Scientific Reports, 2013, 3: 1536.

[69] ZHOU Y H, KHAN T, LIU J C, et al. Efficient Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates with a Conducting Polymer Top Electrode Deposited by Film-Transfer Lamination[J]. Organic Electronics, 2014, 15(3): 661-666.

[70] 胡招湘, 侯高遠(yuǎn), 李冠輝, 等. 單根木質(zhì)纖維尺寸對(duì)高透光率纖維素復(fù)合薄膜霧度的影響[J]. 中國(guó)造紙, 2022, 41(10): 16-23.

HU Z X, HOU G Y, LI G H, et al. Effect of Individual Wood Fiber Dimension on Haze for High Transmittance Cellulose Composite Film[J]. China Pulp & Paper, 2022, 41(10): 16-23.

[71] HOU G Y, LIU Y, ZHANG D J, et al. Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31998-32005.

[72] HOU G Y, LI G H, CHEN H, et al. Rapid Preparation of Highly Transparent Paper with High Built-in Haze by an Ion Exchange Approach[J]. SSRN Electronic Journal, 2022, 439: 135776.

[73] HU W, FANG Z Q, LIU Y, et al. A Protonation Process to Enhance the Water Resistance of Transparent and Hazy Paper[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12385-12392.

[74] HUANG J, ZHU H L, CHEN Y C, et al. Highly Transparent and Flexible Nanopaper Transistors[J]. ACS Nano, 2013, 7(3): 2106-2113.

[75] FANG Z Q, ZHU H L, YUAN Y B, et al. Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells[J]. Nano Letters, 2014, 14(2): 765-773.

[76] ZHU H L, PARVINIAN S, PRESTON C, et al. Transparent Nanopaper with Tailored Optical Properties[J]. Nanoscale, 2013, 5(9): 3787-3792.

[77] NING H L, ZENG Y, KUANG Y D, et al. Room-Temperature Fabrication of High-Performance Amorphous In-Ga-Zn-O/Al(2)O(3)Thin-Film Transistors on Ultrasmooth and Clear Nanopaper[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27792-27800.

[78] ZHONG J Y, LI G H, GUO R P, et al. Bilayer Metal Oxide Channel Thin Film Transistor with Flat Interface Based on Smooth Transparent Nanopaper Substrate[J]. IEEE Electron Device Letters, 2022, 43(12): 2113-2116.

[79] TANG S W, WU Z G, FENG G X, et al. Multifunctional Sandwich-Like Composite Film Based on Superhydrophobic MXene for Self-Cleaning, Photodynamic and Antimicrobial Applications[J]. Chemical Engineering Journal, 2022, 454(9): 140457.

[80] WEI L S, WU Z G, TANG S W, et al. Tracheid-Inspired Nanoarchitectured Carbon-Based Aerogels with Ultra-Compressibility for Wearable Piezoresistive Sensors[J]. Carbon, 2022, 203(12): 386-396.

[81] TANG S W, WU Z G, LI X Y, et al. Nacre-Inspired Biodegradable Nanocellulose/MXene/AgNPs Films with High Strength and Superior Gas Barrier Properties[J]. Carbohydrate Polymers, 2023, 299: 120204.

[82] ZHOU W, FANG J W, TANG S W, et al. 3D-Printed Nanocellulose-Based Cushioning-Antibacterial Dual- Function Food Packaging Aerogel[J]. Molecules, 2021, 26(12): 3543.

[83] ZHOU W, WU Z G, XIE F W, et al. 3D Printed Nanocellulose-Based Label for Fruit Freshness Keeping and Visual Monitoring[J]. Carbohydrate Polymers, 2021, 273: 118545.

[84] CHEN K H, PENG L Y, FANG Z Q, et al. Dispersing Boron Nitride Nanosheets with Carboxymethylated Cellulose Nanofibrils for Strong and Thermally Conductive Nanocomposite Films with Improved Water-Resistance[J]. Carbohydrate Polymers, 2023, 321: 121250.

[85] NAJAFABADI E, ZHOU Y H, KNAUER K A, et al. Efficient Organic Light-Emitting Diodes Fabricated on Cellulose Nanocrystal Substrates[J]. Applied Physics Letters, 2014, 105(6): 1-4.

[86] 陳港, 彭從星, 況宇迪, 等. 納米紙襯底的制備、性能及其在柔性電子器件中的應(yīng)用[J]. 材料工程, 2018, 46(6): 1-10.

CHEN G, PENG C X, KUANG Y D, et al. Preparation, Properties and Applications of Nanopaper Substrates for Flexible Electronics[J]. Journal of Materials Engineering, 2018, 46(6): 1-10.

[87] LIU Z H, NIE S, LUO J, et al. Flexible Indium- Tin-Oxide Homojunction Thin-Film Transistors with Two In-Plane Gates on Cellulose-Nanofiber-Soaked Papers[J]. Advanced Electronic Materials, 2019, 5(7): 1900235.

[88] DAI S L, WANG Y, ZHANG J Y, et al. Wood-Derived Nanopaper Dielectrics for Organic Synaptic Transistors[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39983-39991.

[89] DAI S L, CHU Y L, LIU D P, et al. Intrinsically Ionic Conductive Cellulose Nanopapers Applied as all Solid Dielectrics for Low Voltage Organic Transistors[J]. Nature Communications, 2018, 9: 2737.

[90] HUANG J W, ZHOU Y X, ZHANG L, et al. Study on the Electrical Properties of Nanopaper Made from Nanofibrillated Cellulose for Application in Power Equipment[J]. Cellulose, 2018, 25(6): 3449-3458.

[91] TAO J, CAO S N. Flexible High Dielectric Thin Films Based on Cellulose Nanofibrils and Acid Oxidized Multi-Walled Carbon Nanotubes[J]. RSC Advances, 2020, 10(18): 10799-10805.

[92] CUNHA I, BARRAS R, GREY P, et al. Reusable Cellulose-Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte-Gated Transistors[J]. Advanced Functional Materials, 2017, 27(16): 1606755.

[93] GASPAR D, FERNANDES S N, DE OLIVEIRA A G, et al. Nanocrystalline Cellulose Applied Simultaneously as the Gate Dielectric and the Substrate in Flexible Field Effect Transistors[J]. Nanotechnology, 2014, 25(9): 094008.

[94] GASPAR D, PEREIRA L, DELATTRE A, et al. Engineered cellulose fibers as dielectric for oxide field effect transistors; proceedings of the E-MRS Spring Meeting/Symposium H/Symposium I/Symposium BB/Symposium FF/Symosium D, Lille, FRANCE, F May 11-15, 2015[C]// Wiley-V C H Verlag Gmbh: Weinheim, 2015: 1421-1426.

[95] FORTUNATO E, CORREIA N, BARQUINHA P, et al. High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper[J]. IEEE Electron Device Letters, 2008, 29(9): 988-990.

[96] MARTINS R, BARQUINHA P, PEREIRA L, et al. Write-Erase and Read Paper Memory Transistor[J]. Applied Physics Letters, 2008, 93(20): 203501.

[97] MARTINS R, NATHAN A, BARROS R, et al. Complementary Metal Oxide Semiconductor Technology with and on Paper[J]. Advanced Materials, 2011, 23(39): 4491-4496.

[98] MARTINS R F P, AHNOOD A, CORREIA N, et al. Recyclable, Flexible, Low-Power Oxide Electronics[J]. Advanced Functional Materials, 2013, 23(17): 2153-2161.

[99] MARTINS R, FERREIRA I, FORTUNATO E. Electronics with and on Paper[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2011, 5(9): 332-335.

[100]SHAO F, FENG P, WAN C J, et al. Multifunctional Logic Demonstrated in a Flexible Multigate Oxide- Based Electric-Double-Layer Transistor on Paper Substrate[J]. Advanced Electronic Materials, 2017, 3(3): 1600509.

[101]ZHOU S X, XU Z H, FANG Z Q, et al. Invited Paper: Inkjet Printing of Homogeneous and Green Cellulose Nanofibrils Dielectric for High Performance IGZO TFTS[J]. SID Symposium Digest of Technical Papers, 2021, 52(S2): 580-581.

Application of Nanocellulose-based Materials in Flexible Electronic Devices

XIONG Xin1a,b, NING Honglong1a,b, FANG Zhiqiang1c,d, SU Guoping1a,b, LI Zhenchao2, LIU Xianzhe3, YAO Rihui1a,b*, PENG Junbiao1a,b

(1. a. School of Materials Science and Engineering, b. State Key Laboratory of Luminescent Materials and Devices, c. School of Light Industry and Engineering, d. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; 2. State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding Co., Ltd., Guangdong Zhaoqing 526060, China; 3. Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Guangdong Jiangmen 529020, China)

Nanocellulose-based materials have attracted more and more attention in flexible electronic products in recent years due to their good flexibility, thermodynamic properties and high transparency. The review of the research progress in this field will help researchers to carry out research more efficiently. Three types of nanocellulose preparation methods and the research progress of applying nanocellulose-based materials in flexible electronic products were reviewed. The research examples of nanocellulose-based materials applied to flexible substrates of devices and insulating materials were described, and the advantages of nanocellulose in various directions of application as well as the existing problems were discussed, and finally, the future prospects of the material application were proposed. Nanocellulose is a product of the combination of natural cellulose and nanotechnology, which can be mainly divided into cellulose nanofibrils, cellulose nanocrystal and bacterial nanocellulose. In recent years, many achievements have been made in the research of nanocellulose-based materials as flexible substrates and insulating materials for electronic devices. Although the development of nanocellulose-based electronic devices is still mainly in the laboratory stage, compared with traditional petrochemical products, nanocellulose has the advantages of abundant raw materials and environmental degradation. The development and utilization of new nanocellulose-based materials can help to solve the increasingly serious problem of electronic waste in human society.

nanocellulose; flexible; renewable; insulating layer

TS206.4

A

1001-3563(2024)01-0040-14

10.19554/j.cnki.1001-3563.2024.01.006

2023-09-16

國(guó)家重點(diǎn)研發(fā)計(jì)劃資助(2021YFB3600604);國(guó)家自然科學(xué)基金(62174057,62074059,22090024,21978103);廣東省自然科學(xué)基金(2023A1515011026);廣東省教育廳廣東省普通高校重點(diǎn)領(lǐng)域?qū)m?xiàng)(新一代電子信息)(2022ZDZX1002);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金(2020B1515020021,2023B1515040013);季華實(shí)驗(yàn)室自主立項(xiàng)項(xiàng)目(X190221TF191)

猜你喜歡
電子器件襯底纖維素
《電子器件》期刊征訂
《電子器件》期刊征訂
《電子器件》期刊征訂
硅襯底LED隧道燈具技術(shù)在昌銅高速隧道中的應(yīng)用
纖維素基多孔相變復(fù)合材料研究
《電子器件》期刊征訂
纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
大尺寸低阻ZnO單晶襯底
大尺寸低阻ZnO 單晶襯底
大尺寸低阻ZnO 單晶襯底
梁平县| 通化市| 台前县| 洛阳市| 梅河口市| 郯城县| 二连浩特市| 阜阳市| 呼图壁县| 西昌市| 渭南市| 东阳市| 固始县| 尼玛县| 永宁县| 临猗县| 兴隆县| 巩留县| 察雅县| 巫山县| 莱州市| 唐河县| 肇源县| 郯城县| 高平市| 玛沁县| 凭祥市| 厦门市| 绍兴市| 罗城| 湘潭县| 永清县| 谢通门县| 嵊州市| 仪陇县| 和田市| 宁武县| 宜黄县| 清丰县| 潜江市| 博兴县|