王玉璞 李家正 石妍
摘要:普通混凝土在特殊環(huán)境下容易出現(xiàn)性能劣化、耐久性不足的問(wèn)題。超高延性水泥基復(fù)合材料(ECC)是一種纖維增強(qiáng)水泥復(fù)合材料,在拉伸載荷作用下產(chǎn)生微裂紋后具有應(yīng)變硬化和自愈合能力,使ECC在各種環(huán)境條件下比普通混凝土有更佳的耐久性。綜述了近年來(lái)國(guó)內(nèi)外關(guān)于ECC耐久性的研究進(jìn)展,總結(jié)了ECC在抗?jié)B性、抗凍性、耐化學(xué)侵蝕性能、耐高溫性、耐磨性相關(guān)方面的特點(diǎn),并與普通混凝土進(jìn)行了對(duì)比。研究發(fā)現(xiàn):目前關(guān)于多因素耦合條件下ECC的耐久性研究、耐久性微觀層面解釋以及設(shè)計(jì)耐高溫、耐磨性好的ECC等方面研究還不充分,基于此提出了幾個(gè)未來(lái)研究方向。
摘要:超高延性水泥基復(fù)合材料; 耐久性; 裂縫; 纖維; 自愈合
中圖法分類號(hào): X171;TV74
文獻(xiàn)標(biāo)志碼: A
DOI:10.16232/j.cnki.1001-4179.2024.01.025
0 引 言
混凝土是建筑工程中應(yīng)用最廣泛的材料,中國(guó)作為基礎(chǔ)建設(shè)大國(guó),混凝土產(chǎn)量占全球半數(shù)以上,隨著工業(yè)化的不斷發(fā)展,產(chǎn)量仍在增加。混凝土在長(zhǎng)期使用的過(guò)程中,會(huì)存在耐久性減弱甚至消失的問(wèn)題:在近海地區(qū)存在各種離子侵蝕的問(wèn)題,在高海拔地區(qū)存在凍融破壞的問(wèn)題,同時(shí)混凝土自身的耐高溫性、磨損沖擊作用下的耐磨性均受到了考驗(yàn)。
20世紀(jì)90年代所發(fā)明的超高延性水泥基復(fù)合材料(ECC)是一種纖維增強(qiáng)水泥基材料,根據(jù)微觀力學(xué)原理設(shè)計(jì),摻入2%的纖維,它就具有拉伸應(yīng)變硬化和多縫開裂行為[1]。其抗壓強(qiáng)度為20~80 MPa,拉伸應(yīng)變能力為2%~10%,裂縫寬度通常小于100 μm[2]。ECC的應(yīng)變硬化、多裂紋開展和良好的自愈合能力導(dǎo)致其在滲透、凍融、腐蝕和高溫等環(huán)境下比普通混凝土具有更好的耐久性,在加固和修復(fù)結(jié)構(gòu),新建交通、地下、水利和海洋等承受復(fù)雜載荷條件和惡劣服役環(huán)境的基礎(chǔ)設(shè)施方面具有良好潛力[3]。本文總結(jié)了近年來(lái)國(guó)內(nèi)外ECC耐久性研究的最新成果,發(fā)現(xiàn)研究中關(guān)于多因素耦合、微觀層面解釋、設(shè)計(jì)耐久性優(yōu)異的ECC等方面研究還較少,進(jìn)而提出了未來(lái)ECC耐久性的研究方向。
1 ECC耐久性主要特點(diǎn)
1.1 應(yīng)變硬化特點(diǎn)及機(jī)理
普通纖維混凝土在拉伸荷載的作用下,由于混凝土承載力下降,裂縫間的纖維會(huì)被拉出,與普通混凝土的脆性破壞不同,纖維混凝土?xí)霈F(xiàn)拉伸軟化的現(xiàn)象,材料強(qiáng)度的下降會(huì)比較緩慢,纖維也能限制裂紋的發(fā)展。圖1展示了聚丙烯纖維混凝土受到拉伸荷載時(shí)應(yīng)力-應(yīng)變的關(guān)系,可以看出存在明顯的應(yīng)變軟化行為[4]。
不同于普通纖維混凝土,ECC在單軸拉伸的作用下,初裂后呈現(xiàn)出拉伸應(yīng)變強(qiáng)化的行為,應(yīng)變持續(xù)增加,且仍能承受更高的荷載,由初裂點(diǎn)開裂發(fā)展為多裂縫開展。ECC通過(guò)裂縫起裂強(qiáng)度準(zhǔn)則和扁平裂紋擴(kuò)展能量準(zhǔn)則實(shí)現(xiàn)應(yīng)變強(qiáng)化,整個(gè)過(guò)程依賴于纖維的橋聯(lián)作用,纖維會(huì)承擔(dān)基體傳遞的荷載,使得在高應(yīng)變時(shí)仍能保持承載能力,典型的ECC應(yīng)力-應(yīng)變曲線及裂縫寬度發(fā)展曲線如圖2所示[5]。
1.2 自愈合特點(diǎn)及機(jī)理
混凝土的自愈合過(guò)程是復(fù)雜的化學(xué)和物理過(guò)程的結(jié)合,之前學(xué)者認(rèn)為有幾種原因可能導(dǎo)致自愈合現(xiàn)象:① 水泥水化過(guò)程中,氫氧化鈣與二氧化碳反應(yīng)生成碳酸鈣填充裂縫促進(jìn)自愈合;② 通過(guò)水中的雜質(zhì)和裂縫剝落產(chǎn)生的松散混凝土顆粒堵塞裂縫;③ 未反應(yīng)的水泥或膠凝材料進(jìn)一步水化;④ 裂紋側(cè)面已水化的水泥基體膨脹(C-S-H膨脹)[6]。
但后續(xù)研究發(fā)現(xiàn),ECC材料具有更加優(yōu)異的自愈合效果不僅得益于上述幾種原因,更重要的是以下幾個(gè)因素:① ECC良好的裂縫控制能力導(dǎo)致多裂紋開展及最大裂紋寬度小于100 μm,整個(gè)開裂過(guò)程應(yīng)力不斷被分散;② ECC的低水膠比使其含有較多的未水化水泥顆粒,有助于裂縫的自愈合;③ 纖維的橋聯(lián)作用降低了裂紋的橫截面面積,通過(guò)減少流體有效地提高了斷面處的pH值;④ 水在纖維下側(cè)的湍流區(qū)滯留,能促進(jìn)自愈合產(chǎn)物的生長(zhǎng);⑤ 礦物摻合料粉煤灰、礦渣的二次水化反應(yīng)[7]。圖3展示了X-CT圖像中ECC自愈合情況[8]。
2 耐久性研究進(jìn)展
2.1 抗?jié)B性
ECC抗?jié)B性能優(yōu)異,無(wú)裂縫和帶裂縫的狀態(tài)都優(yōu)于普通混凝土。無(wú)裂縫的狀態(tài)下,孔隙率和孔隙分布決定了混凝土的抗?jié)B透性,不同大小的孔隙中,尺寸介于100~1 000 nm的毛細(xì)孔對(duì)滲透性影響最大,毛細(xì)孔越多,抗?jié)B透性越差,普通混凝土的毛細(xì)孔占比達(dá)到50%以上,而經(jīng)過(guò)微觀力學(xué)設(shè)計(jì)的ECC內(nèi)部孔結(jié)構(gòu)更加致密,毛細(xì)孔更少,水分子在水壓力作用下更難滲透至材料內(nèi)部,從而在無(wú)裂縫的狀態(tài)下ECC的抗?jié)B性更為優(yōu)異。試驗(yàn)表明,28 d齡期的ECC相對(duì)滲透系數(shù)僅為C30混凝土的75%[9]。
開裂狀態(tài)下,普通混凝土的滲透性與裂縫寬度存在密切關(guān)系,從未開裂狀態(tài)到裂縫寬度約50~60 μm時(shí),滲透性保持不變,隨后隨著裂縫開口增加到200 μm,滲透性與裂縫寬度的三次冪成正比,然后在裂縫開口達(dá)到200 μm后,滲透性穩(wěn)步增加。當(dāng)混凝土裂縫寬度小于100 μm時(shí),可以認(rèn)為混凝土的抗?jié)B性能與未開裂混凝土是一致的,即裂縫對(duì)混凝土滲透性影響不大[10]。而ECC在帶裂縫狀態(tài)下仍表現(xiàn)出較好的抗?jié)B性,主要得益于其較好的裂紋控制能力,應(yīng)變硬化的行為特點(diǎn)導(dǎo)致ECC的平均裂紋寬度可以控制在100 μm以下,且現(xiàn)在大多數(shù)制備的ECC基本將裂紋寬度控制在了20~60 μm之間[11],從而在帶裂縫的狀態(tài)下抗?jié)B性明顯優(yōu)于普通混凝土。
當(dāng)前實(shí)驗(yàn)主要通過(guò)不同的預(yù)加載來(lái)模擬帶裂縫的情況。普通混凝土在預(yù)加載后,抗?jié)B性下降明顯,而纖維的加入可以顯著降低水的滲透性,通過(guò)比較ECC與纖維增強(qiáng)砂漿材料(FRM)的滲透性能,發(fā)現(xiàn)ECC又明顯優(yōu)于FRM。FRM滲透系數(shù)會(huì)隨著裂縫寬度的增加而增加,當(dāng)裂縫寬度達(dá)到500 μm時(shí),其滲透系數(shù)上升了7個(gè)數(shù)量級(jí),抗?jié)B性明顯下降;ECC在高拉伸應(yīng)變(3%)狀態(tài)下,滲透系數(shù)僅為7.74×10-10。如表1所列,通過(guò)比較預(yù)加載拉伸應(yīng)變?yōu)?.5%,2%和3%時(shí)ECC的歸一化滲透系數(shù),發(fā)現(xiàn)不論預(yù)加載應(yīng)變水平如何,ECC的裂縫寬度都穩(wěn)定在60 μm左右,且有著較低的滲透系數(shù),基本都在10-10以下的數(shù)量級(jí)[12-13]。李慶華等[9]對(duì)帶裂縫工作狀態(tài)下ECC水滲透性能的研究結(jié)果同樣也表明:ECC裂縫寬度控制在40~70 μm之間,滲透系數(shù)小于1.0×10-9 m/s,并總結(jié)了滲透系數(shù)與裂縫寬度之間的擬合公式:
K=-6.04257×10-10+3.2838×10-11x-5.8568×10-13x2+5.8568×10-15x3(1)
式中:K為單條裂縫對(duì)應(yīng)的滲透系數(shù),m/s;x為裂縫寬度,μm。Yu[14]、Liu[15]等的實(shí)驗(yàn)也都發(fā)現(xiàn)在帶裂縫預(yù)加載的狀態(tài)下,ECC的滲透系數(shù)較低,基本介于7.73×10-12~8.18×10-12 m/s之間。
ECC的自愈合能力使得其長(zhǎng)時(shí)間浸泡在水中后滲透系數(shù)變化仍較小。已有研究表明,ECC自愈合速度與裂縫寬度成反比,在裂縫寬度小于60 μm的情況下,ECC的滲透性可在3~4 d內(nèi)趨于穩(wěn)定;裂縫寬度大于100 μm時(shí),ECC滲透性需要7~10 d甚至更長(zhǎng)時(shí)間才會(huì)穩(wěn)定[16]。裂紋緊密的ECC可在短時(shí)間內(nèi)完成自愈合,可有效防止水和腐蝕性離子的攻擊。Ma等[17]通過(guò)滲透性試驗(yàn)發(fā)現(xiàn),經(jīng)過(guò)10次干濕循環(huán)后,ECC的相對(duì)透水性下降至0。Liu等[15]建立了一個(gè)指數(shù)函數(shù)來(lái)描述ECC自愈合效應(yīng)引起的滲透率變化。Wang等[18]采用數(shù)字圖像處理方法對(duì)裂紋形貌進(jìn)行表征,基于裂紋寬度和裂紋數(shù)量的威布爾分布,提出了一種含裂紋混雜纖維ECC的滲透率模型,并觀察了其自愈合行為,從微觀層面觀察自愈合和滲透性的關(guān)系。目前還有學(xué)者研究了添加納米二氧化硅固化溶液[19]、結(jié)晶材料[20]、芽孢桿菌[21]來(lái)提升ECC自愈合的能力,并通過(guò)吸水性試驗(yàn)發(fā)現(xiàn)ECC的抗?jié)B性得以提升。
2.2 抗凍性
ECC具有良好的抗凍性,經(jīng)過(guò)上百次的凍融循環(huán)后,質(zhì)量損失較少,且各方面性能也都仍處于較高水平。ECC的高抗凍性一方面是由于ECC內(nèi)部的大孔體積數(shù)量較多,使得毛細(xì)孔中的水在結(jié)冰時(shí)產(chǎn)生的體積膨脹有更多的壓力釋放空間[22];另一方面由于PVA纖維的存在,使得ECC在拉伸荷載下具有超高延展性,如果結(jié)冰時(shí)水的膨脹體積大于孔隙體積,水膨脹所產(chǎn)生的壓力逐漸積聚甚至超過(guò)ECC基體的抗拉強(qiáng)度時(shí),就會(huì)產(chǎn)生微裂紋,從而釋放內(nèi)部水膨脹應(yīng)力,提高抗凍性[11,22-24]。
混凝土的抗凍性與其孔隙分布有著密切關(guān)系。Neithalath等[25]的研究表明,隨著孔的尺寸和孔隙率的增大,混凝土的抗凍性變差。普通混凝土在經(jīng)過(guò)凍融循環(huán)后孔隙率和孔徑都會(huì)顯著增加,各種性能都會(huì)急劇下降。但Sahmaran等[22]發(fā)現(xiàn)經(jīng)過(guò)凍融作用后ECC的孔隙率沒(méi)有顯著變化(見表2),這一結(jié)果進(jìn)一步驗(yàn)證了ECC的良好抗凍性,凍融循環(huán)后仍能保持優(yōu)異的性能。
ECC的凍融破壞過(guò)程類似于普通混凝土,即內(nèi)部水結(jié)冰產(chǎn)生體積膨脹,過(guò)冷水發(fā)生遷移,引起各種壓力變化,當(dāng)壓力超過(guò)混凝土能承受的應(yīng)力時(shí),混凝土內(nèi)部孔隙及微裂縫逐漸增大,擴(kuò)展并互相連通,強(qiáng)度逐漸降低,造成結(jié)構(gòu)破壞[26]。但由于ECC內(nèi)部纖維的橋聯(lián)作用,整個(gè)破壞過(guò)程中存在一個(gè)屈服階段。Zhong等[27]通過(guò)Mann-Kendall方法描述了ECC整個(gè)凍融狀態(tài),分為穩(wěn)定、不穩(wěn)定和屈服3個(gè)不同的階段。在不穩(wěn)定和屈服階段,盡管損傷增加,ECC材料特性發(fā)生演變,但仍能承受凍融循環(huán)作用,他還定義了初始霜凍失效(IF),即處于穩(wěn)定和不穩(wěn)定之間的臨界點(diǎn),和漸進(jìn)霜凍失效(PF),即IF之后的另一個(gè)過(guò)渡點(diǎn),從PF開始,ECC材料迅速變?nèi)醪⒔咏罱K失效。
Li[23]通過(guò)實(shí)驗(yàn)也證明ECC具有優(yōu)異的抗凍性,其平均耐久系數(shù)超過(guò)100,而普通混凝土的耐久系數(shù)僅為20。徐世烺[28]以及Sahmaran[22]等的研究都表明,經(jīng)過(guò)同樣次數(shù)的凍融循環(huán),尤其在210次循環(huán)后,ECC仍能保持較好的性能,彎拉強(qiáng)度只有小幅下降,且仍有較好的韌性,而普通混凝土或者砂漿的強(qiáng)度已經(jīng)消失殆盡。靳賀松等[29]的實(shí)驗(yàn)也發(fā)現(xiàn)ECC在經(jīng)過(guò)多次凍融循環(huán)后,質(zhì)量損失率、抗壓強(qiáng)度、極限抗拉強(qiáng)度、極限拉應(yīng)變、抗折強(qiáng)度以及抗凍融體積膨脹變形性能等仍能保持較高水平。
ECC的自愈合能力使得帶裂縫預(yù)加載的試件在凍融循環(huán)過(guò)程中強(qiáng)度下降并不明顯,尤其在融化期間,會(huì)促進(jìn)ECC緊密的微裂紋中形成二次水化產(chǎn)物,發(fā)生輕微愈合,使之仍能保持一定的強(qiáng)度和性能。Sahmaran等[30]發(fā)現(xiàn)ECC梁在300次凍融循環(huán)后,原始無(wú)裂縫和跨中預(yù)裂2.5 mm試樣的抗彎強(qiáng)度分別只下降了13.0%和19.4%,跨中撓度值分別只降低32.5%和30.6%。Yu等[31]發(fā)現(xiàn)隨著拉伸應(yīng)變的增加,經(jīng)過(guò)凍融循環(huán)后,ECC的拉伸性能變差,超聲脈沖的恢復(fù)程度降低,預(yù)拉伸應(yīng)變小于1.5%時(shí),自愈合后的ECC其吸附系數(shù)與原始ECC相似,幾乎沒(méi)有任何損傷,同樣印證了自愈合使得凍融循環(huán)對(duì)ECC的影響較小。
2.3 耐化學(xué)侵蝕性能
ECC在氯離子和硫酸根離子的侵蝕環(huán)境中,表現(xiàn)出比普通混凝土更加優(yōu)異的耐化學(xué)侵蝕性,主要原因在于水化產(chǎn)物、鈣礬石和石膏的連續(xù)生成導(dǎo)致纖維-基體界面過(guò)渡區(qū)的致密化,摩擦鍵增加,纖維的最大橋聯(lián)應(yīng)力增加[32]。
通過(guò)快速氯離子滲透試驗(yàn),施加干濕循環(huán),發(fā)現(xiàn)早齡期ECC與普通混凝土的氯離子滲透系數(shù)相差不大,隨著齡期的增長(zhǎng),二者均有下降趨勢(shì),ECC下降的幅度更為明顯,120 d齡期時(shí),ECC的氯離子滲透系數(shù)只有28 d齡期時(shí)的1/3,是同齡期混凝土的1/2[33]。干濕循環(huán)次數(shù)的增加會(huì)加速氯化物的侵蝕,但會(huì)降低ECC后期的擴(kuò)散系數(shù)和速率[34]。氯離子的影響更多體現(xiàn)在對(duì)鋼筋混凝土造成嚴(yán)重的腐蝕,氯離子通過(guò)降低孔溶液的pH,使得鋼筋表面的鈍化膜被破壞,所暴露出的基體與鈍化膜完好的基體形成電位差,形成腐蝕電池,加速蝕坑形成;氯離子加速了腐蝕電池陽(yáng)極產(chǎn)物的搬運(yùn),強(qiáng)化離子通路,降低電阻,使得腐蝕不斷進(jìn)行[35]。對(duì)于未開裂的試件,發(fā)現(xiàn)鋼筋增強(qiáng)砂漿試件的氯離子滲透高度接近100 mm,而鋼筋增強(qiáng)ECC中最大也只有22.8 mm,對(duì)于開裂狀態(tài)下的試件,這一數(shù)值關(guān)系仍比較接近,開裂的鋼筋增強(qiáng)ECC梁氯離子含量是鋼筋混凝土梁的1/4[33]。
在富含硫酸根離子的環(huán)境中,水泥中的氫氧化鈣和鋁酸鈣會(huì)與硫酸根離子反應(yīng)生成鈣釩石,石膏結(jié)晶析出,還可能會(huì)生成如氫氧化鎂、碳硫硅鈣石,并產(chǎn)生極大的結(jié)晶壓力,導(dǎo)致吸水膨脹、開裂和破壞,進(jìn)而強(qiáng)度下降[36]。但ECC長(zhǎng)時(shí)間浸泡在硫酸根離子的溶液中,并不會(huì)像普通混凝土那樣強(qiáng)度大幅下降,反而還會(huì)上升。Wang等[37]發(fā)現(xiàn)浸泡200 d后其抗壓強(qiáng)度、抗拉強(qiáng)度增加,拉伸應(yīng)變降低,仍具有多重開裂和應(yīng)變硬化行為,并且具有大于2%的延伸率,裂縫寬度小于60 μm,如表3所列?,F(xiàn)實(shí)的情況往往是多因素、多離子耦合的狀態(tài),硫酸根離子-氯離子混合條件下ECC的性能變化和單一硫酸根離子中變化類似,為此也有學(xué)者模擬了礦井排水工程[38]、污水環(huán)境[39]、不同鹽度的海水侵蝕條件下[40]ECC的性能變化,也得到了和Wang等[37]類似的規(guī)律。
ECC的自愈合能力會(huì)對(duì)耐化學(xué)侵蝕性起到促進(jìn)作用,即使在氯離子濃度較高的環(huán)境中,基體韌性、界面摩擦和化學(xué)鍵退化,ECC的初裂強(qiáng)度和纖維-基體界面結(jié)合強(qiáng)度降低,但仍表現(xiàn)出一定的自愈合能力[41-42],通過(guò)在ECC中添加粉煤灰和礦渣,大量飛灰顆粒的存在促進(jìn)了自愈合后纖維與基體之間的應(yīng)力傳遞(見圖4),使纖維橋接強(qiáng)度恢復(fù)到與對(duì)照試樣大致相同的水平,在預(yù)損傷的條件下拉伸性能恢復(fù)明顯[43]。
由于硫酸根離子的存在,鈣礬石和石膏的形成促進(jìn)了ECC自愈合過(guò)程,比在水中愈合得更快、更完全[41]。為了進(jìn)一步提高ECC在離子侵蝕環(huán)境下的耐久性,Sridhar[44]發(fā)現(xiàn)通過(guò)混合摻入1.5%的PVA纖維與0.5%鋼纖維制成的ECC,與單一纖維的ECC相比,最大抗壓、抗彎、抗拉強(qiáng)度分別提高了約20.8%,55.5%和42.1%,即使長(zhǎng)期暴露在濃硫酸、鹽酸和混合硫酸環(huán)境下,90 d后仍能保持一定的強(qiáng)度。
2.4 耐高溫性
ECC具有耐高溫性,一方面得益于材料中去除了粗骨料,避免了粗骨料因高溫膨脹引發(fā)的局部變形問(wèn)題[45];另一方面在于內(nèi)部的纖維在高溫環(huán)境下熔化后所留下的孔道有效防止了爆炸性脫落[46]。在高溫環(huán)境下,ECC中纖維和水泥都會(huì)受到高溫的影響,進(jìn)而不同程度影響著ECC的性能。
不同種類的纖維耐高溫性能不同,導(dǎo)致ECC的耐高溫性也有所不同,其中具有較大斷裂伸長(zhǎng)率的纖維,如PVA和PP纖維,使ECC有著更高的拉伸應(yīng)變能力,但這類纖維熔點(diǎn)低,溫度大于200 ℃后,纖維直徑會(huì)明顯減小,拉伸應(yīng)變能力顯著下降[45]。斷裂伸長(zhǎng)率較低的纖維,如玄武巖纖維和碳纖維,使得ECC拉伸應(yīng)變能力較低,但與此同時(shí)纖維耐熱性較好,溫度大于400 ℃時(shí)纖維仍能起到增強(qiáng)的作用,而超過(guò)溫度閾值,纖維的力學(xué)性能會(huì)急劇下降,進(jìn)而使得ECC的相關(guān)性能下降[47-48]。ECC通常所采用的普通硅酸鹽水泥,在溫度小于200 ℃時(shí)微觀形貌變化不大,有利于水泥的水化,加快水化物的生長(zhǎng);300 ℃左右時(shí),由于C-S-H凝膠脫去部分化合水或結(jié)晶水,而使結(jié)構(gòu)變得更加致密,強(qiáng)度增加;300 ℃之后,結(jié)晶水開始散失,水化物開始分解;到500 ℃時(shí),結(jié)晶水大部喪失,水泥水化物也大部分解,骨料開始脫水,表面出現(xiàn)明顯裂紋,強(qiáng)度快速下降[49]。
高溫作用下,ECC的不同力學(xué)性能指標(biāo)隨著溫度的升高,變化并不一致。
(1) 抗壓性能。隨著溫度的升高,ECC的相對(duì)殘余抗壓強(qiáng)度不斷降低[50],主要原因是纖維和基體在高溫作用下發(fā)生熔化及物相分解[51]。還有學(xué)者研究了不同降溫制度[52]、養(yǎng)護(hù)齡期[53]、試件尺寸[54]、不同強(qiáng)度等級(jí)ECC[51]對(duì)高溫后ECC抗壓性能的影響。
(2) 抗拉性能。隨著溫度的升高,ECC的拉伸強(qiáng)度和拉伸應(yīng)變先升高后降低[55],不同學(xué)者分別研究了20~600 ℃范圍內(nèi)ECC的應(yīng)變硬化特征[56-58],并且從基材斷裂韌性、纖維橋接的細(xì)觀尺度上解釋機(jī)理[59]。
(3) 彎曲及劈拉性能。ECC的彎曲性能與拉伸性能有著相似的變化趨勢(shì)[60]。ECC的劈拉強(qiáng)度表現(xiàn)為隨著溫度上升,先升高后降低,再上升再降低的過(guò)程[61]。纖維與基體的結(jié)合,纖維脫粘、纖維拔出、纖維斷裂和微裂紋發(fā)展共同影響了ECC受高溫影響后的力學(xué)性能變化[62]。圖5展示了不同溫度下ECC的殘余抗壓強(qiáng)度和抗折強(qiáng)度[46]。
通過(guò)增加粉煤灰摻量,可以提高ECC高溫條件下的力學(xué)性能,粉煤灰的加入使得水化過(guò)程和二次火山灰反應(yīng)得到加速和改善[63],具有火山灰活性的粉煤灰會(huì)生成耐高溫性能更好的無(wú)水鋁酸鈣和無(wú)水硅酸鈣[64]。Ma等[65]進(jìn)一步采用粉煤灰空心微珠設(shè)計(jì)出耐火性能更優(yōu)異的ECC,發(fā)現(xiàn)微珠與水泥基體的連接并不緊密,周圍存在的小裂紋起到隔熱層的作用,有助于提高隔熱性能;界面結(jié)合強(qiáng)度降低,使得嵌入的纖維在拉伸試驗(yàn)中被拉出而不是斷裂;未反應(yīng)的微珠起到了將人工缺陷引入基體的作用,裂紋的發(fā)生概率和數(shù)量增加,提高了拉伸延性。
2.5 耐磨性
ECC的耐磨性是指表面抵抗磨蝕作用(例如摩擦、滾動(dòng)、滑動(dòng)、摩擦力和沖擊力)的能力[66],ECC具有比普通混凝土更高的耐磨性,主要得益于其較高的抗壓強(qiáng)度和拉伸強(qiáng)度,拉伸應(yīng)變硬化行為和能量吸收能力也會(huì)產(chǎn)生一定影響[67],這一點(diǎn)與普通混凝土類似。現(xiàn)有的研究表明,抗壓強(qiáng)度和水灰比對(duì)普通混凝土耐磨性影響最大,纖維的加入也會(huì)影響耐磨性[68-69]。目前關(guān)于耐磨性的研究主要集中在耐磨損性和抗沖擊性兩方面。
Ayoob等[70]建立了ECC磨損深度與力學(xué)性能的關(guān)系,發(fā)現(xiàn)二次公式非常準(zhǔn)確地關(guān)聯(lián)了磨損深度與劈拉強(qiáng)度、斷裂模量和彈性模量之間的關(guān)系。不同的纖維種類和摻量也使得ECC的耐磨性有所差異,在眾多纖維中,PP纖維表現(xiàn)出了比PE纖維和PVA纖維更好的耐磨性,鋼纖維的使用也會(huì)顯著提高ECC的耐磨性,其中PP纖維摻量在2%時(shí)耐磨性最好。磨損損失隨著纖維含量的增加而降低,在28 d時(shí),摻入低含量的PVA(0.5%和1.0%)可使耐磨性提高約20%,而摻入高含量的PVA(1.5%和2.0%)可顯著提高耐磨性50%~95%[71-73]。通過(guò)用礦渣、硅粉和偏高嶺土取代粉煤灰,花崗巖砂取代硅砂,使用20%的偏高嶺土,可以進(jìn)一步提高ECC的耐磨性,從而更適應(yīng)在路面鋪裝等高磨損環(huán)境下使用[74]。
ECC優(yōu)異的力學(xué)性能及較高的韌性、能量吸收能力使得其具有極高的抗沖擊性能。在低速?zèng)_擊中,落錘試驗(yàn)的結(jié)果表明,圓柱體的ECC試件破壞的沖擊次數(shù)可達(dá)10 000次以上,是鋼纖維混凝土的9倍,是普通混凝土的200倍,其抗沖擊吸收能量是普通混凝土的48倍、鋼纖維混凝土的9倍[33]。由ECC制成的防護(hù)板在10次沖擊后,也只有小凹痕和微裂紋,結(jié)構(gòu)完整,而鋼筋混凝土制成的防護(hù)板經(jīng)歷7次沖擊后即發(fā)生嚴(yán)重的破壞[75]。在高14 m、沖擊能量13.7 kJ的大落錘試驗(yàn)中,ECC板的最小瞬時(shí)加速度較鋼筋混凝土板減小28.1%,最大沖擊力減小28.1%,最大沖擊時(shí)間延長(zhǎng)0.006 s,大應(yīng)變率數(shù)量級(jí)減小106 s-1[76]。在高速?zèng)_擊中,利用速度為300~750 m/s的小質(zhì)量鋼制射彈沖擊ECC板,彈坑直徑只有30 mm左右,且沒(méi)有剝落或碎片,而素混凝土的彈坑直徑更大,成塊狀裂開甚至解體[77]。相比于纖維增強(qiáng)高強(qiáng)砂漿(FRHSM)板以及纖維增強(qiáng)混凝土(FRC)板,同強(qiáng)度的ECC板的侵徹深度和彈坑直徑都比較接近,但若采用高強(qiáng)FRHSM和FRC,ECC板的侵徹深度和彈坑直徑則要遠(yuǎn)遠(yuǎn)大于另外兩種材料[78]。
3 結(jié)論與展望
本文總結(jié)了近年來(lái)超高延性水泥基復(fù)合材料(ECC)的耐久性研究進(jìn)展,總結(jié)了ECC具有高抗?jié)B性,凍融環(huán)境中能保持良好的力學(xué)及耐久性能,在硫酸根離子及氯離子的環(huán)境中能保持高耐化學(xué)侵蝕性能,良好的耐高溫性,通過(guò)對(duì)材料進(jìn)行改良可設(shè)計(jì)出具有體積穩(wěn)定性及優(yōu)異耐磨性的ECC,并將這些性能與ECC的自愈合行為建立了聯(lián)系。目前關(guān)于多因素耦合下耐久性的研究、耐久性微觀層面的解釋,以及設(shè)計(jì)耐高溫、耐磨性好的ECC等方面研究還較少,為此提出以下研究方向:
(1) 加入更多離子,模擬更符合實(shí)際情況的離子環(huán)境,研究多種離子耦合作用下(如鎂離子、碳酸根離子、銨根離子與氯離子和硫酸根離子的共同作用)ECC的性能變化;探討不同荷載作用類型下(如彎曲荷載下、拉伸荷載下)的耐化學(xué)侵蝕性、抗凍性等,并觀察自愈合的情況。
(2) 鹽、酸或堿環(huán)境可能會(huì)導(dǎo)致纖維的降解,后續(xù)研究應(yīng)對(duì)ECC整個(gè)凍融過(guò)程做出更詳細(xì)的定義,對(duì)凍融循環(huán)下纖維與基體的界面微觀結(jié)構(gòu)進(jìn)行進(jìn)一步觀察,建立與宏觀凍融破壞的關(guān)系;建立耐磨性與纖維、基體在微觀層面上的關(guān)系,從纖維被磨損后的形貌、與基體結(jié)合的狀態(tài)進(jìn)行分析;研究長(zhǎng)期極端環(huán)境下的纖維降解機(jī)制,分析纖維、基體和纖維-基體界面的特性隨時(shí)間的變化規(guī)律。
(3) 進(jìn)一步設(shè)計(jì)出在高溫環(huán)境中具有良好性能的ECC,在原有纖維混雜理論的基礎(chǔ)上,添加摻合料,改變部分膠凝材料,使得在高溫環(huán)境中仍有較高的極限延伸率,并觀察經(jīng)過(guò)降溫升溫反復(fù)作用后的性能;優(yōu)化ECC的骨料選擇,提升ECC高速?zèng)_擊狀態(tài)下的耐磨性。
參考文獻(xiàn):
[1] LI V C.On engineered cementitious composites (ECC) a review of the material and its applications[J].Journal of Advanced Concrete Technology,2003,1(3):215-230.
[2] ZHOU J,PAN J,LEUNG C K Y.Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J].Journal of Materials in Civil Engineering,2015,27(1):04014111.
[3] HUANG B T,LI Q H,XU S L,et al.Strengthening of reinforced concrete structure using sprayable fiber-reinforced cementitious composites with high ductility[J].Composite Structures,2019,220:940-952.
[4] 梁寧慧,劉新榮,孫霽.多尺度聚丙烯纖維混凝土單軸拉伸試驗(yàn)[J].重慶大學(xué)學(xué)報(bào),2012,35(6):80-84,124.
[5] LI V C,WANG S,WU C.Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composites (PVA-ECC)[J].ACI Materials Journal,2001,98(6):483-492.
[6] MIN W,JOHANNESSON B,GEIKER M.A review:self-healing in cementitious materials and engineered cementitious composite as a self-healing material[J].Construction and Building Materials,2012,28(1):571-583.
[7] 闞黎黎,王明智,史建武,等.超高韌性水泥基復(fù)合材料自愈合研究進(jìn)展[J].功能材料,2015,46(5):5001-5006.
[8] FAN S,LI M.X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites[J].Smart Materials and Structures,2014,24(1):015021.
[9] 李慶華,高棟,徐世烺.超高韌性水泥基復(fù)合材料(UHTCC)的水滲透性能試驗(yàn)研究[J].水利學(xué)報(bào),2012,43(增1):76-84.
[10] MA H,YI C,WU C.Review and outlook on durability of engineered cementitious composite (ECC)[J].Construction and Building Materials,2021,287(2):122719.
[11] LU C,LEUNG C K Y.Theoretical evaluation of fiber orientation and its effects on mechanical properties in engineered cementitious composites (ECC) with various thicknesses[J].Cement and Concrete Research,2017,95:240-246.
[12] LEPECH M D,LI V C.Water permeability of engineered cementitious composites[J].Cement and Concrete Composites,2009,31(10):744-753.
[13] YAO Y,WANG L,WITTMANN F H,et al.Test methods to determine durability of concrete under combined environmental actions and mechanical load:final report of RILEM TC 246-TDC[J].Materials and Structures,2017,50(2):1-13.
[14] YU J,LI H,LEUNG C K Y,et al.Matrix design for waterproof engineered cementitious composites (ECCs)[J].Construction and Building Materials,2017,139(15):438-446.
[15] LIU H,ZHANG Q,GU C,et al.Influence of micro-cracking on the permeability of engineered cementitious composites[J].Cement and Concrete Composites,2016,72:104-113.
[16] REINHARDT H W,JOOSS M.Permeability and self-healing of cracked concrete as a function of temperature and crack width[J].Cement and Concrete Research,2003,33(7):981-985.
[17] MA H,QIAN S,ZHANG Z.Effect of self-healing on water permeability and mechanical property of medium-early-strength engineered cementitious composites[J].Construction and Building Materials,2014,68:92-101.
[18] WANG Z,SUN P,HU Y,et al.Crack morphology tailoring and permeability prediction of polyvinyl alcohol-steel hybrid fiber engineered cementitious composites[J].Journal of Cleaner Production,2023,383:135335.
[19] AKIN A.Mechanical and permeability properties on self-healing of cementitious composites effect of nano silica cure[J].Structural Concrete,2022,23(3):1907-1919.
[20] MAHMOODI S,SADEGHIAN P.Effect of different exposure conditions on the self-healing capacity of engineered cementitious composites with crystalline admixture[J].Structural Concrete,2022,24(2):2133-2144.
[21] CHEN B,DU L,YUAN J,et al.A experimental study on engineered cementitious composites (ECC) incorporated with sporosarcina pasteurii[J].Buildings,2022,12(5):691-709.
[22] SAHMARAN M,OZBAY E,YIICEL H E.Frost resistance and microstructure of engineered cementitious composites:influence of fly ash and micro poly-vinyl-alcohol fiber[J].Cement and Concrete Composites,2012(2):34-49.
[23] LI V C.Engineered cementitious composites (ECC):bendable concrete for sustainable and resilient infrastructure[M].Berlin:Springer Nature,2019.
[24] SAHMARAN M,LACHEMI M,LI V C.Assessing the durability of engineered cementitious composites under freezing and thawing cycles[J].Journal of Astm International,2009,6(7):102406.
[25] NEITHALATH N,SUMANASOORIYA M S,DEO O.Characterizing pore volume,sizes,and connectivity in pervious concretes for permeability prediction[J].Materials Characterization,2010,61(8):802-813.
[26] 張士萍,鄧敏,唐明述.混凝土凍融循環(huán)破壞研究進(jìn)展[J].材料科學(xué)與工程學(xué)報(bào),2008,26(6):990-994.
[27] ZHONG J,SHI J,SHEN J,et al.Investigation on the failure behavior of engineered cementitious composites under freeze-thaw cycles[J].Materials,2019,12(11):1808.
[28] 徐世烺,蔡新華,李賀東.超高韌性水泥基復(fù)合材料抗凍耐久性能試驗(yàn)研究[J].土木工程學(xué)報(bào),2009,42(9):42-46.
[29] 靳賀松,李福海,何肖云峰,等.聚丙烯纖維水泥基復(fù)合材料的抗凍性能研究[J].材料導(dǎo)報(bào),2020,34(8):8071-8076,8082.
[30] SAHMARAN M,YILDIRIM G,AHMED K.The effect of self-healing on the durability performance of micro-cracked ECC[C]∥8th International Conference on Fracture Mechanics of Concrete and Concrete Structures,Toledo,2013.
[31] YU Z,YANG Y,YAN Y.Autogenous self-healing of engineered cementitious composites under freeze-thaw cycles[J].Construction and Building Materials,2012,34:522-530.
[32] MA H,QIAN S,ZHANG Z,et al.Tailoring engineered cementitious composites with local ingredients[J].Construction and Building Materials,2015,101:584-595.
[33] 李慶華,徐世烺.超高韌性水泥基復(fù)合材料基本性能和結(jié)構(gòu)應(yīng)用研究進(jìn)展[J].工程力學(xué),2009,26(增2):23-67.
[34] SUN R,HU X,LING Y,et al.Chloride diffusion behavior of engineered cementitious composite under dry-wet cycles[J].Construction and Building Materials,2020,260:119943.
[35] GOYAL A,POUYA H S,GANJIAN E,et al.A review of corrosion and protection of steel in concrete[J].Arabian Journal for Science and Engineering,2018,43:5035-5055.
[36] RAMEZANIANPOUR A A,RIAHI D E.Effect of combined sulfate-chloride attack on concrete durability-A review[J].AUT Journal of Civil Engineering,2017,1(2):103-110.
[37] WANG S,LI V C.Engineered cementitious composites with high-volume fly ash[J].ACI Materials Journal,2007,104(3):233-246.
[38] WU H L,ZHANG D,DU Y J,et al.Durability of engineered cementitious composite exposed to acid mine drainage[J].Cement and Concrete Composites,2020,108:103550.
[39] WANG T,ZHANG D,ZHU H,et al.Durability and self-healing of engineered cementitious composites exposed to simulated sewage environments[J].Cement and Concrete Composites,2022,129:104500.
[40] WANG W,XU S,LI Q,et al.Long-term performance of fiber reinforced cementitious composites with high ductility under seawater attack with different salinities[J].Construction and Building Materials,2022,317:126164.
[41] LIU H,ZHANG Q,GU C,et al.Self-healing of microcracks in engineered cementitious composites under sulfate and chloride environment[J].Construction and Building Materials,2017,153:948-956.
[42] LI M,LI V C.Cracking and healing of engineered cementitious composites under chloride environment[J].ACI Materials Journal,2011,108(3):333-341.
[43] SHUMUYE E D,LI W,LIU J,et al.Self-healing recovery and micro-structural properties of slag/fly-ash based engineered cementitious composites under chloride environment and tidal exposure[J].Cement and Concrete Composites,2022,134:104789.
[44] SRIDHAR R.Durability study on engineered cementitious composites with hybrid fibers under sulfate and chloride environments[J].Cleaner Materials,2022(5):100121.
[45] 王振波,韓宇棟.高延性水泥基材料高溫力學(xué)性能研究進(jìn)展[J].三峽大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,41(5):65-69.
[46] ZAKA M.Mechanical and impact properties of engineered cementitious composites reinforced with PP fibers at elevated temperatures[J].Fire,2021(5):31-46.
[47] XU M,SONG S,F(xiàn)ENG L,et al.Development of basalt fiber engineered cementitious composites and its mechanical properties[J].Construction and Building Materials,2021,266(3):121173.
[48] LI L,GAO D,LI Z,et al.Effect of high temperature on morphologies of fibers and mechanical properties of multi-scale fiber reinforced cement-based composites[J].Construction and Building Materials,2020,261:120487.
[49] 鄭文忠,侯曉萌,王英.混凝土及預(yù)應(yīng)力混凝土結(jié)構(gòu)抗火研究現(xiàn)狀與展望[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2016,48(12):1-18.
[50] RAFIEI P,SHOKRAVI H,MOHAMMADYAN-YASOUJ S E,et al.Temperature impact on engineered cementitious composite containing basalt fibers[J].Applied Sciences,2021,11(15):6848-6862.
[51] 張麗輝,郭麗萍,孫偉,等.生態(tài)型高延性水泥基復(fù)合材料的高溫?fù)p傷[J].硅酸鹽學(xué)報(bào),2014,42(8):7-11.
[52] YU K Q,DAI J G,LU Z D,et al.Mechanical properties of engineered cementitious composites subjected to elevated temperatures[J].Journal of Materials in Civil Engineering,2015,27(10):04014268.
[53] YU K,LU Z,YU J.Residual compressive properties of strain-hardening cementitious composite with different curing ages exposed to high temperature[J].Construction and Building Materials,2015,98:146-155.
[54] ERDEM T K.Specimen size effect on the residual properties of engineered cementitious composites subjected to high temperatures[J].Cement and Concrete Composites,2014,45:1-8.
[55] ZHANG Z,LIU J C,XU X,et al.Effect of sub-elevated temperature on mechanical properties of ECC with different fly ash contents[J].Construction and Building Materials,2020,262:120096.
[56] MECHTCHERINE V,DE ANDRADE SILVA F,MLLER S,et al.Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers[J].Cement and Concrete Research,2012,42(11):1417-1427.
[57] DA SILVA MAGALHES M,TOLEDO F R D,F(xiàn)AIRBAIRN E M R.Thermal stability of PVA fiber strain hardening cement-based composites[J].Construction and Building Materials,2015,94:437-447.
[58] BHAT P S,CHANG V,LI M.Effect of elevated temperature on strain-hardening engineered cementitious composites[J].Construction and Building Materials,2014,69:370-380.
[59] YU J,LIN J,ZHANG Z,et al.Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures[J].Construction and Building Materials,2015,99:82-89.
[60] POURFALAH S.Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J].Construction and Building Materials,2018,158:921-937.
[61] CHEN M,WANG Y,ZHANG T,et al.Behaviour of structural engineered cementitious composites under dynamic tensile loading and elevated temperatures[J].Engineering Structures,2023,280:115739.
[62] SAID M,ABD EL-AZIM A A,ALI M M,et al.Effect of elevated temperature on axially and eccentrically loaded columns containing polyvinyl alcohol (PVA) fibers[J].Engineering Structures,2020,204:110065.
[63] WANG Z,HAN S,SUN P,et al.Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures[J].Journal of Central South University,2021,28(5):1459-1475.
[64] MING X,CAO M,YIN H.Microstructural and mechanical evolutions of sustainable cement blends containing fly ash and calcium carbonate whiskers induced by high temperature[J].Construction and Building Materials,2020,263:120615.
[65] MA X,XU L,CAI J,et al.Study on the performances of fire-resistive engineered cementitious composites (ECCs)[J].Journal of Building Engineering,2023,67:105949.
[66] RAMEZANIANPOUR A A,HAGHOLLAHI A,POURKHORSHIDI A.Modeling abrasion resistance of concrete floors[J].Technology of Education Journal,2006(1):59-68.
[67] WU C,PAN Y,UEDA T.Characterization of the abrasion resistance and the acoustic wave attenuation of the engineered cementitious composites for runway pavement[J].Construction and Building Materials,2018,174:537-546.
[68] LAPLANTE P,AITCIN P C,VEZINA D.Abrasion resistance of concrete[J].Journal of Materials in Civil Engineering,1991,3(1):19-28.
[69] WARUDKAR A,ELAVENIL S.A comprehensive review on abrasion resistance of concrete[J].International Journal of Applied Science and Engineering,2020,17(1):29-43.
[70] AYOOB N S,DAEK Y H,HILO A N,et al.Abrasion depth-mechanical properties relations of low-cost PVA engineered cementitious composites[J].Nano Hybrids and Composites,2020,30:55-62.
[71] ISMAIL M K,HASSAN A A A,LACHEMI M.Effect of fiber type on impact and abrasion resistance of engineered cementitious composite[J].ACI Materials Journal,2018,115(6):957-968.
[72] ABID S R,SHAMKHI M S,MAHDI N S,et al.Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers[J].Construction and Building Materials,2018,187:168-177.
[73] ABID S R,HILO A N,DAEK Y H.Experimental tests on the underwater abrasion of engineered cementitious composites[J].Construction and Building Materials,2018,171:779-792.
[74] ISMAIL M K,HASSAN A,LACHEMI M.Abrasion resistance of self-consolidating engineered cementitious composites developed with different mixture compositions[J].ACI Materials Journal,2019,116(1):27-38.
[75] ZHANG J,MAALEJ M,QUEK S T.Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact[J].Journal of Materials in Civil Engineering,2007,19(10):855-863.
[76] 寇佳亮,王華丞.高延性混凝土板抗落石沖擊性能試驗(yàn)研究[J]. 振動(dòng)與沖擊,2020,39(11):239-247,279.
[77] MAALEJ M,QUEK S T,ZHANG J.Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact[J].Journal of Materials in Civil Engineering,2005,17(2):143-152.
[78] WANG S,LE H T N,POH L H,et al.Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact[J].International Journal of Impact Engineering,2016,95:89-104.
(編輯:胡旭東)
Research progress on durability of ultra-high engineered cementitious composites
WANG Yupu1,2,LI Jiazheng1,2,SHI Yan1,2
(1.Department of Materials and Structure,Changjiang River Scientific Research Institute,Wuhan 430010,China; 2.Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources,Wuhan 430010,China)
Abstract:
Ordinary concrete is prone to face performance degradation and insufficient durability in special environments.Ultra-high engineered cementitious composites(ECC)is a kind of fiber reinforced cement composite material.It has strain hardening and self-healing ability after microcracks formation under tensile load,which makes ECC possess better durability than ordinary concrete under various environmental conditions.In this paper,the research progress of ECC durability at home and abroad in recent years was reviewed.The characteristics of impermeability,frost resistance,chemical corrosion resistance,high temperature resistance and wear resistance of ECC were summarized and compared with ordinary concrete.It was found that studies on the durability under the condition of multi-factor coupling,the interpretation in term of micro level of durability,and the design of ECC with high temperature resistance and good wear resistance were not sufficient.Based on this,several research directions in the future were put forward.
Key words:
ultra-high engineered cementitious composites;durability;crack;fiber;self-healing