国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小麥穗發(fā)芽抗性機(jī)制及抗性育種研究

2024-04-11 07:25:38董慧雪陳倩郭曉江王際睿1
中國農(nóng)業(yè)科學(xué) 2024年7期
關(guān)鍵詞:種子休眠麥穗抗性

董慧雪,陳倩,郭曉江,王際睿1,2,,4

小麥穗發(fā)芽抗性機(jī)制及抗性育種研究

董慧雪1,3,陳倩1,3,郭曉江3,王際睿1,2,3,4

1四川農(nóng)業(yè)大學(xué)西南作物基因資源發(fā)掘與利用國家重點(diǎn)實(shí)驗(yàn)室,成都 611130;2四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,成都 611130;3四川農(nóng)業(yè)大學(xué)小麥研究所,成都 611130;4四川農(nóng)業(yè)大學(xué)西南作物基因資源與遺傳改良教育部重點(diǎn)實(shí)驗(yàn)室,成都 611130

穗發(fā)芽是禾本科作物籽粒在收獲前于高濕環(huán)境下的穗上發(fā)芽現(xiàn)象,嚴(yán)重影響小麥的產(chǎn)量與品質(zhì)。種子休眠水平是影響小麥穗發(fā)芽抗性的主要因素,而往往馴化作物的籽粒休眠水平低,導(dǎo)致栽培小麥普遍比其野生祖先種更易發(fā)生穗發(fā)芽。小麥穗發(fā)芽主要受外源環(huán)境(溫度、濕度等)和內(nèi)源植物激素(GAs、ABA、IAA、MeJA、ET、BR)的調(diào)控。已鑒定出一批抗穗發(fā)芽材料,并克隆了一系列調(diào)控穗發(fā)芽抗性的關(guān)鍵基因,如、、、、等。通過分子標(biāo)記輔助選擇、人工合成小麥和CRISPR/Cas9基因編輯技術(shù),已成功創(chuàng)制了抗穗發(fā)芽小麥新材料。本文綜述了小麥穗發(fā)芽抗性的遺傳機(jī)制及抗性育種研究的最新進(jìn)展,未來仍需繼續(xù)挖掘關(guān)鍵穗發(fā)芽抗性基因,以生物育種的方法培育抗穗發(fā)芽小麥新品種。

小麥;穗發(fā)芽;種子休眠;激素;育種改良

0 引言

小麥穗發(fā)芽(pre-harvest sprouting,PHS)是指小麥在成熟期遭遇連續(xù)陰雨天氣時(shí)籽粒在穗上發(fā)芽的現(xiàn)象。穗發(fā)芽是一個(gè)世界性的自然災(zāi)害,北歐和西歐的沿海地區(qū)、美國、新西蘭和加拿大等地都是穗發(fā)芽危害特別嚴(yán)重的地區(qū);我國黃淮麥區(qū)、西南冬麥區(qū)、長(zhǎng)江中下游等麥區(qū)也頻繁發(fā)生穗發(fā)芽危害,受穗發(fā)芽危害的麥區(qū)約占全國小麥總面積的83%[1]。近年來,隨著全球氣候變暖,以及極端天氣頻發(fā),小麥成熟至收獲期間,穗上發(fā)芽現(xiàn)象越發(fā)頻繁。特別是2016年、2018年和2023年,江蘇、安徽、四川、湖北、河南等省份暴發(fā)了嚴(yán)重的小麥穗發(fā)芽災(zāi)害,嚴(yán)重降低了小麥的產(chǎn)量,并導(dǎo)致小麥品質(zhì)劣化[2-4]。由于穗發(fā)芽造成的危害嚴(yán)重,在20世紀(jì)早期,我國研究者就已經(jīng)開始重點(diǎn)研究小麥穗發(fā)芽現(xiàn)象[5]。1973年,國際上也成立了國際谷物穗發(fā)芽組織委員會(huì),該組織于1975年在瑞典召開了第一屆會(huì)議(International Symposium on Pre-Harvest Sprouting in Cereals,ISPHSC),并于2019年在成都舉辦了第十四屆國際谷物穗發(fā)芽大會(huì)。

小麥穗發(fā)芽是基因與環(huán)境互作的結(jié)果,涉及眾多的影響因素,包括種子休眠水平、種子結(jié)構(gòu)、植物激素等內(nèi)部因素,以及溫度、濕度等外界環(huán)境因素,其中,種子自身的休眠特性是影響穗發(fā)芽的主要因素[5-7]。本文主要從穗發(fā)芽發(fā)生的遺傳與生理機(jī)制、穗發(fā)芽對(duì)產(chǎn)量品質(zhì)的危害、穗發(fā)芽抗性種質(zhì)資源與相關(guān)基因發(fā)掘、抗穗發(fā)芽小麥新材料創(chuàng)制等方面綜述近年來小麥穗發(fā)芽的研究進(jìn)展,并對(duì)未來小麥抗穗發(fā)芽研究方向和育種改良策略提出建議,以期為未來創(chuàng)造環(huán)境穩(wěn)定的抗穗發(fā)芽小麥品種提供參考。

1 作物馴化——穗發(fā)芽形成的主要原因

小麥穗發(fā)芽抗性受多個(gè)因素共同影響,包括麥穗持水特性、穎殼特性、籽粒含水量、種子內(nèi)源激素、種子休眠水平,以及外界因素如溫度和空氣濕度。其中,種子休眠水平是影響小麥穗發(fā)芽抗性的主要因素[8]。種子休眠(seed dormancy)是指在適宜條件下種子暫時(shí)不能萌發(fā)的特性。休眠的種子在不適宜幼苗生長(zhǎng)的情況下不萌發(fā),這樣有助于減少在惡劣環(huán)境中萌發(fā)的風(fēng)險(xiǎn),從而保障了種群的延續(xù)。

種子休眠特性具有重要的生態(tài)適應(yīng)意義和農(nóng)業(yè)價(jià)值,休眠喪失是馴化過程中的一個(gè)典型特征[9]。早期,農(nóng)民選擇休眠性較弱的種子,以便收獲后能立即種植并實(shí)現(xiàn)整齊發(fā)芽,從而提高糧食產(chǎn)量。隨著人類的馴化過程,栽培作物的休眠水平普遍低于其野生祖先[10]。就小麥而言,節(jié)節(jié)麥(L.)作為普通小麥D組染色體的供體野生種,其種子具有很強(qiáng)的休眠特性[5, 9, 11],但這種豐富的穗發(fā)芽抗性并沒有在六倍體小麥中保留下來。此外,地方品種和栽培品種之間的種子休眠水平差異顯著,說明在小麥育種過程中忽視了穗發(fā)芽抗性[12]。盡管通過選擇即時(shí)和同步發(fā)芽等方法可以提高小麥生產(chǎn)力,但也導(dǎo)致了穗發(fā)芽的產(chǎn)生,從而對(duì)產(chǎn)量和品質(zhì)構(gòu)成了重大威脅[13]。

2 穗發(fā)芽對(duì)小麥產(chǎn)量和品質(zhì)的影響

穗發(fā)芽會(huì)導(dǎo)致小麥籽粒內(nèi)源α-淀粉酶、蛋白酶活性的增強(qiáng),降解胚乳中的淀粉和蛋白質(zhì),發(fā)芽小麥中醇溶蛋白和可溶性麥谷蛋白的含量下降,清蛋白和球蛋白含量減少45.43%,而非蛋白含量增加62.09%[14]。即使部分小麥外觀沒有發(fā)芽跡象,但籽粒內(nèi)部貯藏物質(zhì)已經(jīng)開始分解,脂肪含量也會(huì)降低[14-15]。這些變化會(huì)降低小麥的產(chǎn)量和品質(zhì),對(duì)小麥的食用和種用價(jià)值產(chǎn)生影響,從而導(dǎo)致嚴(yán)重的經(jīng)濟(jì)損失。研究表明,發(fā)芽小麥制成的面粉在理化指標(biāo)方面也會(huì)受到影響,如降落數(shù)值、沉降值、直鏈淀粉含量和膨脹系數(shù)、糊化起始溫度和峰值溫度、面筋網(wǎng)絡(luò)的變化等[16-17]。這些變化會(huì)降低面團(tuán)的耐揉性,增加其黏性,影響面團(tuán)的質(zhì)量,不利于后續(xù)加工[18]。因此,發(fā)芽小麥制作的面粉會(huì)嚴(yán)重影響面包、餃子皮、饅頭、海綿蛋糕、面條和餅干的蒸煮/烘焙特性,只有當(dāng)發(fā)芽程度輕微時(shí),才會(huì)對(duì)餅干和蛋糕的加工品質(zhì)影響較小[19]。此外,穗發(fā)芽還會(huì)導(dǎo)致面團(tuán)變得流態(tài)化和缺乏彈性,增加碾磨難度,降低出粉率,因此,常被用作飼料,造成了資源的浪費(fèi)。

3 影響小麥穗發(fā)芽的因素

3.1 環(huán)境因素對(duì)穗發(fā)芽的影響

在作物收獲季節(jié),若遇到高溫高濕天氣,種子休眠性降低,常會(huì)導(dǎo)致作物穗發(fā)芽災(zāi)害,如水稻[20]、小麥[13]、高粱[21]和大麥[22]均有發(fā)生。植物母體經(jīng)歷較低的溫度往往會(huì)增加種子的休眠深度,反之,受到熱脅迫則會(huì)減少種子的休眠深度,易發(fā)生穗發(fā)芽現(xiàn)象[23-24]。在不同溫度和濕度環(huán)境下,同一品種種子的穗發(fā)芽抗性也會(huì)發(fā)生變化[25]。在灌漿期,溫度對(duì)穗發(fā)芽有較大的影響,低溫(~13 ℃)時(shí),水分脅迫會(huì)使種子休眠增加;而沒有水分脅迫時(shí),突然的高溫(最高溫度超過30 ℃,超過12 d)會(huì)減少種子收獲前后的休眠[23, 26]。

小麥穗發(fā)芽還與生育期有關(guān),生育期長(zhǎng)的品種,穗發(fā)芽程度較低,可能是由于在遭遇熟期陰雨天氣時(shí),該品種的籽粒尚在灌漿期,并未達(dá)到生理成熟,從而避開了陰雨天氣的危害[4]。另外,小麥?zhǔn)斋@后溫度和濕度的控制也非常重要,若沒有得到及時(shí)的晾曬,其籽粒含水量較高,也會(huì)導(dǎo)致短時(shí)間內(nèi)發(fā)芽,甚至霉變;儲(chǔ)藏時(shí),若管理不當(dāng),倉庫環(huán)境不適宜,易導(dǎo)致糧堆發(fā)熱,也會(huì)造成小麥發(fā)芽。

3.2 植物激素對(duì)穗發(fā)芽的影響

研究表明,多種植物激素影響種子萌發(fā)。赤霉素(GAs)-脫落酸(ABA)的平衡是調(diào)控種子萌發(fā)的內(nèi)在核心,二者是連接外部與內(nèi)部信號(hào)的重要樞紐[27-28]。ABA介導(dǎo)的穗發(fā)芽調(diào)控主要包括對(duì)ABA代謝和ABA核心信號(hào)途徑(PYL-PP2C-SnRK-ABI3/4/5)的調(diào)節(jié)[29]。在小麥種子發(fā)育期間,尤其是在干物質(zhì)大量積累的灌漿期,ABA含量的逐漸升高,有效抑制了種子內(nèi)部與萌發(fā)相關(guān)酶的活性,從而使種子保持休眠特性和休眠狀態(tài)[30]。ABA在穗發(fā)芽中發(fā)揮兩方面的作用:一方面在種子成熟過程中誘導(dǎo)種子進(jìn)入休眠狀態(tài);另一方面抑制種子萌發(fā)[30]。GA與ABA作用相反。在種子休眠被打破并萌發(fā)的過程中,通常伴隨著內(nèi)源ABA含量的下降和GA含量的增加[31]。GA在穗發(fā)芽中的主要作用為:一方面促進(jìn)胚的生長(zhǎng)潛力;另一方面通過提高α-淀粉酶活性來瓦解胚胎萌發(fā)時(shí)種皮形成的機(jī)械屏障[27]。

ABA和GA主要通過影響種子體內(nèi)的α-淀粉酶活性或相關(guān)基因的表達(dá)調(diào)節(jié)種子的萌發(fā)[7]。GAs能促進(jìn)α-淀粉酶特異mRNA的合成,提高轉(zhuǎn)錄效率,因此,α-淀粉酶的合成對(duì)GA有一定的依賴性;而ABA可以影響小麥籽粒糊粉層中酶的轉(zhuǎn)錄,通過誘導(dǎo)α-淀粉酶抑制因子的產(chǎn)生來抑制GA的相關(guān)轉(zhuǎn)錄,阻礙α-淀粉酶的積累[7]。編碼ABA合成關(guān)鍵酶,而TaMyb10可以結(jié)合啟動(dòng)子上的SMRE元件,激活其表達(dá),從而促進(jìn)小麥籽粒中ABA的含量,提高小麥穗發(fā)芽的抗性[32]。研究表明,小麥ABA信號(hào)途徑的蛋白磷酸酶TaPP2C-a10與Ⅱ、Ⅲ亞類TaSnRK2s相互作用[33],可能與擬南芥一樣,通過TaSnRK2s-TaABI5通路來調(diào)控穗發(fā)芽。在高度休眠的小麥品種中,和的轉(zhuǎn)錄本拼接會(huì)發(fā)生錯(cuò)誤,而多數(shù)轉(zhuǎn)錄本的正確拼接,不僅能激活表達(dá),還能抑制α-淀粉酶的表達(dá)[34]。參與ABA代謝途徑的和表達(dá)量降低,使小麥體內(nèi)ABA含量升高,抑制籽粒發(fā)芽[35]。擬南芥雙突變體異位表達(dá),可以恢復(fù)種子的萌發(fā)表型[36]。調(diào)節(jié)因子TaAFP、LEC1-LIKE(TaL1L)、TaL2L和TaFUS3[37-38]介導(dǎo)的小麥穗發(fā)芽與其擬南芥同源物的功能非常相似,構(gòu)成了一個(gè)完整的ABA調(diào)控穗發(fā)芽的信號(hào)網(wǎng)絡(luò)。

植物體內(nèi)的一些蛋白質(zhì)通過影響GA的代謝和核心信號(hào)途徑來調(diào)節(jié)種子萌發(fā)[39]。GA促進(jìn)調(diào)控因子(GASRs,又稱GASAs)在種子萌發(fā)過程中起重要作用。在普通小麥中已鑒定出37個(gè)GASR基因,但只有與谷物休眠和發(fā)芽有關(guān)[40]。GA負(fù)調(diào)控因子Rht-B1b和Rht-D1b與GA受體TaGID1結(jié)合并被降解,但Rht-B1c不能與TaGID1相互作用[41-42]。VAN DE VELDE等[43]從Maringá突變體中鑒定到的和(2個(gè)內(nèi)的抑制等位基因)提高了小麥穗發(fā)芽抗性,并對(duì)籽粒產(chǎn)量和品質(zhì)無明顯負(fù)效應(yīng)。LIU等[44]在具有休眠性的小麥干種子中,利用基因芯片檢測(cè)到6個(gè)可能參與休眠調(diào)控的GA代謝基因——、、、、和。

除ABA和GA外,生長(zhǎng)素(IAA)、茉莉酸甲酯(MeJA)、乙烯(ET)和油菜素內(nèi)酯(BR)也參與了穗發(fā)芽的調(diào)控。與ABA類似,IAA和MeJA可以提高谷物對(duì)穗發(fā)芽的抗性[45-47]。生長(zhǎng)素響應(yīng)因子ARF10和ARF16以不依賴于ABA的方式激活A(yù)BA信號(hào)途徑的轉(zhuǎn)錄因子ABI3,控制種子休眠[48]。在吸漲過程中,IAA生物合成基因被誘導(dǎo),在成熟籽粒中的表達(dá)量低于休眠籽粒,表明IAA負(fù)調(diào)控小麥萌發(fā)過程[44]。以上研究結(jié)果表明,IAA參與籽粒萌發(fā),但是,IAA如何參與調(diào)控小麥穗發(fā)芽仍不清楚。MeJA通過抑制和增加的表達(dá)來降低小麥胚中ABA的含量[49]。ABA也會(huì)通過誘導(dǎo)MeJA生物合成基因(如、、和)的表達(dá)來增加MeJA的含量[47]。此外,小麥MeJA負(fù)調(diào)控因子TaJAZ1通過JAZ結(jié)構(gòu)域與TaABI5相互作用,阻斷ABA信號(hào)的轉(zhuǎn)導(dǎo),經(jīng)ABA處理后,誘導(dǎo)MeJA降解TaJAZ1蛋白,釋放TaABI5,從而調(diào)控小麥穗發(fā)芽[47]。表明MeJA和ABA在參與籽粒發(fā)芽中存在復(fù)雜的調(diào)控機(jī)制。

與GA類似,ET[50]和BR[51-52]促進(jìn)籽粒發(fā)芽。ET通過影響GA和ABA代謝基因(如、、和)的表達(dá)來調(diào)節(jié)GA與ABA的平衡,從而調(diào)控小麥籽粒的萌發(fā)和幼苗的生長(zhǎng)[50]。BR調(diào)控轉(zhuǎn)錄因子BES1通過非E-box基序(5′-AA(A/T)CAAnnnC(C/T)T-3′)與GA合成相關(guān)基因(、和)的啟動(dòng)子結(jié)合,誘導(dǎo)GA合成,從而促進(jìn)籽粒萌發(fā)[52]。

3.3 影響穗發(fā)芽的其他因素

小麥的穗部形態(tài)(如麥芒、穎殼)、穎殼中的酚類物質(zhì)、籽粒硬度(如種皮厚度)和胚乳中的發(fā)芽抑制物(如α-淀粉酶抑制蛋白)等在穗發(fā)芽過程中也起重要作用[53-54]。較長(zhǎng)的芒和較寬的芒角能聚集更多的水滴,從而增加籽粒吸水量,增加發(fā)生穗發(fā)芽的可能性[55]。種皮顏色是與種子穗發(fā)芽相關(guān)的典型特性之一,通常紅粒小麥比白粒小麥具有更強(qiáng)的穗發(fā)芽抗性[32, 56-57]。因此,降雨量相對(duì)較多的東北春麥區(qū)和南方春麥區(qū)通常種植紅粒小麥,而黃淮冬小麥產(chǎn)區(qū)則主要種植半冬性白粒小麥(表1,根據(jù)中華人民共和國農(nóng)業(yè)農(nóng)村部發(fā)布的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),http://www.moa.gov.cn/)。有色種皮中可能含有抑制胚發(fā)育萌發(fā)的物質(zhì),從而延緩種子的萌發(fā)[58]。并非白皮小麥里不存在抗穗發(fā)芽材料,而是白粒小麥品種的穗發(fā)芽抗性可能具有復(fù)雜的遺傳性質(zhì),其表型會(huì)因組合和親本(遺傳背景)的不同而有所差異,呈現(xiàn)典型的微效多基因控制的數(shù)量遺傳特征[59-60]。

表1 2019—2023年中國審定小麥品種籽粒顏色分布

4 抗穗發(fā)芽小麥種質(zhì)資源的鑒定

為了培育抗穗發(fā)芽、優(yōu)質(zhì)高產(chǎn)的小麥品種,必須全面了解現(xiàn)有小麥種質(zhì)資源的穗發(fā)芽抗性水平,以及相關(guān)抗性組分的遺傳多樣性,以便在培育新品種時(shí)有針對(duì)性地利用這些抗性資源。在20世紀(jì)50年代,吳兆蘇等[61]和沈正興等[62]選用26個(gè)?。▍^(qū))具有代表性的335個(gè)地方品種和39個(gè)推廣品種作為試驗(yàn)材料,對(duì)中國小麥品種的種子休眠特性和穗發(fā)芽進(jìn)行了研究,發(fā)現(xiàn)小麥品種的休眠期與冬春性或早熟性無關(guān),與環(huán)境因素有關(guān)。閆長(zhǎng)生等[63]對(duì)我國小麥主產(chǎn)區(qū)20世紀(jì)50年代至21世紀(jì)初的781個(gè)主要推廣品種和新品系進(jìn)行了穗發(fā)芽抗性鑒定,發(fā)現(xiàn)不同年代小麥品種的穗發(fā)芽抗性存在較大差異。自1990年以來,育成的品種穗發(fā)芽抗性與20世紀(jì)80年代相近,但明顯弱于50、60和70年代,且長(zhǎng)江中下游和北部2個(gè)冬麥區(qū)的種子發(fā)芽率均在10%以上。在我國小麥主產(chǎn)區(qū)黃淮冬小麥產(chǎn)區(qū),蘭花麥、白火麥、內(nèi)鄉(xiāng)19、輝縣紅、小偃5和白玉皮等品種表現(xiàn)出良好的穗發(fā)芽抗性[1, 64]。江蘇里下河農(nóng)業(yè)科學(xué)研究所、安徽農(nóng)業(yè)大學(xué)、四川農(nóng)業(yè)大學(xué)、四川省農(nóng)業(yè)科學(xué)院、河南農(nóng)業(yè)大學(xué)、河南百農(nóng)種業(yè)有限公司、河南華冠種業(yè)有限公司等單位一直在開展抗穗發(fā)芽研究工作,選育了具有穗發(fā)芽抗性的揚(yáng)輻麥10號(hào)、川農(nóng)16、川麥104、洛麥24、百農(nóng)207等一批品種[65-67]。其中,豫麥18、百農(nóng)64、豫麥7698、百農(nóng)3217等現(xiàn)代品種由于具有較好的產(chǎn)量和農(nóng)藝性狀,更符合當(dāng)前小麥穗發(fā)芽抗性育種的要求[68]。但是少數(shù)具有良好穗發(fā)芽抗性的品種并不能滿足小麥安全生產(chǎn)的需要,還需繼續(xù)加強(qiáng)穗發(fā)芽抗性育種,培育更多抗穗發(fā)芽小麥品種。

ZHOU等[69]對(duì)717份中國小麥地方品種進(jìn)行了穗發(fā)芽抗性鑒定和評(píng)價(jià),共篩選出194份具有穗發(fā)芽抗性的種質(zhì)資源(包括9份白皮和185份紅皮品種),為現(xiàn)代品種的穗發(fā)芽抗性改良遺傳機(jī)理研究奠定了基礎(chǔ)。在這些品種中,紅皮小麥平均發(fā)芽率(19.08%— 55.98%)顯著低于(<0.01)白皮小麥(47.02%— 79.63%),表明地方品種中紅皮小麥穗發(fā)芽抗性優(yōu)于白皮小麥。來自長(zhǎng)江中下游春(秋播)麥區(qū)(Ⅲ-YTS)、西南春(秋播)麥區(qū)(Ⅳ-SAS)、華南春(秋播)麥區(qū)(Ⅴ-SWAS)的地方品種穗發(fā)芽抗性優(yōu)于其他麥區(qū),而青藏高原春-冬(播)麥區(qū)(Ⅸ-Q&T)的小麥地方品種穗發(fā)芽抗性最差[69]。常成等[70]對(duì)中國的833份小麥種質(zhì)資源(包括278份小麥微核心種質(zhì)、124份地方品種和431份現(xiàn)代推廣品種及高代品系)進(jìn)行穗發(fā)芽抗性檢測(cè),共鑒定出63份穗發(fā)芽抗性較好的種質(zhì)資源,其中41份達(dá)到抗穗發(fā)芽水平,主要為紅皮品種和地方農(nóng)家種,對(duì)抗穗發(fā)芽品種的培育具有重要的應(yīng)用價(jià)值。

自20世紀(jì)開始研究穗發(fā)芽以來,篩選白皮抗穗發(fā)芽小麥種質(zhì)資源的工作也一直在進(jìn)行。江登陽[71]從269個(gè)普通小麥材料中篩選出6個(gè)中國白皮小麥(包括涪陵須須白麥等,發(fā)芽率低于10%)。張海峰等[60]鑒定到9個(gè)白皮小麥材料(包括豐產(chǎn)3號(hào)、ID80-115、Vakka、Ford和Peck等),發(fā)芽率低于20%。肖世和等[1]和蔣國梁等[72]篩選出20多個(gè)高抗穗發(fā)芽的白皮小麥材料,如萬縣白麥子、遂寧坨坨麥、梓潼女兒麥、宜賓白麥子、永川白麥子以及涪陵須須麥等。周勇等[73]通過對(duì)來自世界主要小麥產(chǎn)區(qū)的502個(gè)白皮小麥材料進(jìn)行穗發(fā)芽抗性鑒定和評(píng)價(jià),發(fā)現(xiàn)僅有1.39%的材料平均發(fā)芽率小于40%,其中,Osiris(埃及)、Vilmorin 29(法國)、Miana(法國)、Kanto 107(日本)、Darwin(德國)、Magnif MG(阿根廷)和Benefactress(英國)小麥材料表現(xiàn)出在多個(gè)環(huán)境下穩(wěn)定的穗發(fā)芽抗性。HUCL等[74]、SINGH等[75]和Matus-Cádiz等[76]在RL4137(紅皮抗穗發(fā)芽)×AUS1408(白皮抗穗發(fā)芽)的F5后代中篩選到一份白皮抗穗發(fā)芽材料W98616。

5 抗穗發(fā)芽小麥種質(zhì)資源關(guān)鍵基因的挖掘

小麥穗發(fā)芽是由多個(gè)QTL或基因控制的數(shù)量性狀[60]。通過Meta分析,TAI等[39]共獲得66個(gè)Meta-QTL,分布在小麥21條染色體上,其中至少有44個(gè)Meta-QTL尚未找到目的基因[39]。隨后,利用680份小麥材料進(jìn)行系統(tǒng)的穗發(fā)芽表型統(tǒng)計(jì)和全基因組關(guān)聯(lián)分析,發(fā)現(xiàn)53個(gè)新的小麥穗發(fā)芽相關(guān)QTL位點(diǎn),共包含1 637個(gè)候選基因[77]。本文主要介紹2B、3A、3D和4A染色體上主效穗發(fā)芽抗性基因的鑒定過程。

MUNKVOLD等[78]利用DH群體在2B染色體上鑒定到一個(gè)主效QTL(),解釋5%—31%的表型變異。對(duì)其進(jìn)行精細(xì)定位,發(fā)現(xiàn)該位點(diǎn)由2個(gè)相鄰的QTL組成,共同作用于表型變異[79]。在小麥中,ZHANG等[80]發(fā)現(xiàn)了與水稻種子休眠基因(與穗發(fā)芽抗性相關(guān))同源的基因,定位在2BS染色體上,并開發(fā)了功能標(biāo)記(表2)。很可能是已報(bào)道2B染色體上的穗發(fā)芽抗性主效QTL的候選基因。

OSA等[81]利用Zen/CS構(gòu)建RIL群體,在3AS分子標(biāo)記附近定位到一個(gè)穗發(fā)芽抗性主效位點(diǎn)。隨后,MORI等[82]將此QTL區(qū)間縮短在—標(biāo)記之間。NAKAMURA等[23]克隆了該基因,是()的同源基因,將其命名為,只在盾片和胚根鞘中表達(dá),且受低溫誘導(dǎo),增強(qiáng)種子休眠。同時(shí),LIU等[83]也在3AS上定位到與標(biāo)記緊密連鎖的抗穗發(fā)芽主效QTL,利用白皮抗穗發(fā)芽小麥Rio Blanco圖位克隆了。與是同源基因,在不同的遺傳群體中可解釋11.6%—74.3%的穗發(fā)芽表型變異率[84-86]。/有多個(gè)SNP位點(diǎn),與穗發(fā)芽表型相關(guān)(表2)。

ZHOU等[69]通過對(duì)717份中國地方小麥進(jìn)行全基因組關(guān)聯(lián)分析,在3D染色體上定位到穗發(fā)芽抗性主效QTL,與籽粒顏色轉(zhuǎn)錄因子TaMyb10共定位。YANG等[87]在具有強(qiáng)休眠性四倍體AS60和中抗穗發(fā)芽二倍體AS2255創(chuàng)制的人工合成小麥SHW-1中也定位到3D染色體上的穗發(fā)芽抗性主效QTL(),可以解釋不同環(huán)境中42.47%的穗發(fā)芽變異表型。LANG等[32]利用合成小麥后代的RIL群體鑒定到一個(gè)位于2.4 Mb存在/缺失變異(presence-absence variation,PAV)區(qū)域內(nèi)的QTL位點(diǎn),并成功克隆到調(diào)控籽粒顏色和休眠的R2R3- MYB轉(zhuǎn)錄因子家族成員(即基因[88]),還發(fā)現(xiàn)白粒小麥普遍缺失3D染色體(包含)的2.4 Mb區(qū)域,為下一步白粒抗穗發(fā)芽小麥的選育提供了新思路。

4AL染色體上存在一個(gè)穩(wěn)定的控制種子休眠和穗發(fā)芽的主效QTL(),在不同的DH和RIL群體中多次被鑒定到,可解釋28.3%—43.3%的表型變異率[89-91]。2007年,CHEN等[91]利用地方品種禿頭麥A(抗穗發(fā)芽品種)和泗陽936(感穗發(fā)芽品種)構(gòu)建了152個(gè)RIL群體,將位點(diǎn)定位在標(biāo)記和之間(遺傳距離為9.14 cM)。隨后,該區(qū)間又被進(jìn)一步縮小至和之間(遺傳距離為2.9 cM)[92]。2015年,BARRERO等[93]利用MAGIC群體將位點(diǎn)定位在標(biāo)記wsnpEx_c66324_64493429和CD920298之間,并通過對(duì)多個(gè)近等基因系和親本進(jìn)行轉(zhuǎn)錄組測(cè)序,鑒定到2個(gè)相鄰的候選基因和。研究表明,對(duì)ABA有響應(yīng),與籽粒休眠相關(guān)。與此同時(shí),TORADA等[94]于2005年利用DH群體在4AL染色體上鑒定到位點(diǎn),2016年,利用一個(gè)雙親群體將該位點(diǎn)定位在0.19 cM區(qū)間內(nèi),通過篩選中國春BAC文庫構(gòu)建物理圖譜,得到2個(gè)與QTL共分離的BAC,物理長(zhǎng)度為180 kb[95]。在該區(qū)間內(nèi),只有上的一個(gè)SNP變異與種子休眠相關(guān)(表2)?;趫D位克隆方法,獲得,與的距離為0.5 cM[95]。SHORINOLA等[96]使用2個(gè)雙親作圖群體構(gòu)建了高密度遺傳圖譜,發(fā)現(xiàn)和到的距離為0.3 cM。隨后,在六倍體和四倍體小麥中構(gòu)建了1.2 Mb的物理圖譜,基于前人研究,對(duì)和的單倍型與籽粒休眠表型進(jìn)行相關(guān)性分析,結(jié)果表明,是真正的候選基因[97]。

除了上述穗發(fā)芽抗性關(guān)鍵基因的挖掘,還鑒定到一些在小麥籽粒發(fā)育不同時(shí)期表達(dá)、參與調(diào)控穗發(fā)芽的重要基因(圖1)。最早在玉米中被發(fā)現(xiàn)[98],參與調(diào)控種子休眠和胚胎發(fā)育[99-100]。在擬南芥中的同系物是[101]。位于3A、3B和3D染色體長(zhǎng)臂,可能編碼與胚胎特異性休眠相關(guān)的轉(zhuǎn)錄因子,正調(diào)控種子休眠[102-103]。TaSRO1與TaVP1相互作用,并抑制TaVP1對(duì)穗發(fā)芽抗性基因或的轉(zhuǎn)錄激活[104]。能誘導(dǎo)種子休眠,但是與擬南芥的序列相似性較低[105]。在不同植物中,的組織特異性表達(dá)模式并不保守[105]。在擬南芥中,分別異位過表達(dá)和,均可顯著增加種子休眠,并且,其干種子儲(chǔ)存過程中的休眠釋放與過表達(dá)的轉(zhuǎn)基因植株相似[105-107],表明這些在增強(qiáng)種子休眠方面具有保守功能。小麥TaDOG1L1和TaDOG1L4還可與ABA信號(hào)通路中的TaPP2C-a10相互作用,調(diào)節(jié)小麥穗發(fā)芽[108]。FUSCA3(FUS3)是一種B3型轉(zhuǎn)錄因子,其N端可與種子中特異的bZIP蛋白結(jié)合,C端具有轉(zhuǎn)錄激活能力,能促進(jìn)ABA的生物合成,參與調(diào)控籽粒休眠[109-110]。在普通小麥種子中,和在授粉后25 d和吸脹后24 h高表達(dá),且表達(dá)譜相似,但未檢測(cè)到的轉(zhuǎn)錄[111]。通過對(duì)沉默植株的研究發(fā)現(xiàn),其GA合成和ABA代謝相關(guān)基因的表達(dá)量增加,而ABA合成相關(guān)基因的表達(dá)量減少,表明在小麥種子休眠和穗發(fā)芽抗性中發(fā)揮積極作用,可能與ABA、GA水平和信號(hào)轉(zhuǎn)導(dǎo)有關(guān)[111]。根據(jù)序列多樣性,已在上述基因內(nèi)開發(fā)了分子標(biāo)記,可用于檢測(cè)小麥穗發(fā)芽抗性(表2)。

6 抗穗發(fā)芽新材料的創(chuàng)制

6.1 分子標(biāo)記輔助選擇的育種

分子標(biāo)記能有效地將表型和基因型結(jié)合起來,提高育種效率。HICKEY等[127]在休眠品種(具有SW95-50213和AUS1408血統(tǒng))和無休眠品種雜交產(chǎn)生的7套F2和F3代群體中,利用小麥4AL的SSR標(biāo)記(和)成功篩選出抗穗發(fā)芽材料。SINGH等[128]在60份加拿大小麥品種驗(yàn)證了小麥染色體4AL上主效穗發(fā)芽抗性QTL位點(diǎn)分子標(biāo)記(、、)選擇的有效性。GRAYBOSCH等[129]在美國硬白冬麥中驗(yàn)證了小麥2B(、、、)和3AS(、、)位點(diǎn)標(biāo)記選擇的有效性。、、、和被證實(shí)為可用于篩選白皮抗穗發(fā)芽小麥的較穩(wěn)定的分子標(biāo)記[73]。

圖1 穗發(fā)芽相關(guān)基因在小麥種子發(fā)育的不同時(shí)期表達(dá)模型

表2 小麥穗發(fā)芽抗性基因及其抗原品種

續(xù)表2 Continued table 2

常成等[70]基于已報(bào)道的12個(gè)抗穗發(fā)芽基因/位點(diǎn),開發(fā)了13個(gè)分子標(biāo)記,并通過分子標(biāo)記輔助選擇和常規(guī)育種手段相結(jié)合,創(chuàng)制了12份抗穗發(fā)芽種質(zhì)資源。其中,5份白皮半冬性品種達(dá)到了中抗水平,而7份紅皮品種達(dá)到了抗穗發(fā)芽水平。通過分子標(biāo)記鑒定,這些材料包含3—4個(gè)抗穗發(fā)芽基因/位點(diǎn),主要位于2AL()、3AS(、)、3BL()、4AL()、5B()和6B()染色體上。其中,、、和的頻率較高。在這些分子標(biāo)記中,和鑒定的抗/感類型間差異最大,其次是、、、、、、和。這些標(biāo)記在等位類型間的穗發(fā)芽抗性差異均達(dá)到極顯著水平,為抗穗發(fā)芽小麥新品種的選育提供了可利用的分子標(biāo)記。

不同抗性位點(diǎn)的聚合有助于提高穗發(fā)芽抗性水平。已篩選出一些抗穗發(fā)芽等位基因組合,例如+、+、+、+[124]和/[115]。標(biāo)記可用于紅粒優(yōu)質(zhì)小麥的穗發(fā)芽抗性篩選,而和標(biāo)記可用于白粒優(yōu)質(zhì)小麥的穗發(fā)芽抗性篩選[130]。XIAO等[131]通過分子標(biāo)記輔助選擇,利用與小麥3AS主效基因緊密連鎖的分子標(biāo)記、、和,成功選育出白皮抗穗發(fā)芽小麥新品種中麥911。張海萍等[132]利用同樣的分子標(biāo)記,同時(shí)聚合了3AS和3BL()上具有抗穗發(fā)芽?jī)?yōu)異等位基因的小麥品種,選育出白皮抗穗發(fā)芽小麥新品種安農(nóng)0711。以上研究表明,利用分子標(biāo)記輔助選擇的方法,可以更高效地選育出抗穗發(fā)芽小麥新品種。

6.2 人工合成小麥滲入育種

人工合成六倍體小麥模擬了普通小麥的起源過程,可作為育種的“橋梁”材料,將四倍體或二倍體祖先種攜帶的未被育種利用的遺傳變異重新引入到現(xiàn)代小麥中,從而提高普通小麥的生產(chǎn)能力,具有較大的育種潛力[133-135]。通過人工合成小麥已成功選育出具有重穗、抗旱、抗凍等不同特點(diǎn)的多個(gè)小麥品種[136]。同時(shí),合成小麥在小麥抗穗發(fā)芽育種中也具有非常重要的價(jià)值。

蘭秀錦等[137]將高抗穗發(fā)芽的河南節(jié)節(jié)麥與四倍體小麥簡(jiǎn)陽矮蘭麥雜交,經(jīng)過染色體加倍,合成新的具有穗發(fā)芽抗性的六倍體小麥RSP。基因定位試驗(yàn)表明,其抗性基因來源于節(jié)節(jié)麥的2D染色體[138]。研究人員利用具有深度休眠特性的節(jié)節(jié)麥和中抗穗發(fā)芽的硬粒小麥雜交創(chuàng)制出抗穗發(fā)芽合成小麥SHW-L1[139],并從其后代中創(chuàng)制出抗穗發(fā)芽小麥新品系L10-1580[87]。不少學(xué)者也從人工合成小麥中鑒定到穗發(fā)芽抗性位點(diǎn)[32, 87, 139]。這些研究表明,小麥祖先種中含有豐富的抗穗發(fā)芽?jī)?yōu)異基因,可以作為小麥穗發(fā)芽改良的抗源材料,并通過人工合成途徑創(chuàng)制出抗穗發(fā)芽的六倍體小麥新材料[140]。

由于現(xiàn)代品種是育種家長(zhǎng)期聚合優(yōu)良變異的結(jié)果,而人工合成小麥存在植株偏高、難脫粒、晚熟等缺陷,育種應(yīng)用范圍有限[141]。為提高人工合成小麥育種利用效率,HAO等[142]設(shè)計(jì)了“雙頂交-兩段選擇”育種方法,并進(jìn)一步優(yōu)化形成了“育種原始種質(zhì)-頂交-兩段選擇”技術(shù)體系[141],提高了人工合成小麥滲入育種效率。此外,為了加快將節(jié)節(jié)麥整體優(yōu)異變異轉(zhuǎn)移到優(yōu)質(zhì)小麥上的進(jìn)程,ZHOU等[143]組裝了4個(gè)新的參考基因組,對(duì)278份節(jié)節(jié)麥進(jìn)行重組測(cè)序,構(gòu)建了涵蓋節(jié)節(jié)麥99%以上總體遺傳變異的核心種質(zhì),將其與優(yōu)質(zhì)小麥品種雜交,形成一個(gè)人工合成八倍體小麥庫。通過對(duì)抗穗發(fā)芽滲入系進(jìn)行分析,證實(shí)了其在小麥育種中的巨大潛力,為小麥抗穗發(fā)芽育種和資源利用奠定了堅(jiān)實(shí)基礎(chǔ)[143]。

6.3 基因編輯獲得抗穗發(fā)芽新材料

普通小麥有3個(gè)亞基因組,基因功能存在部分冗余,使得某一個(gè)亞基因組上的基因突變很難表現(xiàn)出明顯的表型,尤其是由隱性基因控制的性狀。隨著技術(shù)的發(fā)展,農(nóng)桿菌介導(dǎo)的CRISPR/Cas9技術(shù)在小麥中的應(yīng)用逐漸成熟[144-145]。編碼丙氨酸氨基轉(zhuǎn)移酶,調(diào)控大麥種子休眠[146-147]。ABE等[148]運(yùn)用CRISPR/ Cas9技術(shù)在小麥Fielder背景中敲除同源等位基因,并與野生型Fielder雜交分離轉(zhuǎn)基因載體系統(tǒng),最終獲得一個(gè)在3個(gè)亞基因組上均具有突變但沒有外源序列的純合隱性突變體。該突變體的籽粒休眠時(shí)間明顯長(zhǎng)于野生型,能有效避免穗發(fā)芽。編碼bHLH轉(zhuǎn)錄因子,通過調(diào)控ABA分解代謝基因和ABA生物合成基因負(fù)調(diào)控水稻種子休眠性[149]。XU等[149]運(yùn)用基因編輯技術(shù)改良了多個(gè)水稻易穗發(fā)芽主栽品種的,在收獲期遭遇連綿陰雨天氣時(shí),改良材料的穗發(fā)芽情況有顯著改善。通過改良小麥品種科農(nóng)199中的,顯著提高了小麥穗發(fā)芽抗性,表明SD6在水稻和小麥中控制種子休眠性的功能是保守的,在水稻和小麥穗發(fā)芽抗性育種改良中均具有重要的應(yīng)用價(jià)值。此外,中國農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所聯(lián)合中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所等單位,利用CRISPR/Cas9基因編輯技術(shù)成功獲得的+1 bp編輯植株[150]。通過編輯,使白皮小麥中的19 bp缺失導(dǎo)致的移碼突變被精準(zhǔn)修復(fù)為18 bp缺失,從而使恢復(fù)編碼蛋白的能力,將白粒小麥轉(zhuǎn)化為紅粒小麥,成功提高了小麥的抗穗發(fā)芽能力。

7 展望

小麥穗發(fā)芽在長(zhǎng)江中下游冬麥區(qū)、西南春麥區(qū)和東北春麥區(qū)頻繁發(fā)生。然而,由于在品種選育過程中,穗發(fā)芽抗性選擇的壓力較小、小麥成熟期降水的增加,以及收獲方式的改變等原因,黃淮和北方冬麥區(qū)發(fā)生穗發(fā)芽的風(fēng)險(xiǎn)逐漸加重。因此,加快培育白皮抗穗發(fā)芽小麥品種仍是我國小麥育種的重要目標(biāo)之一。在不同的環(huán)境條件下,小麥穗發(fā)芽抗性的效果也會(huì)有所不同。小麥的祖先種和地方品種含有許多現(xiàn)代小麥品種所缺乏的優(yōu)良等位基因,通過人工合成小麥滲入育種等方法,可以將普通小麥進(jìn)化和人工選擇過程丟失的遺傳變異重新引入育成品種[143]。聚合多個(gè)抗穗發(fā)芽基因可以有效提高小麥品種的抗穗發(fā)芽水平。目前,利用分子標(biāo)記輔助選擇育種,聚合有效的抗穗發(fā)芽基因仍然是提高穗發(fā)芽抗性的主要有效方法[70]。不同研究人員對(duì)小麥種質(zhì)資源材料的穗發(fā)芽抗性和基因型進(jìn)行鑒定,發(fā)現(xiàn)了不同的抗穗發(fā)芽?jī)?yōu)異基因組合,例如-/-/-/-/-[151]、-/-[124]和/[115]。然而,由于試驗(yàn)材料數(shù)量有限,且利用的抗穗發(fā)芽基因內(nèi)分子標(biāo)記有限,不同小麥材料中鑒定出的優(yōu)異基因組合類型存在差異,可能仍存在更優(yōu)的組合需要在育種過程中驗(yàn)證。在聚合不同的穗發(fā)芽抗性基因時(shí),需要考慮它們對(duì)小麥生育期、株葉型、抗病性等農(nóng)藝性狀的影響,以及它們之間是否相互影響。此外,還需要注意不同的雜交親本品種在不同環(huán)境下的穗發(fā)芽抗性差異,以培育適應(yīng)當(dāng)?shù)丨h(huán)境的抗穗發(fā)芽小麥品種。由于小麥基因組復(fù)雜且龐大,未來的研究仍需挖掘穗發(fā)芽抗性位點(diǎn)和關(guān)鍵基因,并加快開發(fā)和驗(yàn)證單拷貝和多拷貝穗發(fā)芽抗性基因內(nèi)分子標(biāo)記的有效性,避免標(biāo)記和目標(biāo)基因之間的不完全連鎖。這將有助于通過分子標(biāo)記輔助常規(guī)育種手段,聚合多個(gè)穗發(fā)芽抗性基因,培育出抗穗發(fā)芽白皮小麥新品種。

CRISPR/Cas9基因編輯技術(shù)可以實(shí)現(xiàn)基因組水平上的編輯,創(chuàng)造等位基因并對(duì)性狀進(jìn)行微調(diào)。利用CRISPR/Cas9技術(shù),對(duì)小麥種子休眠相關(guān)基因進(jìn)行靶向編輯,可以快速有效提高穗發(fā)芽抗性,抑制穗發(fā)芽能力,并為小麥種子的休眠和萌發(fā)研究提供更豐富的種質(zhì)資源。重要的是,該方法可用于生產(chǎn)上正在推廣的高產(chǎn)優(yōu)質(zhì)小麥品種的快速改良,而不需要經(jīng)過繁瑣的雜交聚合和回交,大大節(jié)約了培育小麥品種的年限。該技術(shù)可作為小麥性狀改良的模型,特別是對(duì)遺傳隱性性狀的改良。因此,挖掘和鑒定重要的基因/QTL,進(jìn)行重要基因的轉(zhuǎn)移、聚合或定向編輯,將是改良穗發(fā)芽抗性分子育種研究的主要領(lǐng)域。目前,世界種業(yè)進(jìn)入到育種“4.0時(shí)代”,正迎來以全基因組選擇、基因編輯、合成生物和人工智能等技術(shù)融合發(fā)展為標(biāo)志的新一輪科技革命。這些新的育種技術(shù)可以在小麥抗穗發(fā)芽育種中提供重要的幫助和應(yīng)用。例如,通過大規(guī)模的遺傳和表型數(shù)據(jù)分析,篩選出具有較高穗發(fā)芽抗性的親本材料;結(jié)合基因組學(xué)進(jìn)行目標(biāo)基因鑒定,利用CRISPR/Cas9基因編輯技術(shù)對(duì)目標(biāo)基因進(jìn)行精準(zhǔn)編輯,從而實(shí)現(xiàn)對(duì)小麥性狀的精準(zhǔn)改良,加速選育抗穗發(fā)芽品種的進(jìn)程、提高育種效率。目前,一批轉(zhuǎn)基因玉米、大豆品種已正式通過國家品種審定。在不久的將來,轉(zhuǎn)基因小麥育種工作也將會(huì)有更多的可能性。

[1] 肖世和, 閆長(zhǎng)生, 張海萍, 孫果忠. 小麥穗發(fā)芽研究. 北京: 中國農(nóng)業(yè)科學(xué)技術(shù)出版社, 2004.

Xiao S H, Yan C S, Zhang H P, Sun G Z. Study on preharvest Germination of wheat. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)

[2] 張宗敏, 陳巧艷, 李新華, 喬紅, 歐行奇. 豫北地區(qū)不同小麥品種穗發(fā)芽初步研究. 農(nóng)業(yè)科技通訊, 2016(11): 60-63.

Zhang Z M, Chen Q Y, Li X H, Qiao H, Ou X Q. Preliminary study on pre-harvest germination of different wheat varieties in northern Henan Province. Bulletin of Agricultural Science and Technology, 2016(11): 60-63. (in Chinese)

[3] 唐豪, 周勇, 譚志, 楊力生, 郭曉江, 王際睿. 部分小麥產(chǎn)區(qū)穗發(fā)芽危害狀況調(diào)查及應(yīng)對(duì)建議. 農(nóng)家科技, 2018, 7: 36-37.

Tang H, Zhou Y, Tan Z, Yang L S, Guo X J, Wang J R. Investigation of pre-harvest sprouting hazards in some wheat producing areas and suggestions for countermeasures. Agricultural Science and Technology, 2018, 7: 36-37. (in Chinese)

[4] 朱利廣, 張玉坤, 馬慶, 王勖, 晁漫寧. 安徽省冬小麥品種大田條件下穗發(fā)芽抗性研究. 中國種業(yè), 2023(9): 66-69.

Zhu L G, Zhang Y K, Ma Q, Wang X, Chao M N. Research of pre-harvest sprouting resistances of winter wheat varieties under field conditions in Anhui province. China Seed Industry, 2023(9): 66-69. (in Chinese)

[5] 毛伯韌, 吳兆蘇. 小麥種子休眠特性的遺傳及其機(jī)理的研究. 中國農(nóng)業(yè)科學(xué), 1983, 16(6): 53-60.

Mao B R, Wu Z S. Studies on the inheritance and mechanism of seed dormancy in wheat. Scientia Agricultura Sinica, 1983, 16(6): 53-60. (in Chinese)

[6] Pérez-flores L, Carrari F, Osuna-fernández R, Rodríguez M V, Enciso S, Stanelloni R, SAnchez R A, Bottini R, Iusem N D, Benech-arnold R L. Expression analysis of a GA 20-oxidase in embryos from two sorghum lines with contrasting dormancy: possible participation of this gene in the hormonal control of germination. Journal of Experimental Botany, 2003, 54(390): 2071-2079.

[7] Toorop P E, Barroco R M, Engler G, Groot S P C, Hilhorst H W M. Differentially expressed genes associated with dormancy or germination ofseeds. Planta, 2005, 221(5): 637-647.

[8] Rodríguez M V, Barrero J M, Corbineau F, Gubler F, Benech-Arnold R L. Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Science Research, 2015, 25(2): 99-119.

[9] Henry R J, Furtado A, Rangan P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. Current Opinion in Plant Biology, 2018, 45(Pt B): 231-236.

[10] Liu S B, Sehgal S K, Lin M, Li J R, Trick H N, Gill B S, Bai G H. Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. The New phytologist, 2015, 208(3): 928-935.

[11] Liu D C, Lan X J, Wang Z R, Zheng Y L, Zhou Y H, Yang J L, CHI Y. Evaluation ofCosson for preharvest sprouting tolerance. Genetic Resources and Crop Evolution, 1998, 45(6): 495-498.

[12] Wang J R, Liu Y X, Wang Y, Chen Z H, Dai S, Cao W G, Fedak G, Lan X J, Wei Y M, Liu D C, Zheng Y L. Genetic variation of Vp1 in Sichuan wheat accessions and its association with pre-harvest sprouting response. Genes & Genomics, 2011, 33(2): 139-146.

[13] Vetch J M, Stougaard R N, Martin J M, Giroux M J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (L.). Plant Science, 2019, 281: 180-185.

[14] ?ILI? S, JANKOVI? M, BARA? M, PE?I? M, KONI?-RISTI? A, ?UKALOVI? V H T. Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food & Function, 2016, 7(10): 4323-4331.

[15] 金玉紅, 張開利, 付聿成, 張興春, 杜金華. 小麥蛋白質(zhì)含量對(duì)小麥芽質(zhì)量的影響. 中國糧油學(xué)報(bào), 2006, 21(3): 39-43.

Jin Y H, Zhang K L, Fu Y C, Zhang X C, Du J H. The influence of protein content on the quality of wheat malt. Journal of the Chinese Cereals and Oils Association, 2006, 21(3): 39-43. (in Chinese)

[16] Li C, Jeong D, Lee J H, Chung H J. Influence of germination on physicochemical properties of flours from brown rice, oat, sorghum, and millet. Food Science and Biotechnology, 2020, 29(9): 1223-1231.

[17] Simsek S, Ohm J B, Lu H Y, Rugg M, Berzonsky W, Alamri M S, Mergoum M. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods (Basel, Switzerland), 2014, 3(2): 194-207.

[18] Groos C, Gay G, Perretant M R, Gervais L, Bernard M, Dedryver F, Charmet G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002, 104(1): 39-47.

[19] 梁王壯, 唐雅楠, 劉佳薈, 郭曉江, 董慧雪, 祁鵬飛, 王際睿. 小麥發(fā)芽對(duì)面粉質(zhì)量與加工產(chǎn)品品質(zhì)的影響, 中國農(nóng)業(yè)科學(xué), 2024, 57(7): 1267-1280.doi: 10.3864/j.issn.0578-1752.2024.07.005.

Liang W Z, Tang Y N, Liu J H, Guo X J, Dong H X, Qi P F, Wang J R. Effect of flour and cooking/baking qualities by sprouted wheat. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280. doi: 10.3864/j.issn.0578-1752.2024.07.005.(in Chinese)

[20] Lee G A, Jeon Y A, Lee H S, Hyun D Y, Lee J R, Lee M C, Lee S Y, Ma K H, Koh H J. New genetic loci associated with preharvest sprouting and its evaluation based on the model equation in rice. Frontiers in Plant Science, 2017, 8: 1393.

[21] Benech-arnold R L, Rodríguez M V. Pre-harvest sprouting and grain dormancy in: What have we learned? Frontiers in Plant Science, 2018, 9: 811.

[22] Ullrich S E, Clancy J A, Del Blanco I A, Lee H, Jitkov V A, Han F, Kleinhofs A, Matsui K. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding, 2008, 21(2): 249-259.

[23] Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. The Plant Cell, 2011, 23(9): 3215-3229.

[24] Huang Z, Footitt S, Tang A, Finch-Savage W E. Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in. Plant, Cell & Environment, 2018, 41(1): 187-197.

[25] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 2017, 8: 1147.

[26] Biddulph T B, Plummer J A, Setter T L, Mares D J. Influence of high temperature and terminal moisture stress on dormancy in wheat (L.). Field Crops Research, 2007, 103(2): 139-153.

[27] Debeaujon I, Koornneef M. Gibberellin requirement forseed germination is determined both by testa characteristicsand embryonic abscisic acid. Plant Physiology, 2000, 122(2): 415-424.

[28] 于敏, 徐恒, 張華, 朱英. 植物激素在種子休眠與萌發(fā)中的調(diào)控機(jī)制. 植物生理學(xué)報(bào), 2016, 52(5): 599-606.

Yu M, Xu H, Zhang H, Zhu Y. Regulation of plant hormones on seed dormancy and germination. Plant Physiology Journal, 2016, 52(5): 599-606. (in Chinese)

[29] Johnson R R, Wagner R L, Verhey S D, Walker-Simmons M K. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology, 2002, 130(2): 837-846.

[30] Gubler F, Millar A A, Jacobsen J V. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology, 2005, 8(2): 183-187.

[31] Finkelstein R. Abscisic acid synthesis and response. The Arabidopsis Book, 2013, 11: e0166.

[32] Lang J, Fu Y X, Zhou Y, Cheng M P, Deng M, Li M L, Zhu T T, Yang J, Guo X J, Gui L X, Li L C, Chen Z X, Yi Y, Zhang L Q, Hao M, Huang L, Tan C, Chen G Y, Jiang Q T, Qi P F, Pu Z E, Ma J, Liu Z H, Liu Y J, Luo M C, Wei Y M, Zheng Y L, Wu Y R, Liu D C, Wang J R.confersresistance to pre-harvest sprouting by regulatingin ABA biosynthesis pathway of wheat. The New phytologist, 2021, 230(5): 1940-1952.

[33] Yu X F, Han J P, Wang E P, Xiao J, Hu R, Yang G X, He G Y. Genome-wide identification and homoeologous expression analysis ofgenes in wheat (L.). Frontiers in Genetics, 2019, 10: 561.

[34] Utsugi S, Nakamura S, Noda K, Maekawa M. Structural and functional properties ofgenes in dormant wheat. Genes & Genetic Systems, 2008, 83(2): 153-166.

[35] Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi- Otobe C, Oda S, Kojima H, Kobayashi D, Kawakami N. Isolation of a wheat (L.) mutant in ABA 8'- hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.Breeding Science, 2013, 63(1): 104-115.

[36] Son S, Chitnis V R, Liu A H, Gao F, Nguyen T N, Ayele B T. Abscisic acid metabolic genes of wheat (L.): identification and insights into their functionality in seed dormancy and dehydration tolerance. Planta, 2016, 244(2): 429-447.

[37] Ohnishi N, Himi E, Yamasaki Y, Noda K. Differential expression of three ABA-insensitive five binding protein (AFP)-like genes in wheat. Genes & Genetic Systems, 2008, 83(2): 167-177.

[38] Rikiishi K, Maekawa M. Seed maturation regulators are related to the control of seed dormancy in wheat (L.). Plos ONE, 2014, 9(9): e107618.

[39] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J Q, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. Journal of Experimental Botany, 2021, 72(8): 2857-2876.

[40] Cheng X, Wang S, Xu D, Liu X, Li X, Xiao W, Cao J, Jiang H, Min X, Wang J, Zhang H, Chang C, Lu J, Ma C. Identification and analysis of the GASR gene family in common wheat (L.) and characterization of, a gene associated with seed dormancy and germination. Frontiers in Genetics, 2019, 10: 980.

[41] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741): 256-261.

[42] Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiology, 2011, 157(4): 2120-2130.

[43] Van De Velde K, Chandler P M, Van Der Straeten D, Rohde A. Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy. Journal of Experimental Botany, 2017, 68(3): 443-455.

[44] Liu A H, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. Plos ONE, 2013, 8(2): e56570.

[45] Ramaih S, Guedira M, Paulsen G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Functional Plant Biology, 2003, 30(9): 939-945.

[46] Belin C, Megies C, Hauserová E, Lopez-Molina L. Abscisic acid represses growth of theembryonic axis after germination by enhancing auxin signaling. The Plant Cell, 2009, 21(8): 2253-2268.

[47] Ju L, Jing Y X, Shi P T, Liu J, Chen J S, Yan J J, Chu J F, Chen K M, Sun J Q. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and. The New phytologist, 2019, 223(1): 246-260.

[48] Liu X D, Zhang H, Zhao Y, Feng Z Y, Li Q, Yang H Q, Luan S, Li J M, He Z H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490.

[49] Jacobsen J V, Barrero J M, Hughes T, Julkowska M, Taylor J M, Xu Q, Gubler F. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (L.). Planta, 2013, 238(1): 121-138.

[50] Sun M H, Tuan P A, Izydorczyk M S, Ayele B T. Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. Journal of Experimental Botany, 2020, 71(6): 1985-2004.

[51] Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 2014, 26(11): 4376-4393.

[52] Unterholzner S J, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler K G, Mayer K F, Sieberer T, Poppenberger B. Brassinosteroids are master regulators of gibberellin biosynthesis in. The Plant Cell, 2015, 27(8): 2261-2272.

[53] 張秀英, 陳旭, 閆長(zhǎng)生, 肖世和. 不同遺傳背景小麥材料穗發(fā)芽差異評(píng)價(jià). 作物雜志, 2017(1): 48-50.

Zhang X Y, Chen X, Yan C S, Xiao S H. Evaluation of pre-harvest sprouting of wheat materials with different genetic backgrounds. Crops, 2017(1): 48-50. (in Chinese)

[54] 苗西磊, 王德森, 夏蘭芹, 張運(yùn)宏, 王忠偉, 何中虎, 陳新民. 白粒小麥品種(系)穗發(fā)芽抗性機(jī)制分析. 麥類作物學(xué)報(bào), 2011, 31(4): 741-746.

Miao X L, Wang D S, Xia L Q, Zhang Y H, Wang Z W, He Z H, Chen X M. Analysis on the mechanism of pre-harvest sprouting resistance in white-grain wheat. Journal of Triticeae Crops, 2011, 31(4): 741-746. (in Chinese)

[55] Mares D J, Mrva K. Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta, 2014, 240(6): 1167-1178.

[56] Himi E, Mares D J, Yanagisawa A, Noda K. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. Journal of Experimental Botany, 2002, 53(374): 1569-1574.

[57] Gu X Y, Foley M E, Horvath D P, Anderson J V, Feng J H, Zhang L H, Mowry C R, Ye H, Suttle J C, Kadowaki K I, Chen Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011, 189(4): 1515-1524.

[58] 劉莉, 王海慶, 陳志國. 小麥抗穗發(fā)芽研究進(jìn)展. 作物雜志, 2013(4): 6-11.

Liu L, Wang H Q, Chen Z G. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013(4): 6-11. (in Chinese)

[59] 陳兆夏, 蔣國梁. 小麥白粒品種抗穗發(fā)芽性遺傳的初步研究. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 1997, 20(3): 1-6.

Chen Z X, Jiang G L. Preliminary study on inheritance of pre-harvest sprouting resistance in white wheat germplasm. Journal of Nanjing Agricultural University, 1997, 20(3): 1-6. (in Chinese)

[60] 張海峰, 盧榮禾. 小麥穗發(fā)芽抗性機(jī)理與遺傳研究. 作物學(xué)報(bào), 1993, 19(6): 523-530.

Zhang H F, Lu R H. Study on the mechanism of the resistance to preharvest sprouting and inheritance in wheat. Acta Agronomica Sinica,1993, 19(6): 523-530. (in Chinese)

[61] 吳兆蘇, 魏燮中, 俞世蓉, 徐成彬. 小麥品種抗穗發(fā)芽性的鑒定篩選技術(shù)及其相關(guān)性的研究初報(bào). 種子, 1987, 6(1): 5-8.

Wu Z S, Wei X Z, Yu S R, Xu C B. preliminary report on the identification and screening techniques of pre-harvest germination resistance of wheat varieties and their correlation. Seeds, 1987, 6(1): 5-8. (in Chinese)

[62] 沈正興, 俞世蓉, 吳兆蘇. 小麥品種抗穗發(fā)芽性的研究. 中國農(nóng)業(yè)科學(xué), 1991, 24(5): 44-50.

Shen Z X, Yu S R, Wu Z S. Studies on pre-harvest sprouting resistance in wheat cultivars. Scientia Agricultura Sinica, 1991, 24(5): 44-50. (in Chinese)

[63] 閆長(zhǎng)生, 張海萍, 海林, 張秀英, 胡琳, 胡漢橋, 蒲宗君, 肖世和. 中國小麥品種穗發(fā)芽抗性差異的研究. 作物學(xué)報(bào), 2006, 32(4): 580-587.

Yan C S, Zhang H P, Hai L, Zhang X Y, Hu L, Hu H J, Pu Z J, Xiao S H. Differences of preharvest sprouting resistance among chinese wheat cultivars. Acta Agronomica Sinica, 2006, 32(4): 580-587. (in Chinese)

[64] 黃義文, 代旭冉, 劉宏偉, 楊麗, 買春艷, 于立強(qiáng), 劉朝輝, 李洪杰, 周陽, 張宏軍. 小麥抗穗發(fā)芽基因挖掘及分子育種進(jìn)展. 麥類作物學(xué)報(bào), 2021, 41(2): 147-156.

Huang Y W, Dai X R, Liu H W, Yang L, Mai C Y, Yu L Q, Liu Z H, Li H J, Zhou Y, Zhang H J. Progress on identification of resistant QTLs/genes associated with wheat pre-harvest sprouting and application in molecular breeding.Journal of Triticeae Crops, 2021, 41(2): 147-156. (in Chinese)

[65] 趙斌, 萬映秀, 王瑞, 張平治. 小麥抗穗發(fā)芽品種資源的篩選. 安徽農(nóng)業(yè)科學(xué), 2010, 38(17): 8900-8902.

Zhao B, Wan Y X, Wang R, Zhang P Z. Screening of wheat cultivar resources with pre-harvest sprouting resistance. Journal of Anhui Agricultural Sciences, 2010, 38(17): 8900-8902. (in Chinese)

[66] 陳杰, 張星宇, 白冬, 宋佳靜, 宋全昊, 趙立尚, 朱統(tǒng)泉, 朱保磊, 陳建輝, 張香粉. 黃淮麥區(qū)(南片)小麥穗發(fā)芽抗性評(píng)價(jià)及其等位基因檢測(cè). 分子植物育種, 2023, 21(14): 4694-4701.

Chen J, Zhang X Y, Bai D, Song J J, Song Q H, Zhao L S, Zhu T Q, Zhu B L, Chen J H, Zhang X F. Evaluation of wheat pre-harwest sprouting resistance and allele detection in huanghuai southern wheat region. Molecular Plant Breeding, 2023, 21(14): 4694-4701. (in Chinese)

[67] 王琴, 劉澤厚, 萬洪深, 魏會(huì)廷, 龍海, 李濤, 鄧光兵, 李俊, 楊武云. 川麥42和川農(nóng)16抗穗發(fā)芽QTL定位及聚合效應(yīng)分析. 中國農(nóng)業(yè)科學(xué), 2020, 53(17): 3421-3431.doi:10.3864/j.issn.0578-1752. 2020.17.001.

Wang Q, Liu Z H, Wan H S, Wei H T, Long H, Li T, Deng G B, Li J, Yang W Y. Identification and pyramiding of QTLs for traits associated with pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431. doi:10.3864/j.issn.0578-1752.2020.17.001. (in Chinese)

[68] Chang C, Zhang H P, Lu J, Si H Q, Ma C X. Genetic improvement of wheat with pre-harvest sprouting resistance in China. Genes, 2023, 14(4): 837.

[69] Zhou Y, Tang H, Cheng M P, Dankwa K O, Chen Z X, Li Z Y, Gao S, Liu Y X, Jiang Q T, Lan X J, Pu Z E, Wei Y M, Zheng Y L, Hickey L T, Wang J R. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of chinese wheat landraces. Frontiers in Plant Science, 2017, 8: 401.

[70] 常成, 王旭陽, 余趙玉, 張海萍, 盧杰, 司紅起, 陳璨, 馬傳喜. 中國小麥抗穗發(fā)芽種質(zhì)資源的挖掘與創(chuàng)制. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 50(5): 745-750.

Chang C, Wang X Y, Yu Z Y, Zhang H P, Lu J, Si H Q, Chen C, Ma C X. Excavation and creation of pre-harvest sprouting resistant germplasm resources in Chinese wheats. Journal of Anhui Agricultural University, 2023, 50(5): 745-750. (in Chinese)

[71] 江登陽. 小麥穗發(fā)芽鑒定方法及白皮品種抗性研究. 作物品種資源, 1991(2): 22-24.

Jiang D Y. Identification method of wheat pre-harvest and resistance of white wheat germplasm. Crop variety resources, 1991(2): 22-24. (in Chinese)

[72] 蔣國梁, 陳兆夏, 劉世家, 肖世和. 白皮小麥?zhǔn)斋@前穗發(fā)芽及品種抗性機(jī)制探討. 作物學(xué)報(bào), 1998, 24(6): 793-798.

Jiang G L, Chen Z X, Liu S J, Xiao S H. Pre-harvest sprouting in white wheats and its resistant characteristics of cultivars. Acta Agronomica Sinica, 1998, 24(6): 793-798. (in Chinese)

[73] 周勇, 李凈瓊, 李嘉, 毛瑞文, 謝嬌, 劉亞西, 江千濤, 蒲至恩, 譚志, 王際睿. 白皮小麥抗穗發(fā)芽資源評(píng)價(jià)及抗性候選位點(diǎn)關(guān)聯(lián)分析. 麥類作物學(xué)報(bào), 2018, 38(6): 674-685.

Zhou Y, Li J Q, Li J, Mao R W, Xie J, Liu Y X, Jiang Q T, Pu Z E, Tan Z, Wang J R. Evaluation of pre-harvest sprouting tolerance and association analysis based on candidate loci in white grained wheat accessions. Journal of Triticeae Crops, 2018, 38(6): 674-685. (in Chinese)

[74] HUCL P, Matus-cádiz M. W98616, a white-seeded spring wheat with increased preharvest sprouting. Canadian Journal of Plant Science, 2002, 82(1): 129-131.

[75] Singh R, Matus-Cádiz M, B?ga M, Hucl P, Chibbar R N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 2010, 174(3): 391-408.

[76] Matus-Cádiz M A, Daskalchuk T E, Verma B, Puttick D, Chibbar R N, Gray G R, Perron C E, Tyler R T, Hucl P. Phenolic compounds contribute to dark bran pigmentation in hard white wheat. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1644-1653.

[77] Tai L, Wu J H, Jing Y X, Liu H Z, Zeng Q D, Xu X J, Shi S, Wang H J, Liu W T, Sun J Q, Han D J, Chen K M. A genome-wide association study uncovers thatregulates pre-harvest sprouting in wheat. Plant Communications, 2023: 100739.

[78] MUNKVOLD J D, TANAKA J, BENSCHER D, SORRELLS M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theoretical and Applied Genetics, 2009, 119(7): 1223-1235.

[79] SOMYONG S, ISHIKAWA G, MUNKVOLD J D, TANAKA J, BENSCHER D, CHO Y G, SORRELLS M E. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theoretical and Applied Genetics, 2014, 127(8): 1843-1855.

[80] ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes () associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014, 127(4): 855-866.

[81] OSA M, KATO K, MORI M, SHINDO C, TORADA A, MIURA H. Mapping QTLs for seed dormancy and thehomologue on chromosome 3A in wheat. Theoretical and Applied Genetics, 2003, 106(8): 1491-1496.

[82] MORI M, UCHINO N, CHONO M, KATO K, MIURA H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theoretical and Applied Genetics, 2005, 110(7): 1315-1323.

[83] LIU S B, BAI G H. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theoretical and Applied Genetics, 2010, 121(8): 1395-1404.

[84] LIU S B, CAI S B, GRAYBOSCH R, CHEN C X, BAI G H. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theoretical and Applied Genetics, 2008, 117(5): 691-699

[85] Liu S B, Sehgal S K, Li J R, Lin M, Trick H N, Yu J M, Gill B S, Bai G H. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics, 2013, 195(1): 273.

[86] VETCH J M, TILLETT B J, BRUCKNER P, MARTIN J M, MARLOWE K, HOOKER M A, SEE D R, GIROUX M J.andhomeologs are associated with wheat preharvest sprouting. The Plant Genome, 2022, 15(4): e20250.

[87] Yang J, Tan C, Lang J, Tang H, Hao M, Tan Z, Yu H, Zhou Y, Liu Z H, Li M L, Zhou Y, Cheng M P, Zhang L Q, Liu D C, Wang J R. Identification ofandfrom synthetic wheat for pre-harvest sprouting resistance wheat improvement. Molecular Breeding, 2019, 39(9): 132.

[88] Himi E, Maekawa M, Miura H, Noda K. Development of PCR markers forrelated to R-1, red grain color gene in wheat. Theoretical and Applied Genetics, 2011, 122(8): 1561-1576.

[89] MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat (L.). Euphytica, 2009, 168(3): 311-318.

[90] MARES D, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics, 2005, 111(7):1357-1364.

[91] CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008, 21(3): 351-358.

[92] LIN M, CAI S B, WANG S, LIU S B, ZHANG G R, BAI G H. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015, 128(7): 1385-1395.

[93] Barrero J M, Cavanagh C, Verbyla K L, Tibbits J F G, Verbyla A P, Huang B E, Rosewarne G M, Stephen S, Wang P H, Whan A, Rigault P, Hayden M J, Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifiesandas candidates for a major dormancy QTL. Genome Biology, 2015, 16(1): 93.

[94] TORADA A, IKEGUCHI S, KOIKE M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143(3): 251-255.

[95] Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J Z, Matsumoto T, Kawaura K, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Current Biology, 2016, 26(6): 782-787.

[96] SHORINOLA O, BIRD N, SIMMONDS J, BERRY S, HENRIKSSON T, JACK P, WERNER P, GERJETS T, SCHOLEFIELD D, BALCáRKOVá B, VALáRIK M, HOLDSWORTH M J, FLINTHAM J, UAUY C. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. Journal of Experimental Botany, 2016, 67(14): 4169-4178.

[97] Shorinola O, BALCáRKOVá B, Hyles J, Tibbits J F G, Hayden M J, HOLU?OVA K, VALáRIK M, Distelfeld A, Torada A, Barrero J M, Uauy C. Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-A in global germplasm. Frontiers in Plant Science, 2017, 8: 1555.

[98] Mccarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991, 66(5): 895-905.

[99] Bailey P C, McKibbin R S, Lenton J R, Holdsworth M J, Flintham J E, Gale M D. Genetic map locations for orthologousgenes in wheat and rice. Theoretical and Applied Genetics, 1999, 98(2): 281-284.

[100] Yang Y, Ma Y Z, Xu Z S, Chen X M, He Z H, Yu Z, Wilkinson M, Jones H D, Shewry P R, Xia L Q. Isolation and characterization ofgenes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. Journal of Experimental Botany, 2007, 58(11): 2863-2871.

[101] Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of thegene by positional cloning. The Plant Cell, 1992, 4(10): 1251-1261.

[102] Carrari F, Perez-Flore L, Lijavetzky D, Enciso S, Sanchez R, Benech-Arnold R, Iusem N. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance. Plant Molecular Biology, 2001, 45(6): 631-640.

[103] Nakamura S, Toyama T. Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. Journal of Experimental Botany, 2001, 52(357): 875-876.

[104] LIU S P, LI L, WANG W L, XIA G M, LIU S W. TaSRO1 interacts with TaVP1 to modulate seed dormancy and pre-harvest sprouting resistance in wheat. Journal of Integrative Plant Biology, 2024, 66(1): 36-53.

[105] Ashikawa I, Abe F, Nakamura S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in. Plant Science, 2010, 179(5): 536-542.

[106] Ashikawa I, Mori M, Nakamura S, Abe F. A transgenic approach to controlling wheat seed dormancy level by usingDOG1-like genes. Transgenic Research, 2014, 23(4): 621-629.

[107] Ashikawa I, Abe F, Nakamura S. DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in. Plant Science, 2013, 208: 1-9.

[108] Yu X P, Han J P, Li L, Zhang Q, Yang G X, He G Y. Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic. Plant Cell Reports, 2020, 39(5): 635-651.

[109] Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, Mccourt P. The transcription factor FUSCA3 controls developmental timing inthrough the hormones gibberellin and abscisic acid. Developmental Cell, 2004, 7(3): 373-385.

[110] Sun F S, Liu X Y, Wei Q H, Liu J N, Yang T X, Jia L Y, Wang Y S, Yang G X, He G Y. Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Frontiers in Plant Science, 2017, 8: 1133.

[111] SASAKI A, ITOH H, GOMI K, UEGUCHI-TANAKA M, ISHIYAMA K, KOBAYASHI M, JEONG D H, AN G, KITANO H, ASHIKARI M, MATSUOKA M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299(5614): 1896-1898.

[112] FENG Y M, LIU M, WANG Z, ZHAO X L, HAN B, XING Y P, WANG M Y, YANG Y. A 4-bp deletion in the 5'UTR ofis associated with seed dormancy in common wheat (L.). BMC Plant Biology, 2019, 19(1): 349.

[113] BI H H, SUN Y W, XIAO Y G, XIA L Q. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica, 2014, 195(2): 197-207.

[114] ZHANG Y J, XIA X C, HE Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics, 2017, 130(1): 81-89.

[115] 曹雪連, 張衡, 姜昊, 吳曾云, 曹佳佳, 朱玉磊, 王升星, 常成, 張海萍, 馬傳喜. 分子標(biāo)記PM19-A1對(duì)1015份小麥抗穗發(fā)芽基因型的篩選及其有效性驗(yàn)證. 麥類作物學(xué)報(bào), 2016, 36(10): 1283-1290.

Cao X l, Zhang H, Jiang H, Wu Z y, Cao J j, Zhu Y l, Wang S x, Chang C, Zhang H p, Ma C x. Detection and validation of molecular marker PM19-A1 associated with pre-harvest sprouting resistance in 1015 wheat varieties. Journal of Triticeae Crops, 2016, 36(10): 1283-1290. (in Chinese)

[116] Lei L, Zhu X K, Wang S W, Zhu M R, Carver B F, Yan L L. TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. Plos ONE, 2013, 8(9): e73330.

[117] Jiang H, Zhao L X, Chen X J, Cao J J, Wu Z Y, Liu K, Zhang C, Wei W X, Xie H Y, Li L, Gan Y G, Lu J, Chang C, Zhang H P, Xia X C, Xiao S H, Ma C X. A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Molecular Breeding, 2018, 38(5): 69.

[118] Sydenham S L, Barnard A. Targeted haplotype comparisons between south African wheat cultivars appear predictive of pre-harvest sprouting tolerance. Frontiers in Plant Science, 2018, 9: 63.

[119] YANG Y, ZHAO X L, XIA L Q, CHEN X M, XIA X C, YU Z, HE Z H, R?DER M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics, 2007, 115(7): 971-980.

[120] 羅永露, 隋建樞, 謝才江, 王偉, 陳天青, 何慶才. 西南地區(qū)87份小麥品種(系)穗發(fā)芽抗性的分子鑒定及篩選. 種子, 2020, 39(1): 49-53.

Luo Y l, Sui J s, Xie C j, Wang W, Chen T q, He Q c. Molecular identification and screening of spike germination resistance of 87 wheat varieties (lines) in southwest China. seed, 2020, 39(1): 49-53. (in Chinese)

[121] CHANG C, FENG J M, SI H Q, YIN B, ZHANG H P, MA C X. Validating a novel allele of() associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Molecular Breeding, 2010, 25(3): 517-525.

[122] CHANG C, ZHANG H P, FENG J M, YIN B, SI H Q, MA C X. Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Molecular Breeding, 2010, 25(3): 481-490.

[123] CHANG C, ZHANG H P, ZHAO Q X, FENG J M, SI H Q, LU J, MA C X. Rich allelic variations ofand their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica, 2011, 179(2): 343-353.

[124] YANG Y, ZHANG C L, LIU S X, SUN Y Q, MENG J Y, XIA L Q. Characterization of the rich haplotypes ofin Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance. Molecular Breeding, 2014, 33(1): 75-88.

[125] WEI W X, MIN X Y, SHAN S Y, JIANG H, CAO J J, LI L, WANG J P, WANG S X, ZHU Y L, LU J, SI H Q, XIA X C, MA C X, ZHANG H P, CHANG C. Isolation and characterization ofgenes for period of dormancy in common wheat (L.). Molecular Breeding, 2019, 39(10/11): 150.

[126] ONISHI K, YAMANE M, YAMAJI N, TOKUI M, KANAMORI H, WU J, KOMATSUDA T, SATO K. Sequence differences in the seed dormancy geneamong various wheat genomes. BMC Genomics, 2017, 18(1): 497.

[127] HICKEY L T, DIETERS M J, DELACY I H, CHRISTOPHER M J, KRAVCHUK O Y, BANKS P M. Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (L.). Euphytica, 2010, 172(2): 183-195.

[128] SINGH R, HUCL P, B?GA M, CHIBBAR R N. Validation of molecular markers for pre-harvest sprouting resistance in bread wheat. Cereal Research Communications, 2012, 40(2): 194-203.

[129] GRAYBOSCH R A, ST AMAND P, BAI G H. Evaluation of genetic markers for prediction of preharvest sprouting tolerance in hard white winter wheats. Plant Breeding, 2013, 132(4): 359-366.

[130] 李亞青, 張楠, 彭義峰, 張士昌, 李孟軍. 穗發(fā)芽抗性相關(guān)分子標(biāo)記在優(yōu)質(zhì)小麥中的有效性驗(yàn)證. 河南農(nóng)業(yè)科學(xué), 2021, 50(10): 18-26.

Li Y q, Zhang N, Peng Y f, Zhang S c, Li M j. Validation of molecular markers related to pre-harvest sprouting resistance in high-quality wheat varieties. Journal of Henan Agricultural Sciences,2021, 50(10): 18-26. (in Chinese)

[131] XIAO S H, ZHANG H P, YOU G X, ZHANG X Y, YAN C S, CHEN X. Integration of marker-assisted selection for resistance to pre-harvest sprouting with selection for grain-filling rate in breeding of white-kernelled wheat for the Chinese environment. Euphytica, 2012, 188(1): 85-88.

[132] 張海萍, 常成, 司紅起, 盧杰, 馬傳喜. 小麥抗穗發(fā)芽分子標(biāo)記開發(fā)及育種應(yīng)用. 科技導(dǎo)報(bào), 2016, 34(22): 81-86.

Zhang H p, Chang C, Si h Q, Lu J, Ma C x. Developing of molecular marker for pre-harvest sprouting resistance and its application in wheat MAS breeding. Science & Technology Review, 2016, 34(22): 81-86. (in Chinese)

[133] 郝明, 張連全, 黃林, 甯順腙, 袁中偉, 姜博, 顏澤洪, 伍碧華, 鄭有良, 劉登才. 合成六倍體小麥的遺傳育種. 植物遺傳資源學(xué)報(bào), 2022, 23(1): 40-48.

Hao M, Zhang L Q, Huang L, Ning S Z, Yuan Z W, Jiang B, Yan Z H, Wu B H, Zheng Y L, Liu D C. Genetic improvement of synthesized hexaploid wheat in breeding. Journal of Plant Genetic Resources, 2022, 23(1): 40-48. (in Chinese)

[134] Reif J C, Zhang P, Dreisigacker S, Warburton M L, Van Ginkel M, Hoisington D, Bohn M, Melchinger A E. Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 2005, 110(5): 859-864.

[135] Li A L, Liu D C, Yang W Y, Kishii M, Mao L. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 2018, 4(4): 552-558.

[136] Hao M, Zhang L Q, Zhao L B, Dai S P, Li A L, Yang W Y, Xie D, Li Q C, Ning S Z, Yan Z H, Wu B H, Lan X J, Yuan Z W, Huang L, Wang J R, Zheng K, Chen W S, Yu M, Chen X J, Chen M P, Wei Y M, Zhang H G, Kishii M, Hawkesford M J, Mao L, Zheng Y L, Liu D C. A breeding strategy targeting the secondary gene pool of bread wheat: Introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2285-2294.

[137] 蘭秀錦, 鄭有良, 劉登才, 魏育明, 顏澤洪, 周永紅. 節(jié)節(jié)麥抗穗發(fā)芽基因的染色體定位及其抗性機(jī)理. 中國農(nóng)業(yè)科學(xué), 2002, 35(1): 12-15.

Lan X J, Zheng Y L, Liu D C, Wei Y M, Yan Z H, Zhou Y H. Tolerant mechanism and chromosome location of gene of pre-harvest sprouting tolerance incosson. Scientia Agricultura Sinica, 2002, 35(1): 12-15. (in Chinese)

[138] Zhang L Q, Liu D C, Yan Z H, Lan X J, Zheng Y L, Zhou Y H. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Series C, Life Sciences, 2004, 47(6): 553-561.

[139] Imtiaz M, Ogbonnaya F C, Oman J, Van Ginkel M. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 2008, 178(3): 1725-1736.

[140]藏天青, 劉玉娥, 馬春芳, 李瀟, 王希友, 郝明, 張連全, 袁中偉, 姜博, 劉登才, 甯順腙. 抗穗發(fā)芽合成小麥改良品系的篩選及遺傳分析. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 41(6): 998-1007.

Zang T Q, Liu Y E, Ma C F, Li X, Wang X Y, Hao M, Zhang L Q, Yuan Z W, Jiang B, Liu D C, Ning S Z. Identification and genetic analysis of improved synthetic wheat line showing resistance to pre-harvest sprouting. Journal of Sichuan Agricultural University, 2023, 41(6): 998-1007. (in Chinese)

[141] 李生科, 郝明, 張連全, 黃林, 甯順腙, 袁中偉, 姜博, 陳雪, 陳雪姣, 顏澤洪, 伍碧華, 鄭有良, 劉登才. 基于原始種質(zhì)的小麥育種技術(shù)體系. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 41(6): 961-972.

Li S K, Hao M, Zhang L Q, Huang L, Ning S Z, Yuan Z W, Jiang B, Chen X, Chen X J, Yan Z H, Wu B H, Zheng Y L, Liu D C. Primitive-germplasm-mediated breeding system for wheat. Journal of Sichuan Agricultural University, 2023, 41(6): 961-972. (in Chinese)

[142] Hao M, Zhang L Q, Zhao L B, Dai S F, Li A L, Yang W Y, Xie D E, Li Q C, Ning S Z, Yan Z H, Wu B H, Lan X J, Yuan Z W, Huang L, Wang J R, Zheng K, Chen W S, Yu M, Chen X J, Chen M P, Wei Y M, Zhang H G, Kishii M, Hawkesford M J, Mao L, Zheng Y L, Liu D C. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2285-2294.

[143] Zhou Y, Bai S L, Li H, Sun G L, Zhang D L, Ma F F, Zhao X P, Nie F, Li J Y, Chen L Y, Lv L L, Zhu L L, Fan R X, Ge Y F, Shaheen A, Guo G H, Zhang Z, Ma J C, Liang H H, Qiu X L, Hu J M, Sun T, Hou J Y, Xu H X, Xue S L, Jiang W K, Huang J L, Li S P, Zou C S, Song C P. Introgressing thegenome into wheat as a basis for cereal improvement. Nature Plants, 2021, 7(6): 774-786.

[144] Wang Y p, Cheng X, Shan Q w, Zhang Y, Liu J x, Gao C x, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947-951.

[145] Zhang Z z, Hua L, Gupta A, Tricoli D, Edwards K J, Yang B, Li W l. Development of an-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 2019, 17(8): 1623-1635.

[146] Hisano H, Hoffie R E, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2022, 20(1): 37-46.

[147] SATO K, YAMANE M, YAMAJI N, KANAMORI H, TAGIRI A, SCHWERDT J G, FINCHER G B, MATSUMOTO T, TAKEDA K, KOMATSUDA T. Alanine aminotransferase controls seed dormancy in barley. Nature Communications, 2016, 18(7): 11625.

[148] Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, Mikami M, Kawaura K, Endo M, Onishi K, Hayashi T, Sato K. Genome-edited triple-recessive mutation alters seed dormancy in wheat.Cell Reports, 2019, 28(5): 1362-1369.

[149] Xu F, Tang J y, Wang S x, Cheng X, Wang H r, Ou S j, Gao S p, Li B s, Qian Y w, Gao C x, Chu C c. Antagonistic control of seed dormancy in rice by two bHLH transcription factors.Nature Genetics, 2022, 54(12): 1972-1982.

[150]Zhu Y w, Lin Y R, Fan Y J, Wang Y W, Li P P, Xiong J, He Y H, Cheng S P, Ye X G, Wang F, Goodrich J, Zhu J K, Wang K, Zhang C J. CRISPR/Cas9-mediated restoration ofto create pre-harvest sprouting-resistant red wheat. Plant Biotechnology Journal, 2023, 21(4): 665-667.

[151] 潘麗媛, 王永軍, 李海軍, 侯富, 李菁, 李麗麗, 孫蘇陽. 小麥抗穗發(fā)芽種質(zhì)鑒評(píng)及其初步應(yīng)用. 植物遺傳資源學(xué)報(bào), 2024, doi: 10.13430/j.cnki.jpgr.20231106003.

PAN L Y, WANG Y J, LI H J, HOU F, LI J, LI L L, SUN S Y. Evaluation of wheat pre-harvest sprouting resistant germplasm resources and their preliminary application. Journal of Plant Genetic Resources, 2024, doi: 10.13430/j.cnki.jpgr.20231106003. (in Chinese)

Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat

DONG HuiXue1,3, CHEN Qian1,3, GUO XiaoJiang3, WANG JiRui1,2,3,4

1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130;2College of Agronomy, Sichuan Agricultural University, Chengdu 611130;3Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130;4Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu 611130

Pre-harvest sprouting (PHS) refers to the germination of cereal crops on the spike in high humidity conditions before grain harvest. Wheat PHS is a significant problem that affects both the yield and quality of wheat. Seed dormancy level is a major factor influencing the resistance of wheat PHS, and domesticated crops often exhibit reduced seed dormancy levels, making cultivated wheat more prone to PHS compared to its wild ancestors. Wheat PHS is mainly regulated by external environmental factors such as temperature and humidity, as well as internal plant hormones (GAs, ABA, IAA, MeJA, ET, BR). Researchers have identified a range of materials resistant to PHS, cloned key genes regulating PHS resistance, such as,,,,. New wheat materials resistant to PHS have been successfully developed through molecular marker-assisted selection, artificial synthesis of wheat, and CRISPR/Cas9 gene editing technology. This article reviews the genetic mechanism of PHS resistance in wheat and the latest progress in PHS resistance breeding research. In the future, it is necessary to continue exploring key genes related to PHS resistance, and employ biotechnological breeding methods to cultivate new PHS-resistant wheat varieties.

wheat; pre-harvest sprouting; seed dormancy; hormone; breeding improvement

10.3864/j.issn.0578-1752.2024.07.003

2023-12-28;

2024-02-19

科技創(chuàng)新2030(2023ZD04069)、國家農(nóng)業(yè)科技重大專項(xiàng)(NK20220607)、國家自然科學(xué)基金(32301810,32301837,U22A20472)、國家重點(diǎn)研發(fā)計(jì)劃(2018YFE0112000)、四川省科技計(jì)劃(2023NSFSC0217,2021YFH0077)

董慧雪,E-mail:13051378621@163.com。通信作者王際睿,E-mail:wangjirui@gmail.com

(責(zé)任編輯 李莉)

猜你喜歡
種子休眠麥穗抗性
五月麥穗金燦燦
輕音樂(2022年11期)2022-11-22 12:56:18
彩虹色的雨
一個(gè)控制超強(qiáng)電離輻射抗性開關(guān)基因的研究進(jìn)展
NaOH處理打破紫椴種子休眠過程中內(nèi)源激素的動(dòng)態(tài)變化
科學(xué)家揭示乙烯調(diào)控種子休眠新機(jī)制
麥穗穗
民族音樂(2018年5期)2018-11-17 08:20:00
揀麥穗
趣味(語文)(2018年7期)2018-06-26 08:13:52
甲基對(duì)硫磷抗性菌的篩選及特性研究
中國科學(xué)院植物所揭示光調(diào)控種子休眠和萌發(fā)的分子機(jī)理
蔬菜(2016年10期)2016-03-27 12:35:11
甜玉米常見病害的抗性鑒定及防治
中國果菜(2016年9期)2016-03-01 01:28:44
鄱阳县| 阳城县| 玉林市| 睢宁县| 乌兰察布市| 德安县| 福泉市| 茂名市| 新巴尔虎左旗| 龙井市| 南召县| 英德市| 叙永县| 安多县| 双江| 瑞昌市| 太康县| 上饶县| 霍林郭勒市| 瑞金市| 探索| 荔波县| 象山县| 灵武市| 敦煌市| 安庆市| 涞水县| 锡林浩特市| 高邑县| 株洲县| 澳门| 雷山县| 博湖县| 微山县| 临洮县| 安塞县| 辉南县| 枝江市| 当涂县| 谢通门县| 吴桥县|