趙靜
(中國廣電青海網(wǎng)絡(luò)股份有限公司,西寧 810000)
大數(shù)據(jù)時代通信技術(shù)[1,2]的發(fā)展都意味著網(wǎng)絡(luò)數(shù)據(jù)傳輸速度要求越來越高,網(wǎng)絡(luò)速度越來越快,這對網(wǎng)絡(luò)系統(tǒng)性能提出了更高的要求。因此,需要進(jìn)一步提高網(wǎng)絡(luò)系統(tǒng)性能,特別是合理解決系統(tǒng)在運(yùn)行期間存在資源分配和能耗問題[3]。
隨著無線網(wǎng)絡(luò)控制遠(yuǎn)程對象技術(shù)的快速發(fā)展和5G 技術(shù)的支持,5G 技術(shù)[4]在頻率利用率、能效、資源利用率和數(shù)據(jù)傳輸速度等方面都有了很大的提高,密集基站將進(jìn)一步增加網(wǎng)絡(luò)覆蓋率,極大地改善用戶體驗。目前,通信技術(shù)的優(yōu)化[5]是以最大吞吐量或最小系統(tǒng)能耗為目標(biāo)函數(shù),合理分配系統(tǒng)資源,實現(xiàn)系統(tǒng)資源的合理利用。對于5G 時代的綠色通信而言,最重要的是系統(tǒng)能效。因此,構(gòu)建基于最大化系統(tǒng)能量效率的目標(biāo)函數(shù)是資源分配的主要問題。
許多學(xué)者對5G 資源分配問題進(jìn)行了研究。文獻(xiàn)[6]提出基于馬氏決策的5G 網(wǎng)絡(luò)切片虛擬資源分配方法。該方法結(jié)合貝爾曼方程及馬氏決策過程的動態(tài)規(guī)劃迭代算法求解出運(yùn)營商最優(yōu)收益解和網(wǎng)絡(luò)資源有效利用率。文獻(xiàn)[7]針對單小區(qū)多用戶上行大規(guī)模MIMO 通信系統(tǒng),提出了采用分式規(guī)劃理論得到最佳基站天線數(shù)優(yōu)化問題。上述文獻(xiàn)大部分研究以大規(guī)模MIMO 通信為基礎(chǔ),然而很少有研究對下行鏈路系統(tǒng)的能效優(yōu)化進(jìn)行深入的理論及優(yōu)化問題研究。此外,部分方法集中解決優(yōu)化算法尋優(yōu)問題,然而隨著網(wǎng)絡(luò)系統(tǒng)能效優(yōu)化和資源分配技術(shù)的不斷發(fā)展,簡單的優(yōu)化問題已無法適應(yīng)網(wǎng)絡(luò)復(fù)雜性要求。
為改善上述問題,本研究結(jié)合了寬帶無線通信系統(tǒng)的分析,以優(yōu)化跨層和跨頻帶無線通信系統(tǒng)中的能量效率。
本研究以典型的多天線用戶多輸入多輸出-正交頻分多址(Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiple Access,MIMO-OFDMA)[8,9]無線通信系統(tǒng)為例。首先,假定網(wǎng)絡(luò)系統(tǒng)中的基站配置的信號傳輸天線共有M個。同時,可通過單個天線連接到基站的K個位置。假設(shè)系統(tǒng)運(yùn)行中總共N個子載波可劃分為V個頻率塊,這些頻率塊是通信系統(tǒng)中資源調(diào)度的最小單位。結(jié)合網(wǎng)絡(luò)系統(tǒng)的信道互易性,上行鏈路信道矩陣Gv計算如下:
式中:Hv——頻率塊上用戶到基站的快衰減矩陣;D——K×K對角陣;diag{·}——對角矩陣;βk——來自基站的慢衰減系數(shù)。
基于以上分析,可以知道用戶接收的信號將受到多重干擾,并且多個用戶之間的信號可能相互干擾。因此,這些相互干擾需要通過迫零算法[10]消除預(yù)編碼矩陣Fv=[Fv,1,Fv,2,…,Fv,K],因此有:
接著,用戶k第v個頻率塊的總信號矩陣rv,k可以表示如下:
綜上所述,在胃癌根治術(shù)中,應(yīng)用單純?nèi)?會使患者的應(yīng)激反應(yīng)增強(qiáng),不利于醫(yī)護(hù)人員的手術(shù)操作,全麻藥物作用量大,且術(shù)后患者會有明顯的疼痛癥狀產(chǎn)生,而應(yīng)用全麻聯(lián)合硬膜外麻醉可以雙向的阻滯受傷區(qū)域的神經(jīng)感受器傳導(dǎo)及中樞神經(jīng)的敏感度,從而降低患者的術(shù)后疼痛及不良反應(yīng),同時術(shù)中能夠減少茶氨酚的釋放,降低患者應(yīng)激反應(yīng),使循環(huán)系統(tǒng)趨于穩(wěn)定,有利于手術(shù)的順利進(jìn)行[3]。并且全麻聯(lián)合硬膜外麻醉的藥物使用靈活,用量少,易控制患者的應(yīng)激反應(yīng),有利于降低患者的術(shù)后疼痛,提高了患者的滿意度,有臨床推廣的價值。
式中:E{·}——期望;W——信號增益;N0——噪聲密度。
根據(jù)式(7),用戶在第v個頻率塊中接收的信號的頻率的下限計算如下:
式中:E{tr[·]}——追跡;K——頻率塊的數(shù)量;M——用戶數(shù)量。
結(jié)合式(8)至式(10),用戶k第v個頻率塊的總信號矩陣rv,k(式(7))可簡化為
根據(jù)以上分析,用戶在單個頻率塊上的分配率與用戶的大規(guī)模衰減密切相關(guān)。因此,通過用戶k分配獲得的信號可以計算如下
式中:mk——用戶k分配的頻率塊的數(shù)量;pk——用戶k在mk個頻率塊中的任何一個分配中的功率。
系統(tǒng)中能量效率函數(shù)U的下限可以表示為
式中:pc——單個頻率塊的固定功率消耗。
根據(jù)以上分析,下行鏈路用戶中的大規(guī)模MIMO-OFDMA 系統(tǒng)的能效資源分配中的最大化問題可以表示如下
式中:U(·)——能效資源分配目標(biāo)函數(shù);P——傳輸功率;m——分配給用戶的頻率塊號;Rmin——用戶的最小速率約束;V——頻率塊的總數(shù)。
本研究提出了基于最小速率要求的能效最大化資源分配算法。主要思路為在合理分配帶寬后,分配功率和天線數(shù)量,以提高系統(tǒng)的最佳能效。該算法首先使用用戶接收的平均信噪比和比特率作為參數(shù)來計算用戶獲得的副載波數(shù)。帶寬分配目標(biāo)函數(shù)mk的優(yōu)化過程可以表示如下:
為了滿足系統(tǒng)運(yùn)行期間的最小用戶速率要求,需要首先分配和處理帶寬。帶寬分配算法可描述如下:
從形式上看,能效函數(shù)是一種分?jǐn)?shù)形式,因此能效函數(shù)需要首先進(jìn)行處理,使其成為減法形式,然后將其轉(zhuǎn)化為凸優(yōu)化問題[11]。為此,目標(biāo)函數(shù)可以表示為
約束定義如下:
令中間變量f滿足式(21):
式中:P——發(fā)射功率;M——基站天線數(shù)。
結(jié)合式(21),f的海賽矩陣H(f)可定義如下:
根據(jù)式(22),H(f)是一個負(fù)定矩陣,故函數(shù)f是一個凹函數(shù)。為此,可基于拉格朗日函數(shù)[12]將目標(biāo)函數(shù)可以轉(zhuǎn)換為凸優(yōu)化問題,具體描述如下:
式中:λk——與約束相對應(yīng)的拉格朗日乘數(shù)。
式(19)能效目標(biāo)函數(shù)的對偶目標(biāo)函數(shù)定義為
當(dāng)給定λ并且采用KKT 條件時,最佳發(fā)射功率P*和基站天線數(shù)量M*可以計算如下:
拉格朗日乘數(shù)λ可通過以下遞歸公式獲得:
式中:δ——迭代次數(shù);j——迭代步長。
以相對常見的典型無線通信網(wǎng)絡(luò)為例進(jìn)行試驗與分析。案例模擬小區(qū)最大覆蓋范圍為1 000 m,用戶以基站為中心隨機(jī)分布在100 m 范圍內(nèi)。為了驗證所提算法優(yōu)越性,對比了基于NSGA-Ⅱ[13]的帶寬分配算法以及基于分式規(guī)劃[8](Fractional planning,FP)的基站天線數(shù)量分配算法的性能。對比指標(biāo)分別選取不同的低速率要求時系統(tǒng)的能效、用戶的吞吐量性以及最佳基站天線數(shù)。
用戶數(shù)量與系統(tǒng)能效分析結(jié)果如圖1 所示。可以看出,與基于NSGA-Ⅱ算法和基于FP 算法相比,所提出的算法能效較高。當(dāng)用戶數(shù)量為20 人時,所提算法能效較NSGA-Ⅱ和FP 算法高約1.64和2.25 倍;當(dāng)用戶數(shù)量為50 人時,所提算法能效較NSGA-Ⅱ和FP 算法高約1.67 和2.5 倍。此外,當(dāng)用戶數(shù)量持續(xù)增加時,系統(tǒng)總能效隨著用戶數(shù)量的增加而逐漸減少。
圖1 用戶數(shù)量與系統(tǒng)能效分析結(jié)果圖Fig.1 Analysis results of user quantity and system energy efficiency
不同數(shù)量用戶的吞吐量性能變化如圖2 所示??梢钥闯?FP、NSGA-II 以及所提出的算法均隨著用戶數(shù)量提升系統(tǒng)吞吐量增加,即用戶數(shù)量與吞吐量呈正相關(guān)性。然而,所提出的算法與FP 和NSGA-II相比,吞吐量提升更加明顯。例如當(dāng)用戶數(shù)量為50個時,所提出的算法較FP 和NSGA-II 相比提升約18.3%和11.9%。分析原因,基于NSGA-Ⅱ的帶寬分配算法中未對用戶速率提出任何要求,并且只要求最大化系統(tǒng)的能量效率,這導(dǎo)致了較低的系統(tǒng)吞吐量?;贔P 的基站天線數(shù)量分配算法通過最小化發(fā)射功率來分配帶寬,因此與所提出的算法相比,基于FP 算法具有更低的能效性能。此外,當(dāng)用戶數(shù)量持續(xù)增加時,系統(tǒng)吞吐量呈現(xiàn)上升趨勢,即隨著用戶數(shù)量的增加,系統(tǒng)的多用戶多樣性特征變得更加明顯。
圖2 不同數(shù)量用戶的吞吐量性能變化圖Fig.2 Throughput performance changes for different numbers of users
不同用戶數(shù)條件下各算法的最佳基站天線數(shù)的性能如圖3 所示??梢钥闯?當(dāng)用戶數(shù)量呈上升趨勢時,系統(tǒng)的最佳基站天線數(shù)量也呈上升趨勢。此外,FP、NSGA-II 以及所提出的算法性能相近,差異不是很大。試驗結(jié)果表明FP、NSGA-II 以及所提出的算法需要的最佳基站天線數(shù)大致相同。然而綜合系統(tǒng)能效和吞吐量分析結(jié)果,所提算法綜合性能較為優(yōu)異。試驗結(jié)果進(jìn)一步驗證了所提模型的有效性及實用性。
圖3 不同用戶數(shù)條件下各算法的最佳基站天線數(shù)的性能圖Fig.3 Performance of the optimal number of base station antennas for each algorithm under different user numbers
對多天線用戶MIMO-OFDMA 無線通信系統(tǒng)進(jìn)行分析,建立了基于最小速率要求的能效最大化資源分配算法。主要思路為在合理分配帶寬后,分配功率和天線數(shù)量,以提高系統(tǒng)的最佳能效。該模型為5G 系統(tǒng)安全管理及穩(wěn)定運(yùn)行提供了一定借鑒作用。未來可對混合系統(tǒng)參數(shù)的優(yōu)化配置和規(guī)模進(jìn)行研究,從而進(jìn)一步降低系統(tǒng)總成本。