国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

對一道橢圓外切矩形面積范圍試題的解析與拓展

2024-05-08 19:57:26陳超
高中數(shù)理化 2024年5期
關(guān)鍵詞:外切陳超中學數(shù)學

陳超

平面解析幾何是中學數(shù)學的重要內(nèi)容,是考查學生學科素養(yǎng)的重要載體.解析幾何解答題通常以直線與圓錐曲線的位置關(guān)系等綜合問題來檢驗學生的運算求解能力和邏輯思維能力,突出考查學生的理性思維、數(shù)學應(yīng)用、數(shù)學探索等.本文以一道兼具基礎(chǔ)性與探索性的橢圓外切矩形面積范圍的試題展開探究,旨在通過對它的解析,發(fā)現(xiàn)并證明橢圓外切矩形所具有的一些性質(zhì),進而將性質(zhì)推廣到雙曲線,以此幫助學生體會從特殊到一般、數(shù)形結(jié)合等數(shù)學思想.

猜你喜歡
外切陳超中學數(shù)學
《上海中學數(shù)學》2022年征訂啟示
《上海中學數(shù)學》2022年征訂啟示
《上海中學數(shù)學》2022年征訂啟示
《上海中學數(shù)學》2022年征訂啟示
關(guān)于橢圓外切平行四邊形的一個幾何不變量
和我一起去廣西
歌海(2019年1期)2019-06-11 07:02:15
Dipole Polarizabilities of the Ground States for Berylliumlike Ions?
探究拋物線內(nèi)接、外切三角形的性質(zhì)
橢圓內(nèi)接外切六邊形的幾何特性研討
圓外切三角形與圓的關(guān)系
徐州市| 修武县| 成都市| 余庆县| 衡南县| 山阴县| 福泉市| 丹东市| 苍梧县| 阜城县| 资源县| 天祝| 叙永县| 徐水县| 海门市| 梁山县| 高要市| 弥勒县| 加查县| 绥江县| 五华县| 晋江市| 呼和浩特市| 乌拉特后旗| 鄂伦春自治旗| 遵化市| 南丹县| 晋江市| 图木舒克市| 兰州市| 双桥区| 焉耆| 长葛市| 阜新市| 旺苍县| 社会| 浦江县| 乌拉特中旗| 灵川县| 九龙坡区| 屏山县|