劉健 趙增勤
摘要: 利用變分方法和相應(yīng)的臨界點定理研究一類具有p-雙調(diào)和算子的非局部橢圓方程Navier邊值問題, 在非線性項滿足超線性條件時, 得到了兩個非平凡廣義解的存在性定理.
關(guān)鍵詞: 非局部橢圓方程; Navier邊值問題; p-雙調(diào)和算子; 變分方法; 廣義解
中圖分類號: O175.2文獻標志碼: A文章編號: 1671-5489(2024)02-0205-06
Generalized Solutions to Nonlocal Elliptic EquationsNavier Boundary Value Problems with p-Biharmonic Operators
LIU Jian1, ZHAO Zengqin2
(1. School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, China;
2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China)
Abstract: By using? variational methods and corresponding critical points theorems, we investigated a class of nonlocal elliptic equations Navier boundary value problems with p-biharmonic operators. We obtained two existence theorems for nontrivial generalized solutions? when nonlinear terms satisfied super-linear conditions.
Keywords: nonlocal elliptic equation; Navier boundary value problem; p-biharmonic operator; variational method; generalized solution
0 引 言
四階非線性橢圓方程邊值問題在微機電系統(tǒng)、 多相系統(tǒng)的相場模型、 固體表面擴散及界面動力學等領(lǐng)域應(yīng)用廣泛. Kirchhoff型橢圓方程是帶有非局部項的非線性方程, 該類方程的很多定性性質(zhì)可解釋物理學和工程學中許多非線性模型的物理意義[1]. 為研究拉伸弦的振動, Lions[2]建立了該類方程的抽象框架. 近年來, 利用變分方法結(jié)合臨界點理論, 對非線性微分方程解的存在性及解存在數(shù)量的研究得到廣泛關(guān)注[3-18]. 例如: 文獻[4,14]分別在一定的條件下研究了四階脈沖彈性梁方程解的存在數(shù)量; 文獻[5]在非線性項滿足一定的增長性條件下, 利用變分方法結(jié)合相應(yīng)的臨界點定理研究了一類Kirchhoff型四階彈性梁方程兩個非平凡廣義解的存在性.
受上述研究啟發(fā), 本文研究下列具有p-雙調(diào)和算子的Kirchhoff型橢圓方程Navier邊值問題廣義解的存在性:Δ2pu+K∫Ωup/p+up/pdt(-Δpu+up-2u)=λf(x,u),/在Ω內(nèi),
參考文獻
[1]KIRCHHOFF G. Vorlesungen ber Mathematische Physik: Mechanik [M].Leipzig:? Teubner, 1883: 1-234.
[2]LIONS J L. On Some Questions in Boundary Value Problems of Mathematical Physics [J]. North-Holland Mathematics Studies, 1978, 30: 284-346.
[3]BONANNO G, DI BELLA B. A Boundary Value Problem for Fourth-Order Elastic Beamequations [J]. Journal of Mathematical Analysis and Applications, 2008, 343(2): 1166-1176.
[4]DAGU G, DI BELLA B, WINKERT P. Two Positive Solutions for Nonlinear Fourth-Order Elastic Beam Equations [J/OL]. Electronic Journal of Qualitative Theory of Differential Equations, (2019-05-21)[2023-03-07]. https://doi.org/10.14232/ejqtde.2019.1.37.
[5]LIU J, YU W G. Two Solutions to Kirchhoff-Type Fourth-Order Implusive Elastic Beam Equations [J/OL]. Boundary Value Problems, (2021-03-31)[2023-03-07]. https://doi.org/10.1186/s13661-021-01515-8.
[6]LIU J, YU W G. Two Solutions to Superlinear Hamiltonian Systems with Impulsive Effects [J]. Applied Mathematics Letters, 2020, 102: 106162-1-106162-6.
[7]LIU J, ZHAO Z Q, ZHANG T Q. Multiple Solutions to Damped Hamiltonian Systems with Impulsive Effects [J]. Applied Mathematics Letters, 2019, 91(1): 173-180.
[8]LIU J, ZHAO Z Q. Multiple Solutions for Impulsive Problems with Non-autonomous Perturbations [J]. Applied Mathematics Letters, 2017, 64: 143-149.
[9]NIETO J J, OREGAN D. Variational Approach to Impulsive Differential Equations [J]. Nonlinear Analysis: Real World Applications, 2009, 10(2): 680-690.
[10]NIETO J J. Variational Formulation of a Damped Dirichlet Impulsive Problem [J]. Applied Mathematics Letters,2010, 23(8): 940-942.
[11]SUN J T, CHEN H B, YANG L. Variational Methods to Fourth-Order Impulsive Differential Equations [J]. Journal of Applied Mathematics and Computing, 2011, 35: 323-340.
[12]劉健, 趙增勤. Cerami條件下脈沖邊值問題古典解的存在性 [J]. 數(shù)學學報(中文版), 2016, 59(5): 609-622. (LIU J, ZHAO Z Q. Existence of Classical Solutions to Impulsive Boundary Value Problems under Cerami Condition [J]. Acta Mathematica Sinica (Chinese Series), 2016, 59(5): 609-622.)
[13]劉健, 趙增勤, 于文廣. 具非自治微小擾動的脈沖方程三個古典解的存在性 [J]. 數(shù)學學報(中文版), 2019, 62(3): 441-448. (LIU J, ZHAO Z Q, YU W G. The existence of Triple Classical Solutions to Impulsive Problems with Small Non-autonomous Perturbations [J]. Acta Mathematica Sinica (Chinese Series), 2019, 62(3): 441-448.)
[14]劉健, 趙增勤, 于文廣. 四階脈沖彈性梁方程非平凡弱解的存在數(shù)量 [J]. 數(shù)學學報(中文版), 2021, 64(1): 99-106. (LIU J, ZHAO Z Q, YU W G. The Numbers of Nontrivial Weak Solutions to Fourth-Order Impulsive Elastic Beam Equations [J]. Acta Mathematica Sinica (Chinese Series), 2021, 64(1): 99-106.)
[15]謝嫣玲, 肖宇霞, 儲昌木.? 一類具有奇異項的p(x)-Kirchhoff方程解的存在性 [J]. 東北師大學報(自然科學版), 2022, 54(3): 20-24. (XIE Y L, XIAO Y X, CHU C M. Existence of Solutions of p(x)-Kirchhoff Equation with Singular and Nonlinear Terms [J]. Journal of Northeast Normal University (Natural Science Edition),? 2022, 54(3): 20-24.)
[16]SANG Y B,? REN Y.? A Critical p-Biharmonic System with Negative Exponents [J].? Computers & Mathematics with Applications, 2020, 79(5): 1335-1361.
[17]LIU J,? ZHAO Z Q.? Leray-Lions Type p(x)-Biharmonic Equations Involving Hardy Potentials [J].? Applied Mathmatics Letters, 2024, 149: 108907-1-108907-6.
[18]BOUREANU M M,? VLEZ-STANTIAGO A. Applied Higher-Order Elliptic Problems with Nonstandard Growth Structure [J].? Applied Mathmatics Letters, 2022, 123: 107603-1-107603-7.
[19]MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems [M]. New York: Springer Verlag, 1989: 1-292.
[20]BONANNO G, IANNIZZOTTO A, MARRAS M. Two Positive Solutions for Superlinear Neumann Problems with a Complete Sturm-Liouville Operator [J]. Journal of Convex Analysis, 2018, 25(2): 421-434.
[21]BONANNO G. Relations between the Mountain Pass Theorem and Local Minima [J]. Advances in Nonlinear Analysis, 2012, 1(3): 205-220.
(責任編輯: 趙立芹)
收稿日期: 2023-06-12.
第一作者簡介: 劉 ?。?980—), 男, 漢族, 博士, 教授, 從事非線性泛函分析及偏微分方程的研究, E-mail: liujianmath@163.com.
基金項目: 國家自然科學基金(批準號: 11571197)和山東省自然科學基金(批準號: ZR2021MA070).