孟鑫 國(guó)佳
摘要: 考慮一類(lèi)非線(xiàn)性Caputo型分?jǐn)?shù)階q-差分方程的廣義反周期邊值問(wèn)題, 用Banach不動(dòng)點(diǎn)定理給出該廣義反周期邊值問(wèn)題解的存在唯一性結(jié)果, 并給出一個(gè)應(yīng)用實(shí)例.
關(guān)鍵詞: Caputo分?jǐn)?shù)階q-導(dǎo)數(shù); 分?jǐn)?shù)階q-差分方程; 廣義反周期邊值問(wèn)題; Banach不動(dòng)點(diǎn)定理
中圖分類(lèi)號(hào): O175.8文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1671-5489(2024)02-0237-06
Generalized Anti-periodic Boundary Value Problem fora Class of? Fractional q-Difference Equations
MENG Xin1, GUO Jia2
(1. College of Mathematics and Computer, Jilin Normal University, Siping 136000, Jilin Province, China;2. Library of Jilin Normal University, Siping 136000, Jilin Province, China)
Abstract: We considered the generalized anti-periodic boundary value problem for a class of nonlinear Caputo fractional q-difference equations, gave the existence and uniqueness results of solutions for the generalized anti-periodic boundary value problem? by using the Banach fixed point theorem, and? gave an application example.
Keywords: Caputo fractional q-derivative; fractional q-difference equation; generalized anti-periodic boundary value problem; Banach fixed point theorem
0 引 言
分?jǐn)?shù)階q-差分理論[1-2]是分?jǐn)?shù)階差分體系中的一種特殊形式, 它具有分?jǐn)?shù)階微積分和離散數(shù)學(xué)二者的優(yōu)點(diǎn), 因而有更豐富的理論意義和應(yīng)用價(jià)值. 目前, 分?jǐn)?shù)階q-差分方程的研究主要側(cè)重于Caputo分?jǐn)?shù)階q-導(dǎo)數(shù)和Riemann-Liouville分?jǐn)?shù)階q-導(dǎo)數(shù)兩方面. 文獻(xiàn)[3]應(yīng)用錐上不動(dòng)點(diǎn)定理研究了二階q-差分方程邊值問(wèn)題正解的存在性; 文獻(xiàn)[4-5]應(yīng)用Banach不動(dòng)點(diǎn)定理和Krasnoselskii不動(dòng)點(diǎn)定理給出了帶有非局部Riemann-Liouville分?jǐn)?shù)階q-積分邊值條件的Riemann-Liouville分?jǐn)?shù)階q-差分邊值問(wèn)題解的存在性結(jié)果; 文獻(xiàn)[6-7]應(yīng)用Banach不動(dòng)點(diǎn)定理和Covitz-Nadler不動(dòng)點(diǎn)定理研究了邊值條件含積分的非線(xiàn)性Caputo分?jǐn)?shù)階q-差分方程以及q-差分包含邊值問(wèn)解的存在性. 由于反周期問(wèn)題在許多物理過(guò)程的數(shù)學(xué)模型中應(yīng)用廣泛, 所以反周期邊值問(wèn)題是一類(lèi)重要的邊值問(wèn)題. 關(guān)于非線(xiàn)性分?jǐn)?shù)階q-差分方程反周期邊值問(wèn)題的研究已取得了一些進(jìn)展, 文獻(xiàn)[8-10]利用基本的不動(dòng)點(diǎn)定理研究了一類(lèi)帶有反周期非線(xiàn)性Caputo分?jǐn)?shù)階q-差分方程邊值問(wèn)題, 得到了邊值問(wèn)題解的存在性和唯一性的充分條件; 文獻(xiàn)[11-12]利用Banach不動(dòng)點(diǎn)定理和Leary-Schauder非線(xiàn)性抉擇研究了一類(lèi)帶有反周期邊值條件的非線(xiàn)性分?jǐn)?shù)階脈沖q-差分方程的邊值問(wèn)題, 給出了該邊值問(wèn)題解的存在性和唯一性結(jié)果.
參考文獻(xiàn)
[1]AL-SALAM W A. Some Fractional q-Integrals and q-Derivatives [J]. Proceedings of the Edinburgh Mathematical Society, 1966, 15(2): 135-140.
[2]AGARWAL R P. Certain Fractional q-Integrals and q-Derivatives [J]. Proceedings of Cambridge Philosophical Society, 1969, 66: 365-370.
[3]EL-SHAHED M, HASSAN H A. Positive Solutions of q-Difference Equation [J]. Proceedings of the American Mathematical Society, 2010, 138(5): 1733-1738.
[4]WANG J F, YU C L, GUO Y P. Solvability for Nonlinear Fractional q-Difference Equations with Nonlocal Conditions [J]. International Journal of Modelling, Identification and Control, 2018, 30(4): 303-309.
[5]AHMAD B, NIETO J J, ALSAEDI A, et al. Existence of Solutions for Nonlinear Fractional q-Difference Integral Equations with Two Fractional Orders and Nonlocal Four-Point Boundary Conditions [J]. Journal of the Franklin Institute, 2014, 351(5): 2890-2909.
[6]YANG W G. Existence Results for Nonlinear Fractional q-Difference Equations with Nonlocal Riemann-Liouville q-Integral Boundary Conditions [J]. Filomat, 2016, 30(9): 2521-2533.
[7]SAMEI M E, RANJBAR G K, HEDAYATI V. Existence of Solutions for a Class of Caputo Fractional q-Difference Inclusion on Multifunctions by Computational Results [J]. Kragujevac Journal of Mathematics, 2021, 45(4): 543-570.
[8]YANG W G. Anti-periodic Boundary Value Problems in Volving Nonlinear Fractional q-Difference Equations [J]. Malaya Journal of Matematik, 2013, 4(1): 107-114.
[9]孫明哲, 侯成敏. 一類(lèi)反周期分?jǐn)?shù)階q-差分邊值問(wèn)題解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2014, 52(6): 1215-1218. (SUN M Z, HOU C M. Existence of Solutions for a Class of Anti-periodic Boundary Value Problems with Fractional q-Difference Equations [J]. Journal of Jilin University (Science Edition), 2014, 52(6): 1215-1218.)
[10]LI X H, HAN Z L, SUN S R. Anti-periodic Boundary Value Problems for Fractional q-Difference Equations [J]. Journal of Applied Mathematics and Computing, 2016, 50(1/2): 243-257.
[11]PATHAK R P, SOMVANSHI P S. On Existence Result of Impulsive Antiperiodic Boundary Value Problem of Fractional Order q∈(1,2) [J]. Acta Ciencia Indica, 2015, 41(4): 331-346.
[12]ZUO M Y, HAO X A. Existence Results for Impulsive Fractional q-Difference Equation with Antiperiodic Boundary Conditions [J/OL]. Journal of Function Spaces, (2018-10-09)[2023-03-28]. https://doi.org/10.1155/2018/3798342/.
[13]KAC V, CHEUNG P. Quantum Calculus [M]. New York: Springer, 2002: 1-112.
(責(zé)任編輯: 趙立芹)
收稿日期: 2023-05-19.
第一作者簡(jiǎn)介: 孟 鑫(1980—), 男, 漢族, 博士, 副教授, 從事微分方程與動(dòng)力系統(tǒng)的研究, E-mail: mengxin0419@126.com.
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 10971084).